Periodic, Aperiodic, and Partly Periodic Clocks
in Scientific Simulations

Clarence Lehman' and Adrienne Keen”
'University of Minnesota, 123 Snyder Hall, 1475 Gortner Avenue, Saint Paul, MN 55108, USA
2London School of Hygiene and Tropical Medicine, Keppel Street, London WCIE 7HT, UK

“Professor Einstein says that time differs from place to place. ..
If time is not true, what purpose have watchmakers?”

Abstract— In microscale simulations that forecast stochas-
tic times for future events, most new events develop inter-
nally, either within a simulated entity or from interactions
among entities in the simulation. Births, deaths, infections,
migrations, and other events can arise internally in this way.
However, some events arise exogenously, entirely outside
the system, while others are triggered routinely by calendar
times rather than by internal conditions. For example, in
simulating the population of a region without its surrounding
world, immigration of new individuals into the region would
be exogenous, occurring at fixed or random intervals. For
individuals in the simulation, the timing of medical checkups
or other appointments could similarly occur at regular
or irregular intervals, independently of other conditions
in the simulation. Here we describe a way to implement
clocks for such events, inspired by work on a large-scale
epidemiological simulation program [1]. The clocks can
tick deterministically or randomly following any probability
distribution. Two forms of clocks, periodic and aperiodic,
simulate natural processes such as oscillatory signals or ra-
dioactive decay. A third form, which we call partly periodic,
does not typically occur in nature, but is devised to match
empirical counts exactly. The design we describe is general
and can be applied to any individual-based, agent-based,
discrete event, or other microscale simulation model that
stochastically schedules future events [2].

Keywords: simulation clocks, microscale modeling, individual-

based modeling, periodic events, aperiodic events, waiting-time
paradox

1. Introduction

Microscale models simulate individuals directly rather than
combining them into continuous fluids, probability distribu-
tions, or populations [3]. Individual-based and agent-based
models are examples. Advances in computational power
and methods now make microscale models competitive in
simulating macroscale models defined as ordinary, partial,
or integro-differential equations, as well as in simulating
systems that cannot readily be formulated in macroscale

—Allen Moore, Dave Gibbons, 1986

terms. An efficient approach to microscale modeling sched-
ules all events into the future rather than testing for events at
each time step, and the existence of constant-time algorithms
for managing schedules and groups of individuals [2] [4]
[5] now allows hundreds of millions of individuals—from
molecules to hayseeds to orca whales—to be tracked.

In this paper we describe our approach to “clocks” for
events in large-scale simulations. We assume that a global
timeline measures the flow of all events in the simulation.
Any number of clocks may tick concurrently on this global
timeline, with a new event scheduled at each tick of each
clock. We explain the structure and dynamics of simple
clocks, with algorithms for the clocks given in detail, and
how collections of simple clocks may be combined into
more elaborate custom clocks. The methods we describe
may prove useful to scientists in ecology, epidemiology, eco-
nomics, and other disciplines that employ individual-based,
agent-based, discrete-event, or other forms of microscale
modeling.

2. Events

Most events scheduled in microscale simulations arise en-
dogenously from actions of individuals, conditions of in-
dividuals, or the environment of the system. For example,
births in an ecological population model arise repeatedly
as individual plants or animals reach appropriate age and
condition. Infections in an epidemiological model arise when
infectious individuals encounter susceptible individuals.

Yet some events are exogenous, not caused directly by
actions within the system. Examples are seeds arriving
on a simulated island from a mainland source, mutations
triggered by external radioactive decay, and unpredictable
fluctuations in the stock market. Other events are internal
but more routine and temporal, occurring with little or no
reference to the states of individuals or to interactions among
individuals. Examples are scheduled checkups at a medical
center, periodic events such as anniversaries, and random
events like winning the lottery.

