
Particle-Wave Unification - An Object-Oriented 
Approach to Equilibrium-Based Computing 

 
Wen-Ran Zhang 

Department of Computer Science, College of Engineering and IT 
Georgia Southern University, Statesboro, GA, USA 

 
Abstract – Equilibrium-based computing is introduced and 
distinguished from truth-based computing. It is shown that 
object-oriented languages can be used for both equilibrium-
based and truth-based programming. This observation 
supports the claim that any physical being must exist in 
certain dynamic equilibrium. The applicability of this 
approach is discussed and illustrated with Java and C++ 
code. It is shown that the equilibrium-based computing 
paradigm is applicable in both digital and quantum 
computing for particle-wave unification of matter and 
antimatter atoms.    
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1 Introduction 
 Traditionally, computer languages are classified into four 
different programming paradigms including imperative 
paradigm, functional paradigm, object oriented paradigm, and 
logical paradigm. These paradigms are all based on being and 
truth. Therefore, we classify them into truth-based 
programming paradigms.  Scientific computing has been 
being-centered and truth-based. 
 It can be argued that truth-based programming is 
inadequate in modeling equilibrium and non-equilibrium 
conditions of beings. Based on this argument an equilibrium-
based programming paradigm is introduced in this work. 
Philosophically, the new paradigm claims that any physical 
being must exist in certain dynamic equilibrium where bipolar 
dynamic equilibrium is the most fundamental form of any 
multidimensional equilibrium or non-equilibrium. 
 This work is organized into five sections: Introduction, 
Mathematical Foundation, Equilibrium-Based Programming 
with Object-Orientation, Application, and Conclusion.  

2 Mathematical Foundation 
2.1 Bipolar Sets and Bipolar Dynamic Logic 
 Truth-based mathematical abstraction follows Aristotle’s 
“being qua being” metaphysics that asserts truth as the essence 
of being. The principle claims that the concept of an element 
in a set is self-evident without the need for proof of any kind 
and the properties of the set are independent of the nature of 
its elements. Classical logic is based on this principle. 

However, the principle may fail in the natural, biological and 
social worlds. For instance, the identity law A=A may not be 
able to hold in the quantum world due to quantum 
entanglement. And the independence of a set from the nature 
of its elements excludes any possibility of a formal definition 
for the ultimate being of all beings. This has led to nihilism 
and the indefinability of causality.  
 While classical set theory is based on truth and singularity, 
bipolar set theory is based on dynamic equilibrium and 
bipolarity [Zhang 1998, Zhang 2011]. The equilibrium-based 
approach follows the ancient Chinese YinYang cosmology 
and asserts bipolar dynamic equilibrium (including 
equilibrium, quasi-equilibrium, and non-equilibrium states) as 
the essence of being. Thus, bipolar sets present a major 
challenge to the principle of truth-based mathematical 
abstraction.  
 Ontologically, YinYang bipolarity is observable. While 
ether, monad, monopoles and strings are imaginable but so far 
not testable, dipoles are everywhere in the universe; particle-
antiparticle pairs (-q,+q) and action-reaction (-f,+f) are 
believed the most fundamental elements of the universe; 
negative and positive energies form the regulating force of 
multiple universes [Hawking & Mlodinow 2010 p179-180]; 
competition and cooperation exist in any biological society; 
the Yin Yang 1 (YY1) genomic regulator protein with bipolar 
repression-activation functions is found ubiquitous in the cells 
of all living species [Shi, et al. 1991; Ai, Narahari & Roman, 
2000; Palko et al. 2004; Zhou & Yik 2006; Wilkinson, et al. 
2006; Kim, Faulk & Kim, 2007; Santiago, et al. 2007; Liu, et 
al. 2007; Vasudevan, Tong & Steitz 2007]; self-negation and 
self-assertion bipolar emotional equilibrium or disorder is a 
psychiatric reality [Zhang, Pandurangi and Peace 2007; Zhang 
et al 2011]; it is becoming scientifically evident that brain 
bioelectromagnetic field is crucial for neurodynamics and dif-
ferent mental states [Carey 2007] where bipolarity is 
unavoidable. In one word, any being or agent has to exist in 
certain dynamic equilibrium and bipolar dynamic equilibrium 
is shown to be the most basic type of equilibrium. 
 YinYang bipolar set theory leads to bipolar dynamic logic 
(BDL) which presents an equilibrium-based approach to 
mathematical abstraction [Zhang 1998a; Zhang & Zhang 
2004a; Zhang 2011]. In bipolar sets the elements are bipolar 
agents such as dipoles, particle-antiparticle pairs, nature’s 
action-reaction objects, genomic repression-activation 
capacities, social competition-cooperation relations, input-
output of any system, self-negation and self-assertion abilities 



