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Abstract— We present results from the optimization of a re-

identification process using two sets of biometric data 

obtained from the Civilian American and European Surface 

Anthropometry Resource Project (CAESAR) database.  The 

datasets contain real measurements of features for 2378 

individuals in a standing (43 features) and seated (16 

features) position.  A genetic algorithm (GA) was used to 

search a large combinatorial space where different features 

are available between the probe (seated) and gallery 

(standing) datasets.   Multiple linear regression models are 

employed to estimate one set of features from the other.  

Results show that optimized model predictions obtained using 

less than half of the 43 gallery features and data from roughly 

16% of the individuals available produce better re-

identification rates than two other approaches that use all 43 

gallery set features and information from all 2378 individuals. 
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1. Introduction 

Re-identification is the task of accurately recognizing a 

person that has been previously observed and for whom some 

information is available in a database.  For example, an image 

obtained from a photograph or video can be employed to 

estimate measurements of certain body features or other 

characteristics, and those estimates used to interrogate a 

database in search of a match.  In particular, the database may 

contain biometric information obtained using a controlled and 

systematic process that can be reliably used to identify an 

individual.  Subsequently, the same or other measurements 

may only be obtainable under a different and more 

challenging set of circumstances. 

Numerous research efforts have been conducted recently on 

person re-identification, including gait recognition [1], clothing 

appearance [2], and anthropometry [3], [4].  The work in 

references [2] and [5] provide two excellent surveys on person 

re-identification.  Other research has also focused on finding 

anthropometric features for clustering individuals along gender 

[6] and in reducing the number of dimensions needed for 

clustering [10].  In this work, we present results for person re-

identification using two sets of biometric data.  The two sets of 

data were obtained by the Air Force Research Laboratory 

(AFRL) and form part of the Civilian American and European 

Surface Anthropometry Resource Project (CAESAR) database 

[7].  The datasets used in this work are 1D North American 

anthropometric measurements for 2384 individuals in a 

standing position and 2380 individuals in a seated position.  

The standing dataset contains measurements of 43 body 

features (measurements between two landmarks) and the seated 

dataset contains measurements of 16 body features, with values 

for both sets reported in millimeters.  The two datasets have 

2378 persons in common.  Data for five body features are 

identified with very similar names in the two sets but, because 

the measures are obtained in standing or seated positions, the 

numerical values of the features with similar names are not 

equal for a given person.  Some measurements are missing for 

some individuals in each of the two datasets.  Because the 

standing dataset contains information for a larger number of 

body measurements and the largest number of individuals, it is 

used as the gallery set, the set containing sufficient information 

for unique identification, and the seated set is used as the probe 

(or secondary) data from which gallery set feature value 

estimates will be obtained.  The names of the features in the 

standing set are shown in Table 1 and the names of the features 

in the seated set are shown in Table 2. 

 

Table 1. Names of the 43 Features in the North American 1D 

Standing Set (Gallery Set) 

Feature Name Feature Name Feature Name 

Acromial Ht Stand Lt  Bitrochant.Brth Stand  Malleolus Med Rt  

Acromial Ht Stand Rt Bustpoint Brth  Neck Ht  

Acromion-Radiale Len Lt Cervicale Ht  Radiale-Stylion Lt  

Acromion-Radiale Len Rt Chest Ht Stand  Radiale-Stylion Rt  

Ankle Ht Lt Malleolus,Lat 

Lateral) 
Elbow Ht Stand Lt  Sellion Supramenton  

Ankle Ht Rt Malleolus,Lat 

Lateral)  
Elbow Ht Stand Rt  Sleeve Outseam Lt  

Arm Inseam Lt  Foot Brth Lt  Sleeve Outseam Rt  

Arm Inseam Rt Foot Brth Rt  Sphyrion Ht Lt  

Axilla Ht Lt  Infraorbitale Ht Lt 

Stand  
Sphyrion Ht Rt  

Axilla Ht Rt  Infraorbitale Ht Rt 

Stand  
Suprasternale Ht  

Biacromial Brth  Inter-pupillary Dst  Trochanterion Ht 

Lt  
Bicristale Brth  Interscye Dst Stand  Trochanterion Ht 

Rt  
Bigonial Brth Knee Ht Stand Lt  Waist Back  

Bispinous Brth  Knee Ht Stand Rt   

Bitragion Brth  Malleolus Med Lt   

  