Time (years) 0 1 10

A. Period 1 ’ I

B. Period 2 | =

C. Dual period ’ I I

| 1 f— DD
-
-

D ot 1 1[0 11 e 1 O
-
-
-

| 1 f— O
-

D. Period 1,
uniform noise

E. Period 1, L I - I
Gaussian noise -

F. Aperiodic, .
Gaussian spacing

G. Aperiodic, ’ I I
Poisson spacing -

Figure 1. Illustration of clock patterns. Clock ticks are shown with vertical bars on each graph for ten successive years. (A) Simple periodic
clock with period 1 year. (B) Simple periodic clock with period 2, phase-shifted backwards 6 months. (C) The union of A and B above. Any
combination of simpler clocks can form composite clocks. (D) Periodic clock with uniform random noise, with the tick anywhere in the last
3 months of the period. All points in that interval are equally likely, as outlined by the probability density function in gray. (E) Periodic clock
with truncated Gaussian random noise, allowing the clock to tick anywhere within the period, but with the beginning and end of the period
unlikely, as outlined by the probability density function in gray. Here o = 1/8 year and u = 1/2, 3/2, 5/2, ... years. (F) Aperiodic clock
with the truncated Gaussian distribution of E. The probability evaluation restarts following each tick, making the aperiodic clock tick faster.
(G) Simple aperiodic clock with mean time per tick of one year, where 11 ticks occurred in the time allotted to 10, due purely to random
chance. A uniform random spacing of points (Poisson spacing) results from the exponential density function in gray. (H) Independent run
of the same clock as in D, but where only 8 ticks occurred by random chance. (I) Partly periodic clock with 3 ticks distributed aperiodically

H. Aperiodic, { : I I
Poisson spacing .

I. Partly periodic { "

every 2 years, the last of the 3 constrained to occur periodically at the end of the 2-year period.

3. Periodic clocks

The simplest periodic clock ticks with complete regularity
each time a fixed interval has elapsed. Starting at some initial
time, to, it ticks at times tg+ @+, to+ @+ 27, to+ @+ 37,
..., to + @+ nr, and so forth ad infinitum, where 7 is the
period and ¢ is the phase.

Simple periodic clocks are established by ClockPeriodic,
defined in the appendix, and provided with a clock number
that identifies the data structure controlling the clock, an
identification number denoting the event that is controlled
by the clock, a period, and an optional phase shift. Such
clocks can be established for any purpose—for example, to
periodically examine conditions within the simulation like
population growth rates, or to count out time intervals for
a macroscale simulation of differential equations embedded
within the microscale model.

The behavior of a simple periodic clock with period 1 is
shown in Figure 1A. A similar simple periodic clock with
period 2 is Figure 1B, shifted back from the end of its period
by 1/2 year (¢ = —0.5). The union of these two clocks
is Figure 2C. It ticks in the last three half-year intervals
within the two-year period. Any collection of clocks can be
combined into a single clock by assigning them the same
identification number.

Figures 1D and 1E are periodic clocks with random fluc-
tuations superimposed. Such fluctuations can arise from any
probability distribution, which is supplied when the clock is
started. Figure 1D is uniform random noise that allows a tick
anywhere in the last quarter-period. That noise is supplied
by the probability distribution shown in Figure 3A, where
the cumulative probability P is O until £ = 9 months, then
rises linearly to 1 at ¢ = 12 months. Figure 1E is similar, but
with truncated Gaussian noise centered at the middle of the
period. That noise is supplied by a cumulative probability
distribution that rises sigmoidally from P = 0 at t = 0 to
P =1 att = 12 months, as shown in Figure 3B. These
cumulative distributions are represented by piecewise linear
or higher-order approximations and passed to a random
number generator that can work with arbitrary probability
distributions [6].

Periodic example, birthday party clock. For an initial
intuitive example, think about a “birthday party clock.” A
birthday begins regularly at midnight on a certain day of
the year—a simple periodic clock. However, the celebration
may be a few days early or a few days late. Nonetheless,
the timing of the celebration does not change the timing of
the birthday for subsequent years. That is, the celebration
will always be synchronized with the calendar, not drifting

over time. This is therefore a periodic clock, with random
noise for the timing of the celebration. (Note, however,
that accounting for leap years considerably complicates the
clock.)

Periodic example, macroscale simulation clock. Suppose
a population is being simulated for which the microscale
dynamics are not known, or for which there is not precise
empirical data. Or suppose the dynamics are well known
but the population is large enough that stochasticity tends to
cancel out, so a microscale simulation of it is unnecessary. In
such cases a macroscale population model may be embedded
within a microscale simulation. For example, suppose a
microscale model of the bacteria and individual parasitic
ticks on populations of wild field mice is used to understand
wildlife epidemiology. Also suppose that the behavior of the
mouse population is not of interest, but is only necessary
to provide background for the epidemiological part of the
simulation. In that case the mouse population could be
simulated with a known differential equation model embed-
ded within the microscale model. A periodic clock can be
used to count the time intervals of a macroscale differential
equation solver—by Euler’s method, Runge—Kutta, or other
integration technique [7]. See Figure 2.

