
A Comparative Analysis of Computational Indel Calling
Pipelines for Next Generation Sequencing Data

Jacob Porter, Jonathan Berkhahn, and Liqing Zhang
Computer Science, Virginia Tech, Blacksburg, VA, USA

Abstract - Insertions and deletions (indels), are one of the most
common class of mutations in the human genome. Correctly
detecting and identifying indels is important in the study of
human genetics and disease. We evaluated the precision and
recall of combinations of read mapping and indel calling
software on calling short and longer indels with variable read
coverage on simulated data. We examined the popular read
mappers BFAST, Bowtie2, BWA, and Shrimp and the indel
callers Dindel, FreeBayes, and SNVer. Interestingly there were
interactions between read mappers and indel callers. On
simulated data, the BFAST-Dindel and Shrimp-SNVer pipelines
showed superior performance in most cases. Real data from
human chromosome 22 with indels determined from an
alternative indel pipeline were used to validate the
computational pipelines and to assess run-time. The Shrimp-
SNVer pipeline was the most accurate, while pipelines with
FreeBayes did poorly. We discuss reasons for pipeline
accuracy.

Keywords: indel calling bowtie2 bfast bwa snver

1 Introduction
Indels are the second most common class of mutation in

the human genome [1]. They consist of an insertion or deletion
of one or more DNA bases into a genome. This can have far
ranging effects concerning gene expression and genetic disease
[1]. Detecting and identifying indels is a multistep process that
can introduce error at every step. Starting with a set of DNA
sequence reads and a reference DNA genome, reads are first
mapped to the reference genome with a mapping program and
then the mapped results are inputted into indel calling software
to identify indels.

A growing variety of software is available for read mapping
and indel calling. New tools are constantly being developed
with an eye towards better performance and increased
accuracy. As the variety of available tools and the complexity
of the technologies involved in indel calling increases, it
becomes increasingly important to understand the relationships
between mapping software and indel calling software. While
previous work [2, 3] assessed the accuracy of indel calling by
only varying mapping software or by only varying indel calling
software, we studied the accuracy of mapper and indel calling
software combinations. We evaluated the accuracy of pipelines
consisting of four popular mapping programs and three indel

calling programs on simulated data based on a portion of
human chromosome one. For mapping, BFAST [7], Bowtie2
[4], BWA [5], and SHRIMP [6] were selected. For indel
calling, we used Dindel [8], Freebayes [10], and SNVer [9].
We varied the coverage of the reads inputted to the mappers to
study the effects of different levels of read coverage on the
precision and recall of called indels. We evaluated the
accuracy of these pipelines on indels from 1-30 bases long.

Furthermore, pipeline accuracy was assessed with real human
data from chromosome 22. The indels were validated with an
alternate method described in the paper [12].

The remainder of this paper is organized as follows. Section 2
discusses the read mapping software and the indel calling
software we selected. It discusses methods we used to generate
our simulated and real data sets, and the statistics that we used
to evaluate the accuracy of our pipelines. Section 3 discusses
the accuracy results of the pipelines and runtime on real data.
Section 4 concludes.

2 Methods
2.1 Software Workflow

We selected mapping software that was both widely used
and that covered a variety of different algorithms. Bowtie2 [4]
and Burrows-Wheeler Aligner (BWA, [5]) were both popular
tools that use the Burrows-Wheeler transform to map reads.
SHRiMP [6] and BFAST [7] are both hash-based mapping
tools. Shrimp creates a hash table index of the read sequences,
but BFAST creates a hash table index of the reference
sequences. For indel calling, we selected two programs that
use Bayesian statistics, Dindel [8] and Freebayes [10]. SNVer
[9] is based on a frequentist binomial-binomial model
developed by the SNVer authors.

All of our experiments were run on SystemG nodes. SystemG
is a research cluster at Virginia Tech. Each node had two quad-
core 2.8 GHz Intel Xeon processors and 8 gigabytes of RAM.
The mappers were run with four threads when possible, but the
indel callers were single-threaded only.