 



 

Table 2. Names of the 16 Features in the North American 1D 

Seated Set (Probe Set) 

 

 

 

 

 

 

 

2.  Materials and Methods 

The process of re-identifying an individual by searching 

a database is fairly simple.  A numerical vector with values 

for some body features from an unknown individual is 

compared against the corresponding values in a database.  

Standardized distances between the vector of the unknown 

individual and every person in the database are calculated 

and ranked.  Standardized distance metrics are often used in 

re-identification because body feature measurements vary in 

magnitude.  The individual in the database with the smallest 

distance, ideally zero, to the vector from the unknown person 

is reported as the closest match.  This matching process 

creates a single, real-valued metric that determines how 

similar any two subjects are.  If a correct match is found as 

the top-ranked standardized distance, it is said to have a 

Rank of 1.  If the correct match is found, say, in the fifth 

position of ranked standardized distances, it is said to have a 

Rank of 5. 

Using standardized Euclidean distance between two 

vectors of body measures as a metric to identify an individual 

is reasonable because sets of body measurements for a person 

tend to be unique.  In the absence of noise, very few features 

in the gallery set are needed to unambiguously identify an 

individual in the database.  Most combinations using only 

two of the 43 gallery features available provide perfect 

discrimination under conditions of unchanging measurements 

and the fixed number of individuals in the database.  Not 

surprisingly, using a larger number of features results in 

better identification power, measured as better separation 

between all pairs of distinct individuals in the gallery set.  

Figure 1 shows distributions of the minimum standardized 

Euclidean distance among all pairs of individuals in the 

gallery when one thousand samples with 5, 10, 15, 20, 25, 30, 

and 35 features from the gallery set are selected at random 

and used to calculate pairwise standardized Euclidean 

distances. 

 
Figure 1. Box plots of the minimum standardized Euclidean distance among 
all distinct pairs of 2384 individuals in the gallery data for 1000 samples 

where the number of features shown in the x-axis was selected at random 

from the 43 available. The central mark in each box is the median and the 
edges are the 25 and 75 percentiles, the edges extend to the most extreme 

values not considered outliers and the crosses are outliers. 

 

Figure 1 makes clear that, although some feature 

combinations provide better separation between all pairs of 

distinct individuals in the gallery, it is likely that any set with 

10 or more features will be sufficient for perfect 

identification.  Naturally, it is a much greater challenge to 

obtain estimates of gallery set measurements from data 

collected in a different, possibly uncontrolled way. 

The re-identification question using two different sets of 

data becomes a feature selection problem.  As Figure 1 

shows, very few features are needed for perfect re-

identification if the features in the gallery set are known or 

can be estimated with very high accuracy.  Figure 1 also 

shows that, in general, using a larger number of features is 

better.  If features in the gallery set can only be estimated 

from a secondary source of data with some degree of error, 

how many features are needed and what level of re-

identification can we expect to achieve? Is there a subset of 

features that is better for re-identification purposes? 

Because 2378 of the individuals are common to both the 

gallery and probe datasets, it is easy to study the relationship 

between pairs of features in the two sets.  Simple linear 

correlation coefficients between every single feature in the 

gallery set and every single feature in the probe set range 

between -0.18 and 0.96, with most of the pairings (496/688) 