A
1 dN;

N, dt

1 dNs

=1 —512N2, ——— = -T2+ 5N
1 124V2 N, dt 2 + s214V1

Abundance

| | i |

Time

Figure 2. A macroscale model embedded within a microscale
model. Here a simple periodic clock supplies the time steps, At;, to
drive a differential equation simulator for population dynamics that
do not need to be simulated by individuals within the microscale
model. (A) The macroscale model to be embedded. This is an
ecological Lotka—Volterra predator—prey model. (B) Simulated trace
of the macroscale model, with r1=r2=1, s12=1, and s21=2. The
abundance of prey N1 (t), bold curve, can be used to drive individual
births and deaths of a microscale prey species. The abundances of
predator N»(t), light curve, are only to induce the bold curve and
would not be needed further in the microscale simulation.

4. Aperiodic clocks

The simplest aperiodic clock is the exact opposite of pe-
riodic. It ticks with complete irregularity, with all instants
equally likely to see a tick (exponential delay), and with
the probability of a tick in an instant defined by an average
number of ticks per time unit. Starting at some initial time,
to, it ticks at times tg+ 74, to+ 72, to+ 73, ..., to+ 74, and
so forth ad infinitum, where the random 7; are uniformly
distributed across time.

The behavior of a simple aperiodic clock ticking on
average once per time unit is shown in Figures 1G and 1H.
The first example ticks eleven times and the second ticks
only eight, due solely to random variation. In the simplest
aperiodic clock, the number of ticks per time unit follows
a Poisson distribution and the time between ticks follows a
corresponding exponential distribution [8]. In this case, the
probability of exactly the expected number of ticks, 10, is
only about 1 out of 8. (From the Poisson density function,
p(k) = k- e k! = 1019 . ¢710/10! ~ 0.125.) Notice in
Figures 1G and 1H how irregularly such a clock behaves.

The behavior of a related aperiodic clock appears in
Figure 1F. It has the same probability distribution governing
its ticks as the periodic clock in 1E above it. However,
that probability distribution restarts at each tick. Notice how
much more regular the ticks are in Figure 1F than in 1G and
1H, even though they are still aperiodic.

Aperiodic clocks are established by ClockAperiodic, de-
fined in the appendix, and provided with a mean time
between ticks or an optional probability distribution. Such
clocks can simulate purely random processes such as ra-
dioactive decay, but also can approximate other events such
as successive times of transmission in a population with
infectious individuals.

Aperiodic example, hair appointment clock. Suppose that
an individual is scheduled for a haircut every month, but
that the haircut is occasionally delayed, due to negligence
or other causes. If for some reason three months have elapsed
between haircuts, most certainly is not necessary for the
individual to have three haircuts in rapid succession to make
up for the haircuts that were missed. The timing of the next
haircut restarts at the time of the last, and occurs again at
some average time in the future. That is an aperiodic clock.

5. Partly periodic clocks

Starting at some initial time, ¢y, a partly periodic clock ticks
at times tg + 7, tg + 27, to + 37, ..., tg + n7, and so
forth, where 7 is the period. In addition, however, it ticks
aperiodically £ — 1 times in between each periodic tick,
giving an average time between ticks of 7/k every period.

Figure 1I shows a partly periodic clock of period 2,
with a mean time between ticks of 2/3. One periodic
tick and two aperiodic ticks occur in each period of the
clock, with the spacing between all three ticks matching an
exponential distribution. That exponential distribution decays
more rapidly in Figure 1I than in 1F and 1H, because the
mean time between ticks in 1F and 1H is 1 time unit, while
in 1T it is only 2/3 time unit.