in mental health, in general, the negative and positive energies 
of nature (Fig. 1). This ontological claim positioned BDL in 
the context of logically definable causality for ubiquitous 
quantum computing and quantum intelligence.  
 BDL is defined on B1 = {-1,0} × {0,+1} = {(0,0),  (0,+1), 
(-1,0), (-1,+1)} – a bipolar quantum lattice in the YinYang 
bipolar geometry as shown in Fig. 2. The new geometry is 
background independent [Smolin 2005]. The background 
independent property makes quadrant irrelevant. The four 
values of B1 form a bipolar causal set which stand, respec-
tively, for eternal equilibrium (0,0), non-equilibrium (-1,0), 
non-equilibrium (0,+1); equilibrium (-1,+1). Evidently, each 
bipolar element can be used to code two bits of binary 
information (or one bit with a ∨ or ∧ operation on the two 
poles in absolute values). Fig. 3 illustrates bipolar interaction 
and entanglement. 
 Equations (1)-(12) in Table 1 provide the basic operations 
of BDL. The laws in Table 2 hold on BDL. Bipolar universal 
modus ponens (BUMP) is listed in Table 3 which logically 
defines equilibrium-based bipolar causality. 
 An equilibrium-based axiomatization is shown in Table 4 
which has been proven sound [Zhang 2011 Ch.3]. In BDL ⊕ 
and ⊕- are “balancers” that can, at the most basic level, be 
used as nuclear fusion operators; ∅, ⊗, ∅- and ⊗-  are 
intuitive and counter-intuitive “oscillators” that leads to 
particle wave unification; & and &- are “minimizers” that can,  
at the most basic level, be used as particle-antiparticle 
annihilation operators. The linear, cross-pole, bipolar fusion, 
fission, oscillation, interaction and entanglement properties are 
depicted in Figure 3.  
 The propositional BDL has been extended to a 1st order 
formal system [Zhang 2011 Ch. 3] in which equilibrium-based 
bipolar predicates can be used similarly as truth-based 
predicates. For instance, given bipolar agent A and let the 
bipolar functor (f-,f+) be self-negation and self-assertion 
abilities, (f-,f+)(A) can denote the mental equilibrium or non-
equilibrium of A; given bipolar agents A and B, and let the 
bipolar functor (r-,r+) be competition and cooperation 
relations, (r-,r+)(A,B) can denote the relation between A and 
B.  
 Thus, BDL presents a causal logic for both digital and 
quantum computing. While the causal set quest for quantum 
gravity stopped short of going beyond classical truth-based set 
theory to reach logically definable quantum causality, bipolar 
sets and BDL as a formal bipolar equilibrium-based system 
presents a major step toward logically definable causality. 

 
Figure 1. Multidimensional equilibrium or non-equilibrium 

deconstructed to bipolar equilibria/non-equilibria 

 
Figure 2. Hasse diagram of B1 in bipolar geometry 

 
Figure 3  Bipolar relativity: (a) Linear interaction;     (b) Cross-

pole non-linear interaction; (d) Oscillation;    (e) Bipolar 
entanglement 

Table 1. YinYang Bipolar Dynamic Logic (BDL) 
(Note: The use of |x| in this paper is for explicit bipolarity only) 

Bipolar Partial Ordering: (x,y)≥≥(u,v), iff |x|≥|u| and y≥v;       (1) 
Complement:     ¬(x,y)≡(-1,1)-(x,y)≡(¬x,¬y)≡(-1-x,1-y);         (2) 
Implication:      (x,y)⇒(u,v)≡(x→u,y→v)≡(¬x∨u), ¬y∨v);         (3) 