Each tool was run with default settings since that is how the
tools will most likely be used. The workflow consisted of
creating SAM files from each read-mapper and then

transforming the SAM files into BAM files with samtools.
Finally, each indel-caller produced a VCF file from the BAM
files. The following are the version numbers for the software:
bfast-0.7.0a, bowtie2-2.1.0, bwa-0.7.1, SHRiMP-2.2.3,
dindel-1.01, freebayes-0.9.9, and SNVer-0.4.1. The real data
workflow was similar to the simulated data workflow. The
differences are that Shrimp was run with --no-qv-check and --
qv-offset 33 because the real data were Sanger traces rather
than Illumina reads, and Dindel was run with --
numWindowsPerFile 1000000. Dindel was not used much on
real data because at one day of running, it was still not
finished. The workflow and arguments used were the
following.

1. Read Mapping:

BFAST:
bfast fasta2brg -f reference.fasta
bfast index -f reference.fasta -m
1111111111111111111111 -w 14 -n 4
bfast match -f reference.fasta -r reads.fastq -n 4 -t 1>
bfast.matches.bmf 2> bfast.matches.out
bfast localalign -n 4 -t -f reference.fasta -m
bfast.matches.bmf 1> bfast.aligned.baf 2> bfast.aligned.out
bfast postprocess -f reference.fasta -i bfast.aligned.baf -o 3
-a 3 > align.sam

Bowtie 2:
bowtie2-build reference.fasta reference
bowtie2 -x ref -U reads.fastq -S align.sam

BWA:
bwa index reference.fasta
bwa aln reference.fasta reads.fastq > align.sai
bwa samse reference.fasta align.sai reads.fastq > align.sam

SHRiMP:
gmapper -N 4 reads.fastq reference.fasta > align.sam

2. BAM Conversion:

Samtools:
samtools faidx reference.fasta
samtools view -b -S align.sam > align.bam
samtools sort align.bam align.sorted
samtools index align.sorted.bam

3. Indel Calling

Dindel:
dindel --ref reference.fasta --outputFile dindel_output --
bamFile align.sorted.bam --analysis getCIGARindels
makeWindows.py --inputVarFile dindel_output.variants.txt
--windowFilePrefix realign_windows --
numWindowsPerFile 1000
dindel –analysis indels --bamFile align.sorted.bam –
doDiploid --ref reference.fasta --varFile
realign_windows.1.txt --libFile dindel_output.libraries.txt --

outputFile stage3_output
echo "stage3_output.glf.txt" > list.txt
mergeOutputDiploid.py -i list.txt -o indels.vcf -r
reference.fasta

Freebayes:
freebayes --no-snps --no-mnps --no-complex -b
align.sorted.bam -f reference.fasta -v indels.vcf

SNVer:
java -jar SNVerIndividual.jar -i align.sorted.bam -o
indels.vcf -r reference.fasta

2.2 Simulated Data
The simulated data was generated from 10 megabases of

chromosome one from a publicly available human genome
available from the National Center for Biotechnology
Information. Artificial mutations were introduced using
inGAP, a software tool for the manipulation of genetic data
[11]. SNPs were inserted at a divergence rate of 0.1%, and
indels were inserted at a divergence rate of 0.02%. These
values were chosen since they were realistic [1]. Indel lengths
were uniformly distributed from one to thirty bases. Ten
replicates of simulated reads were produced to generate
average and error statistics for the tests. Reads of uniform 50
base pair length were generated from the mutation sequences
in the fastq file format using inGAP. Reads of length 50 were
chosen because indel identification is more complex for shorter
single-end reads since they “lack insert length variance” [2], so
short single end reads represented a good test of indel pipeline
sensitivity. In order to study the effects of varying coverage
on the accuracy of the pipelines, reads were generated for 10x,
50x, and 100x coverage for each of the mutation sequences.

2.3 Real Data
Applied Biosystems (Sanger) paired-end traces from the

set Chr_22_7340 were identified and downloaded from the
NCBI trace archive. These traces were used in a Devine lab
study that searched for indels in human chromosome 22 [12].
The paper identified 6487 indels for the Chr_22_7340 traces.

We cleansed the traces of contamination using NCBI
VecScreen where traces with vector contamination in the
middle were discarded, and traces with vector contamination
on the ends had the contamination trimmed off. After this,
there were 217,924 traces with sizes as much as 2000bp. Since
short read mappers perform poorly with very long sequences,
10 million 100bp portions of the traces were sampled with
replacement in order to simulate short reads. The 10 million
simulated single-end sequences were run through the pipelines
with timing tracked with the Linux “date” command.