Partly periodic example, immigration clock. Suppose a
local population is being simulated and the number of im-
migrants each year is taken from known historical accounts.
Suppose new individuals can arrive in the population at any
random time of the year, but the number of immigrants each

A. Uniform noise

1.0
0.8 - i 0 1 2
] Xi: [o] 912
p 287 Y[0 | 0| 1
0.4 4
02] Cumulative function
OO ' T T ' l U ' T T
4.0 4
3.0
P04
1.0 Density function :
0.0 , , —
0 3 6 9 12

B. Gaussian noise
1.0

0.8
0.6
0.4
0.2 :
0.0 = ——

Cumulative function

T I T I

4.0

Density function

3.0

2.0
1.0

T R R IR |

0.0 T T T T T T T T T L

0 3 6 9 12

Figure 3. Random noise specifications. Horizontal axes represent time, here marked in months. The vertical axis for
cumulative functions represents the probability that the random variable is less than or equal to the corresponding value
on the horizontal axis. The vertical axis for density functions, multiplied by the width of a small interval on the horizontal
axis, represents the probability that a random number falls within that interval. Arrows demonstrate how random noise
is generated, from a uniform random number located on the vertical axis, then followed to the right to the cumulative
function, then down to the axis to pick a random number from the desired distribution [6]. (A) Uniform noise in the last
4 months of the year. Inset shows a tabular form of the cumulative distribution, in this case where three months on the
horizontal axis, X[i] ={0,9,12}, correspond to three probabilities on the vertical axis, Y [i] ={0,0, 1}. (B) Truncated
Gaussian noise with mean 6 and variance 9/4. The tabular form would be similar to that of Part A, but with several
hundred small steps to approximate a continuous distribution, and optionally with nonlinear smoothing [6].

year is fixed to exactly match historical records. This is not
a periodic clock because immigrants can appear randomly
throughout the year. However, it is not an aperiodic clock
either, for in an aperiodic clock, the number of ticks in a
given time interval cannot be specified exactly. This is a
partly periodic clock. It is not intended to be an analog of a
natural process, but rather to match empirical data, for which
precise values are known at regular intervals.

6. Algorithms

Each clock is defined and tracked as one entry in an
array A[n] that stores the information associated with every
individual in the simulation, as described in the appendix and
elsewhere [2]. That array ordinarily records all future events
for each individual, with the earliest of those events recorded
in a global list of future events. Adding, deleting, and
accessing events uses a constant amount of time regardless
of how many events are in the global list [2].

However, for clocks, which act as “pseudo-individuals”
in the simulation, data elements within the entry are used
differently than they are used for individuals. Future times
for each clock are recorded not explicitly but algorithmically,
as described above and detailed in the appendix.

For periodic clocks, the algorithm records the period 7, the
phase shift ¢, and the number of ticks n that have occurred
since the time t that the clock started ticking. That allows
the next time to be calculated as to+(n+1)7+¢. Multiplying
the period by the number of elapsed ticks avoids cumulative

drift due to rounding error, as would occur if the time of the
previous tick were incremented by the period.

Aperiodic clocks are easier, since there is no starting
time, phase shift, or past number of ticks to be tracked.
These clocks have no memory of what has happened in
the past. That makes their implementation simpler, even
though understanding the dynamics of their behavior is more
difficult (see discussion section below).

Partly periodic clocks are the most difficult. They require
an entire sequence of k ticks to be remembered, so that all
k can be rescaled precisely to fit within the period 7, with
the last tick occurring at the last moment of the period. This
could be accomplished with a quantity of memory propor-
tional to k, to record the ticks in advance, but it can also be
accomplished with a constant quantity instead. Deterministic
random number generators have a state variable [9] that
allows any subsequence of pseudo-random numbers to be
regenerated. The algorithm for partly periodic clocks first
runs through £ ticks to determine how much total time IC
they would take. It then reruns the sequence one tick at a
time, at each tick rescaling by 7/K.

All three kinds of clocks are proportional to n for speed
and independent of n for memory. They are fully defined in
the appendix, embodied in four algorithms.

1. ClockPeriodic Starts a periodic clock.

2. ClockAperiodic Starts an aperiodic clock.

3. ClockPartlyPeriodic Starts a partly periodic clock.

4. ClockTick Schedules another tick of any clock.

In addition, T1, T2, and T3 are subroutines of ClockTick to
implement the three kinds of clocks.

7. Discussion

Within the dynamics of periodic and aperiodic clocks, a cu-
rious observational paradox arises that affects measurements
by individuals or agents within the simulation. It is helpful
to understand this paradox when working with simulation
clocks.

Suppose you have a simple periodic clock ticking pre-
cisely every ten simulated minutes and a matching simple
aperiodic clock ticking on average at the same rate. Over
the course of time both of these clocks tick equally often.
Suppose each clock represents some service that individuals
in the simulation occasionally wait for, such as catching
a bus or being served at a medical emergency center.
What will be the average interval between events, with an
event occurring on average every ten simulated minutes, as
measured by individuals within the simulation?