      Negation:                                    −(x,y) ≡ (−y,−x);      (4) 
Bipolar least upper bound (blub): 

blub((x,y),(u,v))≡(x,y)⊕(u,v)≡(-(|x|∨|u|),y∨v);                 (5) 
-blub: blub−((x,y),(u,v))≡ (x,y)⊕−(u,v) ≡ (–(y∨ v),(|x|∨|u|));       (6) 

Bipolar greatest lower bound (bglb): 
bglb((x,y),(u,v)) ≡ (x,y)&(u,v) ≡ (-(|x|∧|u|),y∧v));              (7) 

-bglb: bglb−((x,y),(u,v)) ≡ (x,y)&−(u,v) ≡ (– (y∧v), (|x|∧|u|)));     (8) 
Cross-pole greatest lower bound (cglb): 

cglb((x,y),(u,v))≡(x,y)⊗(u,v)≡(-(|x|∧|v|∨|y|∧|u|),(|x|∧|u|∨|y|∧|v|));  (9) 
-cglb:  cglb−((x,y),(u,v)) ≡ (x,y)⊗-(u,v) ≡ −((x,y)⊗(u,v));       (11) 

Cross-pole least upper bound (cglb): 
club((x,y),(u,v))≡(x,y)∅(u,v)≡(-1,1)–(¬(x,y)⊗¬(u,v));         (10) 

-club: club−((x,y),(u,v))≡(x,y)∅-(u,v)≡ −((x,y) ∅ (u,v)).         (12) 

Table 2. Laws of bipolar equilibrium/non-equilibrium 
Excluded Middle  (x,y)⊕¬(x,y) ≡ (-1,1);  (x,y)⊕−¬(x,y) ≡ (-1,1); 
No contradiction ¬((x,y)&¬(x,y))≡(-1,1); ¬((x,y)&−¬(x,y))≡(-1,1); 
Linear Bipolar  
DeMorgan’s Laws 

¬((a,b)&(c,d)) ≡ ¬(a,b)⊕¬(c,d);      
¬((a,b)⊕(c,d)) ≡ ¬(a,b)&¬(c,d); 
¬((a,b)&− (c,d)) ≡ ¬(a,b)⊕−¬(c,d);    
¬((a,b)⊕− (c,d)) ≡ ¬(a,b)&−¬(c,d); 

Non-Linear 
Bipolar 
DeMorgan’s  Laws 

¬((a,b)⊗ (c,d)) ≡ ¬(a,b)  ∅ ¬(c,d);   
¬((a,b) ∅ (c,d)) ≡ ¬(a,b) ⊗ ¬(c,d); 
¬((a,b)⊗-(c,d)) ≡ ¬(a,b)  ∅- ¬(c,d);  
¬((a,b)∅- (c,d)) ≡ ¬(a,b) ⊗- ¬(c,d) 

Table 3. Bipolar Universal Modus Ponens (BUMP) 
∀φ=(φ-,φ+), ϕ=(ϕ-,ϕ+), ψ=(ψ-,ψ+), and χ=(χ-,χ+) ∈ B1 ,  

[(φ ⇒ϕ) &(ψ⇒χ)] ⇒ [(φ∗ψ) ⇒ (ϕ∗χ)]; 
OR (φ ⇔ ϕ) ⇒ (φ∗ψ ⇔ ϕ∗ψ) 

Two-fold universal instantiation: 
1) Operator instantiation:  ∗ as a universal operator can be bound 

to &, ⊕, &−, ⊕−, ⊗, ∅,  ⊗−, ∅−. (φ ⇒ ϕ) is designated (bipolar 
true (-1,+1)); ((φ-,φ+)∗(ψ-,ψ+)) is undesignated. 

2) Variable instantiation:  
   ∀x, (φ-,φ+)(x) ⇒ (ϕ-,ϕ+)(x); (φ-,φ+)(A); ∴ (ϕ-,ϕ+)(A).   



