
Parallel Scaling Performance and Higher-Order Methods

A. Jared Buckley1 and B. Gaurav Khanna1
1Physics Department, University of Massachusetts Dartmouth, Dartmouth, MA, USA

Abstract— There is considerable current interest in higher-
order methods and also large-scale parallel computing in
nearly all areas of science and engineering. In this work, we
take a number of basic finite-difference stencils that compute
a numerical derivative to different orders of accuracy and
carefully study the scaling performance of each, on a par-
allel computer cluster. We conclude that if one has a code
that exhibits a high order of convergence, then there is likely
to be no significant gain through cluster parallelism in the
context of total execution or “wall clock” time. Conversely,
for a low order code that exhibits good parallel scaling,
there is insignificant gain through the implementation of a
higher-order convergent algorithm.

Keywords: higher-order, finite-difference, parallel, scaling

1. Introduction
In recent decades there has been a tremendous rise in

numerical computer simulations, in nearly every area of
science and engineering. This is largely due to the develop-
ment of (Beowulf) cluster parallel computing that involves
connecting together “off-the-shelf” computing units (for
example, commodity desktop or laptop computer processors)
into a configuration that would achieve the same level of
performance, or even outperform, traditional supercomputers
at a fraction of the cost [1]. The main reason behind the
significant cost benefit of cluster computing is that it is
entirely based on mass-produced, consumer hardware. Com-
putational science has benefited and expanded tremendously
in the last decade due to the rapid improvements in processor
performance (Moore’s Law) and major price drops due to
mass production and associated market forces.

In addition to the strong increase in the interest in parallel
cluster computing, there is also a rising trend in developing
numerical algorithms that converge faster than the common
second-order accurate schemes [2]. Some examples of such
higher-order convergent methods are – higher-order finite-
differencing, spectral collocation method, radial basis func-
tion method, finite-element and others [3], [4], [5], [6], [7],
[8], [9], [10], [11]. In this work, we restrict ourselves to
higher-order finite-difference schemes, however, we antici-
pate that our findings are generic enough that they would
apply to any higher-order method.

The main goal of this work is to clearly demonstrate a
form of “trade-off” between parallel computing and higher-
order methods. This trade-off stems from the detailed par-
allel scaling behavior of the various higher-order schemes

under specific conditions. In particular, our main assumption
in this work is that the physical or engineering problem to be
solved numerically has a known degree of tolerance or error
acceptable for the solution, and is a given fixed quantity. We
interpret this error to be the scale of the “discretization” or
truncation error arising from the numerical scheme, which
is, of course, a significant simplification – however, one that
is reasonable for a wide class of problems. In other words,
we study the scaling performance of different order finite-
difference methods given a fixed level of the discretization
error.

The outcome of our study suggests several very significant
conclusions: (a) If one has a parallel code that scales well
and exhibits second-order convergence, there is insignificant
gain to be expected from a higher-order method imple-
mentation, assuming one has a large enough computational
resource available, and the major consideration is the total
execution time; (b) if one has a serial code exhibiting higher-
order convergence (say, higher than fourth-order) then there
is no significant gain from a parallel algorithm in a similar
context; and (c) depending upon the acceptable error level,
there is likely an optimal approach i.e. a combination of
parallelism and method-order that would be ideal for the
problem.

This article is organized as follows: In Section 2, we
present a simple parallel scaling model that predicts the
outcome of our planned study, based on simple heuristic
reasoning. In Section 3, we detail the method of our study
and present explicit mathematical expressions and our ap-
proach towards cluster parallelism. In Section 4, we show
and discuss our results, and we end with some conclusive
remarks in Section 5.

2. Simple Scaling Model
In this section, we present a simple model that predicts

the parallel scaling behavior for a finite-difference method
of any order. The model will help explain our findings and
may provide some predictive value for other codes beyond
the simple sample code we consider in this work.