For a periodic clock, if a simulated individual arrives at a
completely random time, independent of the ticking of the
clock, that individual will observe an average of ten minutes
from the time of the previous tick until the clock ticks again,
since the clock is perfectly periodic. It would seem at first
glance that it should be similar for an aperiodic clock—
that an individual within the simulation would observe an
average interval between ticks of ten minutes, since that is
the average rate of the clock. But that is incorrect. For a
completely random aperiodic clock ticking once every ten
minutes on average, all individuals will observe an average
time between ticks of not ten but of twenty minutes—half
the speed of the actual clock! This effect also doubles the
average time for each individual waiting for an aperiodic
versus a periodic clock.

Such dynamics must be taken into account in auditing
the performance of simulations, and even in designing real
systems for use by living individuals. The inflated waiting
time is not an illusion nor a property of computer simulation;
it occurs in all aperiodic events, tangible or abstract. Upon
first learning of this phenomenon, people are usually incred-
ulous. Feller calls it the “waiting time paradox.” He assures
that although you may be shocked when you first encounter
it, “after due reflection the difference becomes intuitively
obvious.” [8]

The resolution of the paradox lies in a “time line” that
extends back to the past. If you picked a time at random
on that line, you will have been more likely to have found
yourself in a longer interval than a shorter one, simply
because longer intervals contain a greater measure of time
points than shorter ones. The intervals of a simple aperiodic
clock vary widely, as illustrated in Figures 1G and 1H.
When the exponential density function of 1G and 1H is

integrated over all possible interval lengths and probabilities,

the result of twice the average time between ticks emerges.
With aperiodic clocks whose ticks are more aggregated

than random, the observed interval between ticks can be
arbitrarily long.

An understanding of this phenomenon and a review of
how it applies in simulations is important so that aggregation
of aperiodic events can be controlled in real systems to
reduce actual waiting times there.

8. Conclusions

Many events arising within microscale simulations are sim-
ple enough to be handled by ‘“clocks” of standard de-
sign. Three kinds of clocks—periodic, aperiodic, and partly
periodic—cover a diversity of situations. All three require
computing time proportional to the number of ticks and
memory independent of the number of ticks.

9. Acknowledgements

We are grateful to Tendai Mugwagwa and Peter White for initial
discussions leading to the design of these clocks, and to Todd
Lehman, Shelby Williams, Katie Hoffman, and the anonymous
reviewers for help with the presentation. This project was supported
in part by a resident fellowship grant to C. Lehman from the
UMN Institute on the Environment, by grants of computer time
from the Minnesota Supercomputing Institute, and by doctoral
research funding to A. Keen from the Modelling and Economics
Unit at Public Health England, formerly Health Protection Agency,
London.

References

[1]1 A. Keen, “Understanding tuberculosis dynamics in the United Kingdom
using mathematical modelling,” Doctoral Thesis, London School of
Hygiene and Tropical Medicine, p. 493pp, 2013.

[2] C.Lehman, A. Keen, and R. Barnes, “Trading space for time: Constant-
speed algorithms for managing future events in scientific simulations,”
Proceedings, International Conference on Scientific Computing, vol.
CSCI12, p. 8 pp, 2012.

[3] L. Gustafsson and M. Sternad, “Consistent micro, macro and state-
based population modelling,” Mathematical Bioscience, vol. 225, pp.
94-107, 2010.

[4] R. Brown, “Calendar queues: A fast O(1) priority queue implementation
for the simulation event set problem,” Communications of the ACM,
vol. 31, pp. 1220-1227, 1988.

[5] A. Keen and C. Lehman, “Trading space for time: Constant-speed
algorithms for grouping objects in scientific simulations,” Proceedings,
International Conference on Scientific Computing, vol. CSC12, pp.
146-151, 2012.

[6] C. Lehman and A. Keen, “Efficient pseudo-random numbers from
any probability distribution,” Proceedings, International Conference on
Modeling, Simulation, and Visualization Methods, vol. MSV12, pp.
121-127, 2012.

[71 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
“Numerical recipes: The art of scientific computing, Third Edition,”
Cambridge University Press, New York, 2007.

[8] W. Feller, “An introduction to probability theory and its applications,
Volume II, Second Edition,” John Wiley & Sons, New York, 1971.