having simple linear correlation values under 0.6.  This 

indicates that, with some exceptions, few features in the 

probe set are good linear predictors, on their own, of features 

Feature Name 

Acromial Ht Sit Lt 

Acromial Ht Sit Rt  

Bi-lateral Femoral Epicondyle Brth Sit  

Bi-lateral Humeral Epicondyle Brth Sit  

Bitrochanteric Brth Sit  

Buttock to Trochanter Lth  

Femoral Epicondyle Lat to Malleolus Lat Lt  

Femoral Epicondyle Lat to Malleolus Lat Rt  

Infraorbitale Ht Sit Lt  

Infroarbitale Ht Sit Rt 

Trochanter to Femoral Epicondyle Lat Lt  

Trochanter to Femoral Epicondyle Lat Rt  

Trochanter to Seated Surface Lt  

Trochanter to Seated Surface Rt  

Elbow Ht Sit Lt  

Elbow Ht Sit Rt 



 

in the gallery set.  Figure 1 shows that a relatively small 

number of features are sufficient to establish the identity of 

an individual in the gallery set so, a naïve approach would be 

to employ individual features in the probe set to predict 

gallery set values, and using those estimates for 

identification. 

Gallery set feature values were estimated using, for 

each, the single most highly correlated feature in the probe 

set as a predictor.  This approach is intuitively appealing 

because only the best possible individual predictor is used, 

and probe set features containing little or no useful 

information as predictors of gallery features are ignored to 

the extent possible.  Unfortunately, results from this 

approach are disappointing, as only 120 individuals end up 

with a Rank of 5 or better.  

The relationship between features in the probe and 

gallery sets may be more complex than predictions from one 

simple linear regression model may be able to convey.  A 

more sophisticated approach involves the use of multiple 

linear regression models to obtain estimates of gallery set 

features.  In this approach, a linear model relating a feature 

in the gallery set to one or more features in the probe set is 

built using a training set of randomly selected individuals.  

These multiple linear regression models are built using a 

forward stepwise procedure (p-value to enter of 0.05 and 0.1 

to remove), one for each feature in the gallery set, and all 

using information from the same set of individuals.  The 

models can then be used to predict a vector with gallery set 

feature estimates using probe set data as input.   

As we have shown, accurate re-identification can be 

carried out with a relatively small number of gallery set 

features.  This means that, as long as some predicted gallery 

measures are available, finding the best possible match with 

the gallery data is possible.  Naturally, the accuracy of the 

match will depend on the quality and the quantity of the 

feature estimates.  The problem then becomes one of finding 

an optimum set of features that will result in a maximum 

identification rate.  Other parameters, such as the quality of 

predictions and the size of the training set used to build the 

multiple linear regression models, could also affect the 

correct identification rate.   

Searching through this space for an optimal set of 

parameters in an exhaustive way is not practically feasible.  

The number of combinations of two or more features in the 

gallery set is of the order of 8.8×10
12

.  If we consider also 

the size of the training set used to create the prediction 

models and the quality of the fits for an estimate to be 

considered good as two more parameters to be optimized, 

the size of the problem space becomes even more intractable. 

To find a solution, a genetic algorithm (GA) was 

implemented.  Genetic Algorithms are a heuristic 

optimization technique, loosely based on the Darwinian 

theory of evolution, in which selective pressure is exerted on 

an evolving population of solutions (or chromosomes) 

through mechanisms of recombination, selection and 

mutation [8],[9].  Repeated application of the GA 

mechanisms forces improvement in the fitness (or objective 

function) value of the population until convergence is 

reached. 

The form of a GA solution for the re-identification 

problem considered here consists of a vector (or 

chromosome) with 45 entries.  The first 43 are binary (1/0) 

entries indicating whether the corresponding feature in the 

gallery set will be estimated and used in the matching 

process or not.  The 44
th

 entry in the chromosome is an R
2
 

threshold, indicating that only multiple linear regression 

models that match or exceed this threshold with the training 

set will be used to create a vector of estimated gallery feature 

values.  The last entry in the chromosome is the size of the 

training set (number of individuals) used to build the 

multiple linear regression models.  To ensure that only 

multiple linear regression models with at least a moderately 

good fit were considered, it was decided to limit the search 

of R
2
 threshold values to the [0.5, 1] range.  The size of the 

randomly selected training set was also limited to remain 

between 100 and 500 individuals.  The limits in the size of 

the training set were imposed to determine if it is possible to 

build models that produce reasonably good and reliable 

predictions without having to use all the data available. 