2.4 Indel Detection
A confusion matrix for each pipeline on each data set was

created that recorded true positives, false positives and false
negatives. Indels were recorded as true positives if the
predicted indel's position was plus or minus 5 nucleotides of
the actual indel's position and the predicted length was within
5 percent of the actual length (with all lengths set to be one if
5 percent of the actual length was less than 1). The indel had
to be correctly classified as an insertion or a deletion to be
marked a true positive; otherwise, it was classified as a false
positive. The sequence identity of predicted and actual indels
was not checked since differences in sequence identity were
rare. A false positive was a predicted indel that didn't meet the
preceding criteria, and a false negative was an actual indel that
wasn't identified by the indel classifier. Precision, recall, and
F1-score were calculated for all pipelines to assess accuracy.
Python 2.6 and Bash scripts were created to do the statistical
analysis and workflow.

3 Results and Discussion
3.1 Analysis of F1-Score and Coverage on

Simulated Data
In our results on simulated data with indels of size 1-30

bases there were clearly pipelines that performed better than
other pipelines as measured by the F1-score (Figure 1). For
each pipeline, Figure 1 shows average F1-score and the
minimum and maximum F1-score of the 10 replicates. Most
indels called had fewer than 10 bases.

Figure 1 shows that pipelines with 10X coverage have the best
F1-scores, and that 50X and 100X coverage perform less well.
This was explained by a tradeoff between precision and recall
caused by both increasing false positives and increasing true
positives. As coverage increased, recall increased since indel
callers return more predicted indels and thus more genuine
indels. However, there were more false positives as coverage
increased, so precision went down as coverage increased. The
general downward trend of the F1-score was because precision
decreased more than recall increased with increasing coverage.
This suggests that there is some coverage amount that
maximizes F1-score for the data, and increasing coverage isn't
always desirable. This result was consistent with other work
that showed statistically significant precision and recall trends
with increasing coverage [2].

The three top performing pipelines were BFAST-Dindel (avg
F1-score 0.66), SHRIMP-SNVer (0.53), and BFAST-SNVer
(0.51) in the 10X coverage for 1-30 indels. The BFAST-
Dindel pipeline had the best average F1-score for all coverage
amounts (Figure 1). SHRIMP pipelines were interesting since
the F1-score varied considerably. The Shrimp-SNVer pipeline
was among the top performing, but Shrimp-Freebayes and
Shrimp-Dindel performed poorly. By default, Shrimp mapped
some reads to multiple positions.

Read mappers use a seed and extend strategy, and BFAST’s
seeding strategy used a sliding window at every base. Bowtie2
used multiple 20bp seeds with an offset determined by the read
length. Perhaps BFAST’s seed strategy allowed it to be more

Figure 1 : The F1-score of indel calling pipelines on simulated data with reads containing indels of 1-30 bases. The results are
divided into sets of 10X, 50X, and 100X coverage. The F1-score is shown with average, low and high scores.

accurate. All the mappers’ extension phases are similar since
they use local or global alignment algorithms [4, 5, 6, 7].

The F1-score difference for 10X coverage between the best
pipeline (BFAST-Dindel) and the worst pipeline (BWA-
SNVer) was about 0.546. BWA generally performed poorly
and this could be because it only supported gaps less than 10
bases in its alignments [5]. Even though BWA and Bowtie2
used a similar seeding strategy with the Burrows-Wheeler
transform, Bowtie2 pipelines usually had better F1-scores.
Bowtie2’s split seed approach handles some variation in the
seed [4].

Interestingly, there isn't one clear indel caller that did the best
overall. Bowtie2-SNVer was among the lowest performing
while SHRIMP-SNVer was among the best performing.
Dindel did well with BFAST but not very well with SHRIMP.

3.2 Precision and Recall on Simulated Data
With Smaller and Longer Indels

Figures 2 and 3 show a comparison of the effects of
longer indels on precision and recall at 10X coverage.
Pipelines performed worse for data with indels of 1-30 bases
(Figure 3) than for indels with 1-10 bases (Figure 2). Figure
3’s precision-recall tuples are generally shifted left when
compared to Figure 2. The Bowtie2-Freebayes pipeline did
noticeably better with 1-10 indel lengths.

The precision-recall plots show which pipelines are
conservative, which generous, and which are balanced. The
pipelines involving BWA and Bowtie2 were the most
conservative with high precision but low recall. Pipelines

involving Freebayes were the most generous with low
precision but higher recall. BFAST-Dindel and Shrimp-
SNVer had the most balanced precision and recall results with
(0.648,0.771) and (0.640,0.799) respectively for indels of
length 1-10. The BFAST-Dindel pipeline performed better
than Shrimp-SNVer for indels of length 1-30.