[9] D. E. Knuth, “The art of computer programming, volume 2: Seminu-
merical algorithms, third edition,” Addison-Wesley, Reading, MA, 1997.

10. Appendix

To use the algorithms described in this paper, it is only
necessary to understand the entry and exit conditions that
appear at the beginning of each subroutine, not the code
itself. Nonetheless, to allow complete evaluation of the
algorithms, and to encourage further development of them,
we present them as pseudo-code inspired by and simplified
from the programming languages C, R, and Python. The
algorithms are defined with sufficient precision that they
can be run, tested, timed, modified, or translated to other
languages. Familiarity with a few operators® and with the

syntax of flow control (if, for, while, etc.), is sufficient to
follow the algorithms. External routine EventSchedule(n,T)
schedules a future event for A[n] at time 7 [2], Rand
generates uniform pseudo-random numbers 0 < p <1, RandF
is an interface for other distributions, RandSeed retrieves
the current state of the random sequence, RandSeq(q) resets
the sequence to a new or previous state g, and Cinverse
converts to any probability distribution [6]. These algorithms
translated into operational C are available free from the
authors upon request.

DATA ELEMENTS

Clock parameters are stored in array A[n], which is also used for individuals in the simulation. The main simulation
program keeps track of which values of n represent clocks, either by assigning them to fixed positions of the
array or by placing them in a group [5] reserved for clocks. The elements of A[n] must be large enough to
represent both clocks and individuals.

Variables in A[n] are assigned names beginning with V/, as follows.

Vid =A[n][0 Identification for this specific clock.

Viype = A[n]|1 Type of clock (periodic, aperiodic, etc).
Vper =A[n|[2 Time units per tick or set of ticks.

Vbase = Aln||3 Base time (periodic or aperiodic).

Vstep = Aln]l4 Number of steps presently beyond the base.
Vticks = A[n||5 Number of ticks per period (partly periodic).
Vk = A[n][6 Ticks thus far in the period (partly periodic).
Vscale = Aln]|7 Scaling factor for the period (partly periodic).
Vseed = A[n|[8 Random number seed (partly periodic).

Vx =A[n]|9 Cumulative distribution, ’x’ variable.

Vy = A[n][10] Cumulative distribution, 'y’ variable.

Vaxy = A[n][11] Number of elements in ’x” and ’y’.
CLOCK TICK

Routine ClockTick is called after each tick of a clock, typically from a dispatching routine in the main simulation
program, to schedule the next tick. It is also called once a new clock is started, to schedule the first tick. Upon
entry, (1) A[n] records the state of the clock, as defined in the exit conditions of ClockPeriodic, ClockAperiodic,
and ClockPartlyPeriodic below. In particular, (2) Vtype defines the type of clock, 1=periodic, 2=aperiodic, 3=partly
periodic. On exit, the next tick is scheduled.

ClockTick(n) integer n;
choose from Vitype:
case 1: TI(n); return;
case 2: T2(n); return;
case 3: T3(n); return;
other: ExitMsg(1); return;

Periodic clock.
Aperiodic clock.
Partly periodic clock.
Improper clock type.

In the pseudo-code here, indentation defines the nested structure. Variables and function names are italicized and
flow control and reserved words are bolded. Assignment is left to right, represented by ‘—’. Individual parts of any
compound assignments also operate left to right, so that ‘a+1 — a — b — W [i][j]” operates by first incrementing
a and placing the results back in a, then in b, and then in the ¢, jth element of array W . Array indexing starts with 0.
Any logical operators such as ‘and’ and ‘or’ are preemptive, terminating a chain of logical operations as soon as the
result is known. Permanent global assignments are rendered ‘o = f3°.

Algorithm 1. PERIODIC CLOCK

Routine ClockPeriodic establishes a new periodic clock or alters an existing one. Upon entry, (1) A[n] is an
entry available for controlling the clock. (2) id contains the identification number for the clock. (3) period is
the period of the clock, greater than 0. (4) phase is phase shift—the position of the periodic tick within the
period. (5) z, y, and nxy optionally define a probability distribution for the noise, in the form of RandF. If x
is null, no probability distribution is supplied and no noise is applied. (6) Anull is an entry of A[n] that has
all variables zero. (7) ¢ is the current time. On exit, (1) A[n] is prepared so that clock ticks can be scheduled
by a call to ClockT'ick. In particular, the following elements are set. (2) Viype is 1, meaning a periodic clock.
(3) Vid carries the value of id on entry. (4) Vperiod contains the value of period on entry. (5) Vbase contains
the base time for the clock, equal to ¢ on entry plus the value of phase on entry. (6) Vzx, Vy, and Vnay contain
the values of x, y, and nzy on entry, respectively. These may be null if no distribution was supplied. (7) All
other elements are zero.