Let us say that one is interested in performing a simple
one-dimensional (1D) numerical derivative using a second-
order finite-difference stencil. An important parameter that
must be chosen is the grid resolution, that is typically set by
the grid size N . The number of numerical calculations neces-
sary to perform the derivative computation on the entire grid
would then be on the order of N (more accurately, it would



be closer to 2N calculations – but let us ignore the constant
pre-factors for this discussion). Now, let’s assume that one
attempts the same computation on a large parallel cluster
with n processors using a standard domain-decomposition
approach. Each processor would then perform N/n com-
putations and would have to communicate two values (the
boundaries of its subgrid) to neighboring processors. The
parallel scaling behavior is largely determined by the ratio
of the time-scale associated with this communication, to
the time-scale of the actual numerical calculations on the
subgrid. For good scaling, the entire computation should be
heavily dominated by the calculations being performed by
the processors and not by the communication. Therefore, as
N increases, better scaling behavior is expected here.

Now, let us consider the same in the context of a higher-
order finite-difference stencil of order p in 1D. For the
same level of error as the second-order case above, one
would only need a grid size on the scale of N2/p. Thus,
in a parallel computation environment, with n processors,
each subgrid would be of size N2/p

n and the number of
computations performed by each processor would be on
the scale of p

nN
2/p. The number of values to communicate

from one processor to another would increase to p. This
is explained in detail in the next section. Thus, the ratio of
computation to communication would behave as N2/p which
drops dramatically as one increases the method order p, due
to the power of 2/p in the expression1. This implies that the
scaling of higher-order methods, in general, is expected to
be worse compared to the second-order case, in the context
of a fixed discretization error.

The question that we will address in this work, is whether
the improved scaling of lower order methods is enough to
give them an advantage in the context of the most important
aspect of a numerical computation – the total execution or
“wall clock” time. In fact, given our model above, we can
make an estimate of how this could occur. Let us assume
that for a given higher-order method, say, fourth-order and a
problem size of interest, the parallel scaling performance is
such that one is actually better off simply utilizing a serial
code. The execution time would then be on the scale of√
N . On the other hand, assuming that the second-order code

has better parallel scaling, as would be expected, one would
estimate the wall clock time to be on the scale of N/n.
Thus, if one has computational resources with n ∼

√
N

at one’s disposal, then at least in terms of total execution
time, the two methods will complete the computation on the
same time-scale. For the case of order p, this would change
to n ∼ N1−2/p

p . This is the main point that we explicitly
investigate in the following sections using finite-difference
schemes of order 2, 4, 6 and 8.

1Since such communication is typically latency bound, as opposed to
bandwidth bound, the p-dependence of this ratio is better estimated to be
pN2/p.

3. Methodology
In this section, we describe in detail the method of study

adopted in this work. We begin with a discussion of higher-
order finite-difference stencils, followed by our results from
correlating the error with grid size N and end with a
description of our parallel code implementation.

For the finite-difference calculations, we used a cosine
function on a 1D domain from 0 to 12π:

f(x) = cosx, x ∈ [0, 12π)

Now, for a numerical implementation, x is discretized simply
as:

xi = ih

where
h =

12π

N

and i is an index that labels an arbitrary grid point on the
domain.

To calculate the derivative of a function at grid point i
using the finite-difference schemes, it is necessary to use
the function values at neighboring grid points. As the order
of the scheme increases, more grid points are needed for the
calculation.

In the context of this work, we focus our attention on
the first derivative of f(x). At grid point i, using the
various different order central finite-difference schemes, the
derivative is given as [2]:
Order 2:

1

h
(
−1

2
fi−1 +

1

2
fi+1)

Order 4:

1

h
(
1

12
fi−2 +

−2

3
fi−1 +

2

3
fi+1 +

−1

12
fi+2)

Order 6:

1

h
(
−1

60
fi−3 +

3

20
fi−2 +

−3

4
fi−1

+
3

4
fi+1 +

−3

20
fi+2 +

1

60
fi+3)

Order 8:

1

h
(

1

280
fi−4 +

−4

105
fi−3 +

1

5
fi−2 +

−4

5
fi−1

+
4

5
fi+1 +

−1

5
fi+2 +

4

105
fi+3 +

−1

280
fi+4)

where the notation, fi = f(xi).
It is clear from the above expressions that finite-difference

schemes at higher orders produce an increasingly wider
stencil. These wide stencils become important in the context
of parallel computing as the passing of messages increases
significantly with stencil size. As an example, a grid point