Table 4. From Truth-Based to Equilibrium-Based 
Axiomatization 

Unipolar Axioms (UAs): 
UA1: φ→ (ϕ→φ);  
UA2: (φ→(ϕ→χ)) 
          →((φ→ϕ)→(φ→χ));  
UA3: ¬φ→ϕ)→((¬φ→¬ϕ)→φ);  
UA4: (a) φ∧ϕ→φ;  (b) φ∧ϕ→ϕ;   
UA5: φ→(ϕ→φ∧ϕ); 

Bipolar Linear Axioms: 
BA1: (φ-,φ+)⇒((ϕ-,ϕ+)⇒(φ-,φ+));  
BA2: ((φ-,φ+)⇒((ϕ-,ϕ+)⇒(χ-,χ+)))  
          ⇒(((φ-,φ+)⇒(ϕ-,ϕ+))⇒((φ-,φ+)⇒(χ-,χ+)));  
BA3: (¬(φ-,φ+)⇒(ϕ-,ϕ+))   
        ⇒ ((¬(φ-,φ+)⇒¬(ϕ-,ϕ+)) ⇒ (φ-,φ+));  
BA4:  (a) (φ-,φ+)&(ϕ-,ϕ+)⇒(φ-,φ+);    
         (b) (φ-,φ+)&(ϕ-,ϕ+)⇒(ϕ-,ϕ+); 
BA5:  (φ-,φ+)⇒((ϕ-,ϕ+)⇒((φ-,φ+)&(ϕ-,ϕ+)));   

Inference Rule  
– Modus Ponens (MP): 
UR1: (φ∧(φ→ϕ))→ϕ. 

Non-Linear Bipolar Universal Modus Ponens (BUMP) 
(∗ can be bound to any bipolar operator in Table 1) 
BR1: IF ((φ-,φ+)∗(ψ-,ψ+)), 
[((φ-,φ+)⇒(ϕ-,ϕ+))&((ψ-,ψ+)⇒(χ-,χ+))],  
THEN [(ϕ-,ϕ+)∗(χ-,χ+)]; 

Predicate axioms and rules 
UA6: ∀x,φ(x) →φ(t); 
UA7: ∀x, (φ→ϕ)→ (φ→∀x,ϕ);  
UR2–Generalization: φ→∀x,φ(x) 

Bipolar Predicate axioms and Rules of inference 
BA6: ∀x,(φ-(x),φ+(x))⇒(φ-(t),φ+(t)); 
BA7: ∀x,((φ-,φ+)⇒(ϕ-,ϕ+))⇒((φ-,φ+)⇒∀x,(ϕ-,ϕ+);  
BR2-Generalization:  (φ-,φ+)⇒∀x,(φ-(x),φ+(x)) 

2.2 Bipolar Relations and Equilibrium 
Relations  

 As a causal set, a bipolar relation is characterized with 
bipolar values such as (0,0) for no relation, (-1,0) for conflict 
relation, (0,+1) for coalition, and (-1,+1) for harmonic 
relation, respectively. The bipolar transitive closure of a 
bipolar relation R is the smallest transitive bipolar relation 
containing R [Zhang 2003a; Zhang 2011, Ch. 3], denoted by ℜ 
and 
 ℜ = R1 ⊕ R2 ⊕ R3 ⊕ ....              (13) 

It is found that, let X={x1,x2,...,xn} be a finite bipolar set, the 
⊕−⊗ bipolar transitive closure (denoted ℜ) of R in X exists, is 
unique, and  
 ℜ = R1 ⊕ R2 ⊕ R3 ⊕ ... ⊕ R2n.            (14) 
 Bipolar transitive closure is a causal structure. Bipolar 
reflexivity, symmetry and transitivity lead to the 
generalizations of equivalence relations to bipolar equilibrium 
relations [Zhang 2003a; Zhang 2011 Ch. 3] and fuzzy 
similarity relations to bipolar fuzzy or quasi-equilibrium 
relations [Zhang 2006; Zhang 2011 Ch. 5]. Based Eq. (14), 
algorithms have been devised for bipolar clustering from 
equilibrium relations. While an equivalence relation induces 
partitions of equivalence sets; an equilibrium relation induces 
partitions of coalition sets, conflict sets, and harmonic sets 
[Zhang 2006; Zhang 2011 Ch. 5]. Thus, the partitions from an 
expected equilibrium state could be used as predictions for 
decision support [Zhang 2003a,b].  