ClockPeriodic(n, id, period, phase, x[], y[]|, nxy) integer n, id, nxy; real period, phase, x[], y[];

Anull — Aln]; 1 — Viype; 1. Prepare a new table entry.
id — Vid; period — Vper; t + phase — Vbase; 2. Save entry parameters.
x = Vx; y = Vy; nxy — Vnxy; 3. Save any custom random function.

Routine 77 is called each time a periodic clock has ticked, to schedule the next tick. It is also called immediately
after ClockPeriodic has been called, to start the clock ticking. Upon entry, (1) A[n] defines the clock structure. In
particular, the following elements are relevant. (2) Vid contains the identification number for the clock. (3) Vper
contains the period. (4) Vbase contains the base time for the clock, equal to the starting time plus the phase
shift. (§) Vstep contains the number of ticks thus far. (6) Vz, Vy, and Vnay optionally define a probability
distribution for the noise, in the form of RandF. If Vz is null, no probability distribution is supplied and no
noise is applied. (7) t is the current time. On exit, (1) The next tick of the clock is scheduled. (2) Vstep is
advanced by the 1.

TI(n) integer n;

if Vx: RandF(Vx, Vy, Vnxy) — w, 1. If random noise has been specified,
(w/Vx[Vaxy — 1))« Vper — w; select a tick from within that noise.

else Vper — w; Otherwise generate a precise tick.

Vbase + (Vstep* Vper) +w — v; Compute the time of the tick.

Vstep + 1 — Vstep; Advance the tick counter.

ifv<t t —v; Control any rounding error.

EventSchedule(n, v); Schedule the next tick.

SNk W

Algorithm 2. APERIODIC CLOCK

Routine ClockAPeriodic establishes a new aperiodic clock or alters an existing one. Upon entry, (1) A[n] is an
entry available for controlling the clock. (2) ¢d contains the identification number for the clock. (3) mean
optionally defines the time between ticks in an exponential probability distribution, if a custom probability
distribution is not supplied. (4) x, y, and nxy optionally define a custom probability distribution for the waiting
time to the next tick, in the form of RandF'. If z is null, no custom distribution is supplied and an exponential
distribution is used instead. (5) Anull is an entry of A[n] that has all variables zero. On exit, (1) A[n] is
prepared so that clock ticks can be scheduled by a call to ClockTick. In particular, the following elements are
set. (2) Vtype is 2, meaning an aperiodic clock. (3) Vid carries the value of id on entry. (4) Vper contains the
value of mean on entry. (5) Vz, Vy, and Vnzy contain the values of z, y, and nzy on entry, respectively. These
may be null if no custom distribution was supplied. (6) All other elements are zero.

ClockAperiodic(n, id, mean, x[], y[], nxy) integer n, id, nxy; real mean, x[], y[];

Anull — Aln]; 2 — Viype; 1. Prepare a new table entry.
id — Vid; mean — Vper; 2. Save entry parameters.
x — Vx; y — Vy; nxy — Vnxy; 3. Save any custom random function.

Routine 72 is called each time an aperiodic clock has ticked, to schedule the next tick. It is also called immediately
after ClockAperiodic has been called, to start the clock ticking. Upon entry, (1) A[n] defines the clock structure. In
particular, the following elements are relevant. (2) Vid contains the identification number for the clock. (3) Vper
contains the mean time between ticks in an exponential distribution if Vz, Vy, and Vnay do not specify a custom
distribution. (4) Vx, Vy, and Vnay optionally define a custom probability distribution for the waiting time to the
next tick, in the form of RandF'. If Vx is null, no custom distribution is supplied and an exponential distribution
is used instead. (5) ¢ is the current time. On exit, The next tick of the clock is scheduled.
T2(n) integer n;
if Vx: RandF(Vx, Vy, Vnxy) — w; 1. Generate the time until the next tick, from
else Exponential(Vper) — w; a custom distribution or an exponential.
EventSchedule(n, t + w); 2. Add current time to schedule the next tick.