L��� L L���

L��� L L���L���� L����

L��� L L���L���� L����L���� L����

L���� L L���L���� L����L���� L����L����� L�����

2UGHU��

2UGHU��

2UGHU��

2UGHU��

*ULG�3RLQWV�,QWHUQDO�WR�
6XEGRPDLQ

*ULG�3RLQWV�([WHUQDO�WR�
6XEGRPDLQ��0HVVDJH�
3DVVHG�

/HIW�0RVW�
6XEGRPDLQ�
*ULG�3RLQW

LL

LL

LL

LL

2UGHU��2UGHU �

2UGHU��2UGHU �

2UGHU��2UGHU �

2UGHU��2UGHU �

/HIW�0RVW
6XEGRPDLQ�
*ULG�3RLQW

Fig. 1: The stencil structure for various finite-difference orders on a parallel computer cluster. The grid point labelled with
index i is meant to reside on the left-edge of a subdomain. The grid points further on the left, must be communicated over
the network (dotted-lines) while the ones on the right do not (solid-lines). Note that for higher-order stencils information
from additional grid points have to be communicated across the network.

calculation at the edge of a process’ subdomain would need
1 grid point value passed from outside the subdomain for
order 2, while order 8 would require 4 grid point values to be
passed. It is this communication overhead that influences the
parallel scaling of the finite-difference schemes as described
in Section 2. We developed computational routines, written
in the C programming language, to better understand the
behavior of the parallel scaling over a network.

Because we are concerned with the scaling at a fixed level
of error, it was first necessary to correlate N with a given
error level. This was achieved using an iterative algorithm
that searched for a given error value for each finite-difference
order being investigated. The algorithm calculated the first
derivative of the cosine function in two ways: using the math
library sine function and using the finite-difference formula
at a value of N . The error was calculated at each point
in the domain, and the maximum error on the domain was
compared to the given error value. If the calculated error
was less than the given error, the value of N was recorded;
otherwise, N was incremented up by one and the process
was repeated. The correlation of N with the error for each
investigated finite-difference order is given in Tab. 1 and Fig.
2. The values of N fit the expected patterns extremely well.

With the correlation of N and error known, we developed
a parallel message-passing (MPI) [12] routine to study the

scaling behavior of the finite-difference schemes at fixed
error values. The MPI routine divided the domain into
even subdomains, with each subdomain associated with
an MPI rank. Separate routines were developed for finite-
difference orders 2, 4, 6, and 8. Each routine contained
the appropriate finite-difference stencil and a modified MPI
communication setup to allow for the transfer of the appro-
priate grid point values. MPI calls for higher-order cases
were set to have higher buffer sizes to accommodate the
increased need for grid points external to an MPI rank
subdomain. Before any finite-difference calculations were
performed, MPI ranks communicated in order to transfer
their respective subdomain edges to the nearest logical MPI
rank. We used MPI blocking calls for all communication.
To prevent blocking calls from locking up the routine,
communication was broken into two steps. The left edge
of the MPI rank subdomains was sent to the nearest rank
on the left (rank 0 excluded), then the right edge of the
MPI rank subdomains was sent to the nearest rank on the
right (maximum rank excluded). This approach is depicted
graphically in Fig. 1. Once communication was completed,
each rank independently computed the finite-difference first
derivative of their respective subdomain. This process was
repeated several times to allow for measurable execution
wall clock times.



10–9 10–7 10–5 10–3
101

102

103

104

105

error

N

2

4

6

8

Fig. 2: The correlation of N with the error for various finite-difference orders. The powers of N computed from this data
are: −1.998, −3.955, −5.942 and −7.876 respectively.

Our test cluster was Air Force Research Lab’s CON-
DOR supercomputer. This system is a heterogeneous super-
computer comprised of commercial-off-the-shelf commodity
components with 500 TFLOPS of processing power, and
is a“green” supercomputer, designed to consume signifi-
cantly less energy than comparable supercomputers [13].
All computations were performed using quadruple-precision
floating-point numerical accuracy, as is often necessary in
the context of higher-order methods, in order to reduce the
roundoff errors to acceptable levels.