2.3 Bipolar Quantum Linear Algebra  
 The bipolar lattice B1={-1,0}×{0,1} and the bipolar fuzzy 
lattice BF = [-1,0] × [0,1] can be naturally extended to the real 
valued bipolar lattice B∞ = [-∞, 0] × [0, +∞]. B1 and BF are 
bounded and complemented unit square lattices, respectively; 
B∞ is unbounded. ∀(x,y),(u,v)∈ B∞, Eqs. 15-16 define two 
algebraic operations. 
Bipolar Multiplication: (x,y) × (u,v) ≡ (xv+yu, xu+yv);   (15) 
Bipolar Addition:          (x,y) + (u,v) ≡ (x+u, y+v).           (16) 

 In Eq. (15), × is a cross-pole multiplication operator with 
the infused non-linear bipolar causal semantics --=+, -+=+-=1, 
and ++=+; + in Eq. (16) is a linear bipolar addition or fusion 
operator. With the two basic operations, classical linear 
algebra is naturally extended to an equilibrium-based causal 
algebra named bipolar quantum linear algebra (BQLA) with 
bipolar fusion, fission, diffusion, interaction, oscillation, 
annihilation, and quantum entanglement properties [Zhang et 
al 2009; Zhang 2011 Ch. 7; Zhang 2012a]. These properties 
enable physical or biological agents to interact through 
bipolar quantum fields such as atom-atom, cell-cell, heart-
heart, heart-brain, brain-brain, organ-organ, and genome-
genome bio-electromagnetic quantum fields as well as 
biochemical pathways in energy equilibrium or non-
equilibrium. These properties lead to the inception of 
YinYang bipolar atom [Zhang 2012a], bipolar quantum logic 
gates and quantum cellular combinatorics [Zhang 2013]. 
Quantum cellular combinatorics provides a modular graph 
theory for multidimensional bipolar cause-effect modeling 
(Fig. 1) of YinYang-N-element cellular automata [Zhang 
2011 Ch. 8; Zhang 2012a].  

3 An Object-Oriented Approach to 
Equilibrium-Based Programming  

 Logically, bipolar dynamic logic (BDL) presents an 
equilibrium-based non-linear dynamic generalization of 
Boolean logic from the truth-based domain or bivalent lattice 
{0,1} to the equilibrium-based domain or bipolar lattice B1 = 
{(0,0), (-1,0), (0,+1), (-1,+1)}. This generalization provides a 
logical basis for equilibrium-based dynamic programming 
(EDP). Now our question is whether EDP can be realized with 
object-orientated languages such as in C++ and Java. 
Interestingly, the answer is positive. 

3.1 C++ Class for Bipolar Variable 
Bipolar variable, the basic concept of BDL and BQLA, is 

defined in the following C++ class with object-orientation: 
class nppair {  // specify bipolar variable and its operations  
 float lower_weight; // negative pole 
 float upper_weight; // positive pole 
public: 
 // constructors 

nppair() { } 
 nppair(float l,float u) 
   {lower_weight = l; upper_weight = u; } 
 void update(float l,float u) 
   {lower_weight = l; upper_weight = u; } 
 // getter and setters 
 float& lower() { return lower_weight; } 
 float& upper() { return upper_weight; } 
 float lower() const { return lower_weight; } 
 float upper() const { return upper_weight; } 
 float& left() { return lower_weight; } 
 float& right() { return upper_weight; } 
 float leftt() const { return lower_weight; } 
 float rightt() const { return upper_weight; } 
 void  new_lower(float x) { lower_weight=x; } 
 void  new_upper(float y) { upper_weight=y; } 
 // operators 
 void operator =(nppair& p) { 



  lower_weight = p.lower_weight; 
  upper_weight = p.upper_weight; } 
 void operator *=(float d); 
 void operator /=(float d); 
 void operator *=(nppair& p); 
 void operator +=(nppair& p); 
 void operator -=(nppair& p); 
 friend nppair operator *(nppair& p1,nppair& p2);  
 friend nppair operator *(nppair& p1,float d); 
 friend nppair operator /(nppair& p1,float d); 
 friend nppair operator +(nppair& p1,nppair& p2); 
 friend nppair operator |(nppair& p1,nppair& p2); 
 friend npinterval operator ||(nppair& p1,nppair& p2); 
 friend istream& operator>> (istream& ci, nppair& c){ 
  ci >> c.lower_weight; 
  ci >> c.upper_weight; 
  return ci; } 
 friend ostream& operator<< (ostream& co, const nppair& c) { 

co << '(' << c.lower_weight << ' ' << c.upper_weight << ')'; 
                return co; } 
 friend int contain1(const nppair& p1,float d); 
 friend int contain2(const nppair& p1,const nppair& p2); 
 friend npinterval; 
}; 