The GA creates an initial population of solutions at 

random called the parent population.  A population of 

offspring solutions is obtained by combining the contents of 

chromosomes in the parent population.  Evaluation of every 

solution in the offspring population is carried out by 

choosing a training set of individuals, of the size indicated 

by the solution, selected at random.  A multiple linear 

regression model for each of the gallery features that have a 

‘1’ in a solution is built, employing a stepwise procedure, 

using data in the training set while all the features in the 

probe set remain available to build the models. To avoid 

overfitting, the models are limited to purely linear terms.  

After the models have been built, data for every individual in 

the probe set is used to predict values for the appropriate 

features in the gallery set, provided that the multiple linear 

regression model for that feature has an R
2
 value that is 

equal or greater than the threshold indicated by the GA 

solution.  The resulting vector of gallery set feature estimates 

is compared to all the available gallery data by computing 

standardized Euclidean distances.  The standardized 

Euclidean distances are ranked in ascending order and the 

position where the correct ID is found is stored.  For 

example, if the top match corresponds to the correct identity, 

this individual has a Rank of 1.  However, if the top four 

matches for an individual are wrong (the individual is not 

one of these four persons in the gallery set) and the correct 

identity is found as the fifth match, this individual has a 

Rank of 5.  The fitness value of the chromosome is obtained 

by adding the number of individuals with Rank 5 or better.   

After the offspring solutions have been evaluated, their 

fitness values are sorted and the best solutions are selected to 

become the new parent population.  To ensure that all 

feasible chromosome entries remain available, and to help 



 

avoid premature convergence, a mutation mechanism is 

applied to the new parent population.  Mutation consists of 

making random changes to a small number of individuals, 

also selected at random, in the new parent population.  The 

mechanisms of recombination, evaluation, selection and 

mutation are applied repeatedly until some measure of 

convergence is achieved.  In general, the fitness value of the 

best solution (or solutions) is used to determine if the GA 

has converged.  When the fitness value of the best solution 

remains unchanged generation after generation, we say that 

the algorithm has converged.  The re-identification algorithm 

described here was implemented in MatLab (R2013)[11]. 

3.  Results 

Table 3 shows the gallery set features selected by the 

GA with multiple regression models that match or exceed 

the R
2
 threshold selected by the algorithm.  The values of R

2
 

threshold and training set size selected by the GA are 0.87 

and 389 respectively. 

 

Table 3. Identities of the Features in the North American 1D 

Standing Set Selected by the GA  

 

Results from Table 3 show that only a subset of less 

than half of the features in the standing set are selected by 

the GA as optimal for building an anthropometric signature 

for the available individuals.  Over repeated independently 

started GA runs, most of the features in Table 3 are selected 

again, indicating that there is a subset of features that are 

robust for re-identification purposes under the approach used 

in this work.  Even though it appears as if some of the 

features in Table 3 are redundant -both the left and right 

measurements of four features are selected by the algorithm- 

removing even just one or two features from those shown in 

Table 3, results in an average decline of about 5% in the 

number of re-identifications with Rank 5 or better.  

Removing all four ‘right’ features in Table 3 and keeping 

only the ‘left’ when both are present, results in an average 

decrease of 16% in the number of re-identifications with 

Rank 5 or better. 

Figure 2 shows the cumulative proportion of individuals 

plotted against their re-identification rank for feature vectors 

estimated in three different ways: 

  

1) Ten  GA solutions using the features shown in Table 3 

and multiple linear regression models built using ten 

training sets of 389 randomly chosen individuals and an 

R
2
 threshold of 0.87 (solid lines).  

2) Estimates for all 43 features in the gallery set, each 

estimated using a multiple linear regression model 

where all individuals are used to build the models and 

all the probe set variables are potentially available 

(dashed line). 