4. Results
In this section we present the results obtained due to

the approach and methodology as detailed in the previous
sections.

In Fig. 3 we depict the speedup as a function of the
number of processors n, for a grid size N = 39, 153 or
error-level 1.5 × 10−7. The speedup is defined relative to
the second-order code running on a single processor. We
show the same for all the method orders considered in this

Table 1: Correlation of N and Error

Error 2 4 6 8
7.7× 10−4 555 97 54 41
2.3× 10−4 1019 131 67 47
6.8× 10−5 1871 178 82 56
1.3× 10−5 4210 267 107 68
2.6× 10−6 9473 400 141 84
5.2× 10−7 21313 600 185 103
1.6× 10−7 39153 813 226 120
3.1× 10−8 88094 1219 296 147
9.1× 10−9 161843 1652 363 171
6.0× 10−9 198222 1829 388 180
4.0× 10−9 242766 2024 415 189

work, namely 2, 4, 6 and 8. The expectations, as presented
in Section 2, are clearly borne out in our speedup data. The
second-order method, scales the best with n, and the higher-
order cases exhibit much poorer scaling. In fact, the sixth
and eight-order cases do not scale at all! One is clearly better
off running those in serial mode.



100 101 102

100

101

102

no. of processors (n)

sp
ee

du
p

2

4

6

8

Fig. 3: Speedup as a function of the number of processors for a fixed level of error, for various finite-difference orders.
Speedup is defined relative to the second-order code running on a single processor. It is clear that the second-order method
scales very well comparatively.

It is also interesting to note the value of n i.e. the number
of processors when the different methods begin to compare
well in performance. A quick look at Fig. 3 suggests that
for the second-order case this occurs in the ballpark of
n = 100. This value agrees quite well with our estimate
from Section 2, wherein we argued that this should happen
at n ∼ N1−2/p

p ≈ 502. Thus, at least for the case under
consideration, it only takes a hundred processors for the
second-order method to achieve comparable performance
to the higher-order methods. This is fairly modest from the
perspective of most modern clusters, even those of relatively
small size.

In Fig. 4 we show the speedup as a function of the
error level for multiple order methods. The speedup is
defined relative to the second-order code running on a single
processor, and it is obtained by choosing the value of n
for the least wall clock time. At low accuracy (right side

2We choose p = 4 because the fourth-order method’s speedup compares
well to the second-order case here.

of the graph) one can see that the higher-order methods
(4, 6, 8) deliver a significant benefit over the second-order
method. However, for high accuracy (left side of the plot)
they all deliver comparable performance. As argued in the
previous section, this is due to the fact that the second-
order method exhibits much better parallel scaling behavior
throughout (because of the much larger grid sizes required
for the same level of discretization error). Note that the
second-order method graph starts with a single processor
on the extreme-right to nearly 500 on the extreme-left. The
eighth-order method is on a single processor throughout
(because it actually performs worse with multiple processors,
as expected). The sixth and fourth order cases are on a single
processor as one goes from right to left decreasing the error
level, however, at some point they begin to scale better (due
to the rapid increase in N ) and that is why one sees the
slope “kink” in their speedup graphs. Note that since that
improved scaling appears to match the consistent scaling
exhibited by the second-order method throughout, we expect



10–9 10–8 10–7 10–6 10–5 10–4 10–3

100

101

102

error

sp
ee

du
p

2

4

6

8

Fig. 4: Best performance (speedup) for various finite-difference orders on a parallel computer cluster. Speedup is defined
relative to the second-order code running on a single processor. It is clear that all orders perform comparably for low error
levels i.e. on the left side of the graph.

that our main results will hold for error levels even lower
than the ones we have tested.

In Fig. 5 we show the same speedup as a function of the
method order for multiple error levels. The main point to
note again is that all methods begin to perform comparably
for high accuracy computations.

5. Conclusions
In this work, we have demonstrated that different order

finite-difference methods exhibit different scaling behavior
on a parallel computer cluster. In general, given a fixed
level of accuracy, lower-order methods scale better due to
the fact that they require higher resolution and therefore,
larger grid sizes. Using a basic example, we have been
able to show that the gain in performance from improved
scaling of the second-order method is just enough to have
its overall performance match that of a higher-order method.
Of course, the second-order method uses significantly higher
computational resources to achieve the same outcome.