Algorithm 3. PARTLY PERIODIC CLOCK

Routine ClockPartlyPeriodic establishes a new partly periodic clock or alters an existing one. Upon entry,
(1) A[n] is an entry available for controlling the clock. (2) id contains the identification number for the clock.
(3) period defines the period of the periodic part of the clock. (4) ticks defines the number of ticks that will
occur aperiodically during that period, spaced according to the dictates of the relevant probability distribution.
(5) x, y, and nxy optionally define a custom probability distribution for the waiting time to the next tick, in
the form of RandF'. If x is null, then no custom distribution is supplied and an exponential distribution is used
instead. (6) Anull is an entry of A[n] that has all variables zero. (7) ¢ is the current time. On exit, (1) A[n] is
prepared so that clock ticks can be scheduled by a call to ClockTick. In particular, the following elements are
set. (2) Vtype is 3, meaning a partly periodic clock. (3) Vid carries the value of ¢d on entry. (4) Vper contains
the value of period on entry. (5) Vticks contains the number of ticks to occur in that period. (6) Vbase contains
the value of ¢ on entry. (7) Vz, Vy, and Vnay contain the values of z, y, and nxy on entry, respectively. (8) All
other elements are zero.

ClockPartlyPeriodic(n, id, period, ticks, x[], y[], nxy) integer n, id, nxy, ticks; real period, x[];

Anull — Aln]; 3 — Viype; 1. Prepare a new table entry.
id — Vid; period — Vper; ticks — Vticks; t — Vbase; 2. Save entry parameters.
x = Vx; y = Vy; nxy — Vnxy; 3. Save any custom random function.

Routine 73 is called each time a partly periodic clock has ticked, to schedule the next tick. It is also called
immediately after ClockPartlyPeriodic has been called, to start the clock ticking. Upon entry, (1) A[n] defines
the clock structure. In particular, the following elements are relevant. (2) Vid contains the identification number
for the clock. (3) Vper contains the period. (4) Vticks contains the number of ticks to occur in that period.
(5) Vbase contains the starting time. (6) Vstep contains the number of ticks thus far. (7) Vx, Vy, and Vnay
optionally define a custom probability distribution for the waiting time to the next tick, in the form of RandF'.
If = is null, then no custom distribution is supplied and an exponential distribution is used instead. (8) ¢ is the
current time. On exit, (1) The next tick of the clock is scheduled. (2) Vstep is advanced by the 1.

T3(n) integer n;

if Vk =0: 1. At the beginning of an aperiodic
Vseed <— RandSeed(); 0 — Vscale; section, run through the sequence
loop Vticks times: to determine how much it has to
if Vx: Vscale + RandF(Vx, Vy, Vnxy) — Vscale; be up or down-scaled to match the
else Vscale + Exponential(1) — Vscale; specific period.
Vk +1 — Vk; if Vk > Vticks: 0 — Vk; 2. Advance the subperiod counter.
RandSeed() — q; RandSeq(Vseed); 3. Step again through the previous
if Vx: RandF(Vx, Vy, Vnxy) — w; random sequence to generate the
else Exponential(1) — w; next tick, without disturbing the
RandSeed() — Vseed; RandSeq(q); current sequence.

Vbase + (Vstep* Vper) — base;
if base < t: t — base;
Vstep + 1 — Vstep;

EventSchedule(n, t+ (w/Vscale)x Vper);

. Locate the beginning of the period.
. Control any rounding error.
. Locate the next periodic point.

~N O\

. Schedule the next tick.

RANDOM NUMBER INTERFACE

Routine RandF connects the internal routines represented here with the external random number routine Cinverse
[6], which generates random numbers from any probability distribution. It uses two arrays to define the distribution,
one for the z-axis and one for the y-axis. For example, the distribution of Figure 3A would have z[0,1,2] =
{0,9,12}, y[0,1,2] = {0,0,1}, and n = 3, meaning the cumulative distribution remains 0 between z = 0 and
x =9, then rises linearly to 1 at z = 12. Upon entry, (1) x is an array of values in the set of random numbers
to be generated. (2) y is an array of cumulative probabilities, each being the probability that a random value will
be less than or equal to the corresponding value in x. (3) n is the number of entries in tables = and y. On exit,
RandF contains a random value drawn from the given distribution.

RandF(x, y, n) integer n; real x[], y[];
return Cinverse(1, Rand(), x[0], n, x, y, 0);