3.2 C++ Class for Bipolar Vector or Matrix 
 Based on the class of nppair, a bipolar vector or matrix and 
its operations can be defined. 
class npmatrix {  // bipolar matrix 
 nppair* m;    // pointer to matrix in 1-d storage 
 int rows;      // number of rows 
     int cols;         // number of col 
 float* rowEnergy; // pointer to row bipolar energy 
 float* colEnergy;  // pointer to col bipolar energy 
public: 
 // constructor 

npmatrix() {} 
 npmatrix(int r,int c){ 
 rows=r; cols=c; m = new nppair[r*c];  
 rowEnergy = new float[rows]; 
 colEnergy = new float[cols];} 
    npmatrix(int r,int c,nppair* m1) { rows=r; cols=c; m = m1; } 
 // member operators and functions 
    void clear(); 
 nppair& operator ()(int x) { return m[x]; } // 1-d getter 
 nppair& operator ()(int i,int j) { return m[i*cols+j]; } //2-d getter 
 float negativeEnergy(); 
 float positiveEnergy(); 
 float totalEnergy(); 
 float localImbalance(); 
 float globalImbalance(); 
 float localStability(); 
 float globalStability(); 
 nppair harmonyLevel(); 
 void operator *=(float d);  // multiply by d 
 void operator /=(float d);   // divid by d 
 void operator +=(npmatrix& m); // matrix addition 
 void operator -=(npmatrix& m); //matrix subtraction 

void closure(int Tnorm);   // bipolar transitive closure with Tnorm 
 friend npmatrix operator *(npmatrix& m1,float d); 
 friend npmatrix operator /(npmatrix& m1,float d); 
 friend npmatrix operator +(npmatrix& m1,npmatrix& m2); 
 friend npmatrix operator -(npmatrix& m1,npmatrix& m2); 
 friend npmatrix operator *(npmatrix& m1,npmatrix& m2); 
 friend istream& operator>> (istream& ci, npmatrix& m); 
 friend ostream& operator<< (ostream& co, const npmatrix& m); 
 friend istream& inner_outer_i(istream& ci, npmatrix& m1, npmatrix& 
m2); 

 friend ostream& inner_outer_o(ostream& co, const npmatrix& m1, const 
npmatrix& m2); 
 friend istream& inner_outer_i(istream& ci, npmatrix& m1, npmatrix& m2, 
npmatrix& m3, npmatrix& m4); 
 friend ostream& inner_outer_o(ostream& co, const npmatrix& m1, const 
npmatrix& m2, const npmatrix& m3, const npmatrix& m4); 
 friend ostream& linguistic(ostream& co, const npmatrix& m1, const 
npmatrix& m2); 
 friend ostream& linguistic(ostream& co, const npmatrix& m1, const 
npmatrix& m2, const npmatrix& m3, const npmatrix& m4); 
 void randomize();   // assign random bipolar weights 
 void normalizeRow();  // normalize row energy 
 void normalizeCol(); // normalize row energy 
 int normalized(); // check normalization 
 void row_Energy(); // row energy 
 void col_Energy(); // col energy 
}; 

3.3 Equilibrium-Based but Object-Oriented 
 The C++ program examples for bipolar variables and 
vectors show that a bipolar equilibrium can be coded as an 
object class and a multidimensional equilibrium can be coded 
as a set of bipolar objects. Therefore, object-oriented 
languages can be used for equilibrium-based programming. 
 