3) The approach described in the first part of this paper, 

using all 43 features and simple linear regression models 

built using all individuals.  Each feature in the gallery 

set is estimated using the simple linear model with the 

best R
2
 of those available (dot and dash line). 

 
Figure 2. Plots of cumulative proportion of individuals (y-axis) for a given 
rank (x-axis) for ten solutions using the features found with the GA (solid 

lines), multiple linear regression models for all 43 gallery set features using 

information from all 2378 individuals (dashed line) and the best simple 
linear regression model for each feature in the gallery set (dot and dash 

line). 
 

Figure 2 shows that the re-identification predictions 

found using the parameters reported by the GA exhibit better 

performance than multiple linear regression models obtained 

using all gallery set features and all individuals and much 

better than results obtained using the best simple linear 

regression model for each gallery set feature.  This indicates 

that better quality re-identification results can be obtained by 

relying on a subset of accurately estimated features and that 

reliable predictive models for those features can be obtained 

using data from relatively few individuals. 

Notice that, because the identity of the individuals 

selected to build the multiple linear regression models 

changes from generation to generation, even if the identity of 

the gallery set features chosen remains unchanged, the 

evolving solutions are robust against the particular subset of 

individuals used to build the models.  Only solutions that 

perform well generation after generation, that is, solutions 

that maintain a high fitness value with relatively little 

Feature Name Feature Name 

Acromial Ht Stand Lt Infraorbitale Ht Lt Stand 

Acromial Ht Stand Rt Infraorbitale Ht Rt Stand 

Acromion-Radiale Length Lt Knee Ht Stand Rt 

Acromion-Radiale Length Rt Sleeve Outseam Len Lt 

Axilla Ht Lt Trochanterion Ht Lt 

Bitrochanteric Brth Stand Trochanterion Ht Rt 



 

variability, will be maintained by the GA.  This puts pressure 

on the algorithm to select gallery set features that can be 

reliably estimated without over-fitting. 

Despite the encouraging results shown in Figure 2, the 

re-identification task remains challenging.  Only an average 

of about 19% of the 2378 individuals receive a Rank of 1 

using the GA solution over repeated runs using randomly 

selected subsets of 389 individuals to build the predictive 

models, and an average of 42% receive a Rank of 5 or better.  

Still, these results indicate that this re-identification 

approach may prove useful for greatly narrowing down the 

pool of individuals in a database that require closer 

inspection. 

4.  Conclusions and Future Work 

 

We have presented a methodology to develop predictive 

models for biometric features linking two sets of distinct 

data involving 2378 individuals.  Individuals in the gallery 

set can be unambiguously identified using only a few 

biometric measures if these measures are known, or can be 

estimated, with high accuracy.  However, estimation of 

biometric features in a gallery set using as predictors data 

gathered under different circumstances presents a number of 

challenges.  Investigating an adequate set of gallery features 

that can be predicted using features in a probe set is difficult 

because the combinatorial space is very large.  In addition, 

the predictive models sought should be of enough quality 

(producing relatively accurate predictions) and should be 

robust to the particular subset of data used to build them. 

A genetic algorithm (GA) was used to explore the 

problem space, searching for a group of gallery set features 

that could be linearly related to the features in the probe set.  

Results indicate that the GA selects less than half of the 

gallery set features to make a re-identification and that this 

approach produces better results than two other approaches 

that use information for all features and all individuals 

available. 

The methodology presented in this paper could prove 

useful when incorporated into a re-identification system that 

is constantly updated.  Biometric information from new 

individuals, or information from new biometric features, can 

be added and the algorithm trained again, helping in the 

development of a system that is robust and scalable. 

In future work, we plan to investigate if re-identification 

performance can be improved by limiting the search to 

individuals that fit a profile consistent with an estimated 

vector of gallery set features. We are also exploring new 

modeling approaches, including feature transformations and 

different matching metrics.  We are interested in studying the 

possibility of finding gallery set features that may be 

exchangeable to help in cases when one of the features 

selected by the GA is not available, and in determining the 

robustness of the multiple regression models when applied to 

a new set of data. 
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