Conversely, we have been able to show that a higher-
order method, say, eighth-order, converges so fast that such
a method simply does not require any parallel resources
at all. In fact, parallel scaling performance of a higher-
order method may be such that one may obtain performance
degradation instead of an expected speedup. While we have
made our arguments and claims using a simple 1D derivative
finite-difference stencil, we expect our main outcomes to
hold more generally, including even in 2D and 3D.

To conclude, with the interest of minimizing total ex-
ecution time and given a sufficiently large computational
resource, a “brute force” approach with a lower-order
method is likely to perform comparably to a more advanced
highly convergent, higher-order method. Since many “real
world” science and engineering research codes are written
using second-order accurate algorithms, and it is often very
challenging to develop algorithms that converge faster, an
investment in parallel code development may prove to be
quite worthwhile. On the other hand, if one already has a



2 4 6 8
100

101

102

order

sp
ee

du
p

7.7e−4
2.3e−4
6.8e−5
1.3e−5
2.6e−6
5.2e−7
1.6e−7
3.1e−8
9.1e−9
6.0e−9
4.0e−9

Fig. 5: Same as Fig. 3. Best performance (speedup) for various finite-difference orders on a parallel computer cluster. Speedup
is defined relative to the second-order code running on a single processor. It is clear that all orders perform comparably for
low error levels.

fast converging serial code then it may be much better to
invest in making modest improvements to the convergence
rate as opposed to a fully parallel implementation.

6. Acknowledgements
We would like to thank Jay Wang, Alfa Heryudono and

Glenn Volkema for feedback on an early draft of this article.
G.K. acknowledges research support from NSF Grants No.
PHY-1016906, No. CNS-0959382, No. PHY-1135664, and
No. PHY-1303724, and from the U.S. Air Force Grant No.
FA9550-10-1-0354 and No. 10-RI-CRADA-09.

References
[1] The Top 500 List: http://top500.org/
[2] B. Gustafsson, “High Order Difference Methods for Time Dependent

PDE”, Springer Series in Computational Mathematics, Volume 38
(2008).

[3] J.S Hesthaven,T. Warburton, “ Nodal High-Order Methods on Unstruc-
tured Grids: I. Time-Domain Solution of Maxwell’s Equations”, Journal
of Computational Physics, Volume 181, Pages 186-221 (2002).

[4] M. O. Deville, P. F. Fischer, E. H. Mund, “High-Order Methods for
Incompressible Fluid Flow”, Cambridge University Press (2002).

[5] G. Karniadakis, “High-order splitting methods for the incompressible
Navier-Stokes equations”, Journal of Computational Physics, Volume
97, Pages 414-443 (1991).

[6] D. Xiu, J. S. Hesthaven, “High-Order Collocation Methods for Differ-
ential Equations with Random Inputs”, SIAM J. Sci. Comput., 27(3),
1118-1139 (2005).

[7] C-W. Shu, “High-order Finite Difference and Finite Volume WENO
Schemes and Discontinuous Galerkin Methods for CFD”, International
Journal of Computational Fluid Dynamics, Volume 17, Issue 2, Pages
107-118 (2003).

[8] J.T. Beale, “ High order accurate vortex methods with explicit velocity
kernels”, Journal of Computational Physics, Volume 58, Pages 188-208
(1985).

[9] M. R. Visbal, D. V. Gaitonde, “High-Order-Accurate Methods for
Complex Unsteady Subsonic Flows”, AIAA Journal, Volume 37, No.
10, pp. 1231-1239 (1999).

[10] J. Shen, T. Tang, “Spectral and High-Order Methods with Applica-
tions”, Mathematics Monograph Series 3 Science Press (2006).

[11] J. Hesthaven, D. Gottlieb, S. Gottlieb, “Spectral Methods for Time-
Dependent Problems”, Cambridge Monographs on Applied and Com-
putational Mathematics (2007).

[12] OpenMPI website: http://openmpi.org/
[13] http://www.afmc.af.mil/news/story.asp?id=123232827