4 Applications 
4.1 Bipolar Complementarity 
 Niels Bohr - a father figure of quantum mechanics - was 
the first to bring YinYang into quantum theory for his 
particle-wave complementarity or duality principle. When 
Bohr was awarded the Order of the Elephant by the Danish 
government, he designed his own coat of arms which featured 
in the center a YinYang logo (or Taijit symbol) and the Latin 
motto “contraria sunt complementa” or “opposites are 
complementary” (Fig. 4).  
 While Bohr’s quantum mechanics recognized particle-
wave complementarity, it stopped short of identifying the 
essence of YinYang bipolar coexistence. It is argued that 
without bipolarity any complementarity is less fundamental 
due to the missing “opposites” (Fig. 5) [Zhang 2011; Zhang 
2013]. If bipolar equilibrium is the most fundamental form of 
equilibrium, any multidimensional model of spacetime such as 
string theory and superstring theory cannot be most 
fundamental.  
 In brief, action-reaction, particle-antiparticle, negative-
positive energies, input and output, or the Yin and Yang of 
nature in general could be the most fundamental opposites, 
but man and woman, space and time, particle and wave, truth 
and falsity are not exactly bipolar opposites. This could be the 
reason why Bohr found causal description of a quantum 
process unattainable and we have to content ourselves with 
particle-wave complementary descriptions [Bohr 1948]. Since 
then, particle and wave as a YinYang duality has not reached 
unification. Now, equilibrium-based computing provides a 
basis for such a unification. 



 
Figure 4. Bohr’s Coat of Arms (Creative Commons file by GJo, 

3/8/2010, Source: File:Royal Coat of Arms of Denmark.svg 
(Collar of the Order of the Elephant) + File:Yin yang.svg)  

 
Figure 5. Fundamental and non-fundamental 

complementarities: (a) Fundamental; (b)-(d) Non-fundamental 
 
4.2 Bipolar Quantum Logic Gates 
 Bipolar Energy Conservational Quantum Logic Gate. 
If the energy of every row and every column of a bipolar 
decimal matrix M of a quantum agent in Eq. (24) always adds 
up to 1.0, we call M a bipolar energy conservational quantum 
logic gate matrix.  
 Law of Bipolar Equilibrium or Symmetry: With Eq. 
(24), if M is bipolar energy conservational, any quantum 
agent’s energy vector E(t1)=M×E(t0) at t0 and t1 can be 
characterized as satisfies Eq. (17). 
|ε| (E(t1))= |ε| (M × E(t0)) ≡ |ε| (E(t0))        (17) 
 Evidently, any integer unitary quantum logic gate matrix 
must be energy conservational. Therefore, a unitary quantum 
logic gate in quantum computing can be deemed part of 
energy conservation and the concepts of equilibrium, 
symmetry, unitarity and reversibility in quantum computing 
are generalized to the equilibrium or non-equilibrium 
condition of any agent. This generalization illustrates the 
quantum nature of all agents in multidimensional bipolar 
equilibrium or non-equilibrium. [Zhang 2013] 

4.3 Equilibrium-Based Algorithm 
 Two equilibrium-based algorithms are shown in C++ 
language in Table 5 for quantum cellular automata using 
bipolar quantum logic gates. 

 

Table 5. Two C++ algorithms for testing energy equilibrium 
[Zhang et al. 2009] 

//Algorithm A: Normalization of the Random Connectivity Matrix M 
// (1) normalize the energy of each row and column of M to |ε|=1.0 as an equilibrium condition; 
// (2) normalize the energy to |ε|>1.0 as a non- equilibrium condition for energy increase; 
// (3) normalize the energy to |ε|<1.0 as a non- equilibrium condition for energy decrease; 
//------------------------------------------------------------------------------- 
YinYangMatrix M(N,N); // create an N×N bipolar connectivity matrix 
M.randomize();          // assign random weights to the elements of M 
M.normalizeRows();  // normalize each row |ε|(Mk*)  
M.normalizeCols().    // normalize each column  |ε|(M*j)  
//------------------------------------------------------------------------------- 
//Algorithm B: Test the three conditions : 
//(1) ∀t , Y(t+1) = M(t)Y(t) – equilibrium 
//(2) ∀t , Y(t+1) > M(t)Y(t) – energy increase 
//(3) ∀t , Y(t+1) < M(t)Y(t) – energy decrease 
//------------------------------------------------------------------------------- 
YinYangMatrix M(N,N); // create an N×N bipolar connectivity matrix 
YinYangMatrix Yt0(1,N); // create column vector at t0  
YinYangMatrix Yt1(1,N); // create column vector at t1 
M.randomize();          // assign random link weights to M 
M.normalizeRows();  // normalize each row |ε|(Mk*)   
M.normalizeCols().    // normalize each column  |ε|(M*j)  
file1 >> Yt0;               // input col vector from file1 
int times; 
cin >> times;              // enter number of iteration 
for (int i = 0; i<times;  i++){ 
Yt1 = M*Yt0;              // M multiply column vector 
file2 << Yt1;                // output result vector to file2 
file2 << Yt1.totalEnergy() << "\n";   // output energy to file2 
Yt0 = Yt1;                   // reassign for next iteration 
} 

 
4.4 Particle-Wave Unification 
 The object-oriented approach to equilibrium-based 
programming can be used to demonstrate particle-wave 
unification of both matter and antimatter atoms. At the most 
fundamental level we have (-1,0) ⊗ (-1,0) = (-1,0)2 = (0,1) and 
(-1,1) ⊗ (-1,1) = (-1,1)2 = (-1,1). (-1,0)n defines a bipolar 
oscillation. Such property provides a unifying logical 
representation for particle-wave duality of both matter and 
antimatter particles.  
 Generic Bipolar Agent: (1) φ(P)(f) = (-1,0)n(3×1012) can 
denote the fact “Particle P changes polarity three trillion times 
per second from particle to antiparticle or vice versa.” P is a 
subatomic particle named B-sub-s meson discovered at the 
Fermi National Accelerator Laboratory [Fermi National 
Accelerator Laboratory, 2006]. Fig. 6a shows the graphical 
representation of P as a YinYang-1-Element with a negative 
reflexivity.  (2) φ(A) = (-1,+1) ⊗ (-1,0) = (-1,+1) ⊗ (-1,0) =   
(-1,+1) ⊗ (-1,+1) can denote the fact “Agent A is a has strong 
mental equilibrium of self-negation and self-assertion abilities 
who can bear with negative event, positive event as well as 
harmonic event.” Fig. 6b shows the graphical representation of 
the strong equilibrium. 
 
   
 
 
 
 
 
 

 
Fig. 6. (a) Oscillating particle-antiparticle; (b) Agent with 

strong mental equilibrium 



 Composite Bipolar Agents: Fig. 7 shows a YinYang-N-
Element cellular automaton where each element is bipolar 
such as electron-positron as in matter atom or antimatter atom. 
In either case the bipolar energy can be characterized as 
E(t1)=M×E(t0) in equilibrium or non-equilibrium. 
Dramatically, each bipolar wave form is actually a bipolar 

element (object) in a collection of different bipolar states in an 
ordered sequence as shown in Figs. 7, 8 and 9. Thus, an N-
electron matter atom or N-positron antimatter atom can be 
represented as the superposition of N such wave forms. The 
particle-wave forms are generated with Java programs in 
object-orientation. Thus particle-wave unification is realized. 

 
Figure 7. Particle-wave unification as a bipolar cellular automaton: (a) bipolar representation of a hydrogen; (b) bipolar 

representation of YinYang-n-elements; (c) Matter atom;    (d) Antimatter atom; (e) Bipolar Quantum Cellular Automaton  

 

 
Fig. 8. Bipolar energy rebalancing to equilibrium after a 

disturbance to one element 

 
Fig. 9. Elementary bipolar energy oscillation under global 

equilibrium 

5 Conclusions 
 Equilibrium-based programming has been introduced and 
distinguished from truth-based programming. It has been 
shown that object-oriented languages can be used for both 
equilibrium-based and truth-based programming. This 
observation supports the claim that any physical being or 
object must exist in certain dynamic equilibrium. 
 The applicability of equilibrium-based programming has 
been discussed and illustrated in scientific computing with 
C++ code and particle-waveforms from Java code to illustrate 

matter-antimatter and particle-wave unification.  It is further 
expected that, based on BDL and BQLA, imperative, 
functional, object-oriented and logical programming 
paradigms can all be extended from truth-based to 
equilibrium-based programming paradigms. 
 From a different perspective, bipolar dynamic equilibrium 
as holistic truth does not exclude but  generalizes truth from 
the bivalent domain or lattice {0,1} to the bipolar domain or 
lattice {(-1,0) × (0,+1)}. Since the universe (or multiple 
universes) can be deemed a dynamic equilibrium of negative-
positive energies, particle-antiparticles, and action-reaction 
forces, the equilibrium-based programming paradigm is 
expected to bridge a gap between digital computing and 
quantum computing  for programming the universe [Lloyd 
2006] with applications in physical, social, biological, and 
mental worlds [Ball 2011][Zhang and Zhang et al 1989-2013]. 
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