Bowtie2 pipelines generally appeared mediocre in our tests.
BFAST pipelines had generally good performance with
different indel callers while SHRIMP pipeline performance
varied considerably with indel calling software. BWA
pipelines performed poorly.

3.3 Accuracy of Real Data
The only accurately called indels on the real data were

smaller than 5bp. Figure 4 shows the F1-scores of the real data
pipelines. SNVer pipelines had the best F1-score. Similar to
the simulated data, pipelines with Freebayes were too generous
with high recall but low precision. Average precision and
recall for Freebayes was 0.000440955 and 0.010906428, but
with SNVer it was 0.00117591 and 0.001079081. Thus,
SNVer was more conservative in indel calling. The Shrimp-
SNVer and Bowtie2-SNVer pipelines did the best while BWA-
Freebayes was the worst. The choice of read mapper made
little difference, and this could be because only small indels
were called. True positives were few relative to indels called
(Table 1). For the BWA mappings, Dindel completed in 6.6
hours with similar precision (0.00062) and recall (0.0026) to
the BFAST-SNVer pipeline (0.00079, 0.0012).

Figure 2 : Average precision and average recall for 10 simulated data replicates for the indel calling pipelines. Precision and
recall was calculated for indels with only 1-10 bases at 10X coverage. The reads contained indels as large as 30 bases.

3.4 Run-Time Performance on Real Data
Table 1 summarizes run-time performance for the

pipelines for the real human chr22 data. Bowtie2 and BWA,
had the fastest runtimes at 27 and 23 minutes respectively.
BFAST and Shrimp were the slowest mappers, and both used
a sliding window hashing seed strategy. BFAST was about 10
minutes slower, but Shrimp was 6.2 times slower than BWA,

making Shrimp pipelines the slowest. The Shrimp read
mapping percent is more than 100 percent since it mapped
some reads to multiple positions by default.

The indel callers did not have multithreading, so they were
slow. Freebayes was always faster than SNVer, and SNVer
took 145 minutes with Shrimp’s input making the Shrimp-
SNVer pipeline the slowest. Dindel took over a day (except

Figure 3 : Average precision and average recall for 10 simulated data replicates for the indel calling pipelines. Precision and
recall was calculated for all indels. Indels had 1-30 bases at 10X coverage.

Figure 4 : F1-Score for the indel calling pipelines on 10 million real human chromosome 22 traces.

with BWA input), making it less tolerable for big indel calling
projects; however, Dindel has the ability to split its work into
multiple files for manual multiprocessing.

4 Conclusions
To our knowledge, this work is the first to look at the

accuracy of the combination of mapping software and indel
calling software with larger (>10 nucleotides) indels. F1-
score, a measure of accuracy, fell with increased coverage,
belying expectations. Indel calling accuracy depended on the
combination of mapping software and indel calling software.
Some of the top performing pipelines were BFAST-Dindel,
SHRIMP-SNVer, and BFAST-SNVer on simulated data. The
best pipeline had an F1-score 0.6 higher than the worst pipeline
on simulated reads. On real data, SNVer pipelines were more
accurate than FreeBayes pipelines in all cases. SNVer and
Shrimp can have slow runtimes, but Dindel was by far the
slowest. Future work could include exploring the parameter
space of the tools to observe the effects of argument selection
on sensitivity.

5 References

[1] Mullaney JM, Mills RE, Pittard WS, et al. Small insertions and
deletions (INDELs) in human genomes. Hum Mol Genet
2010;19:R 131-b

[2] Neumann JA, Isakov O, Shomron N. Analysis of insertion-
deletion from deep-sequencing data: software evaluation for
optimal detection. Brief Bioinform 2013 Jan;14(1):46-55

[3] Pabinger S. et al. survey of tools for variant analysis of next-
generation genome sequencing data. Brief Bioinform 2013 Jan
21.

[4] Langmead B, Salzberg S. Fast gapped-read alignment with
Bowtie 2. Nature Methods. 2012, 9:357-359.

[5] Li H. and Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler Transform. Bioinformatics 2009, 25:1754-60.

[6] David M, Dzamba M, Lister D, Ilie L, Brudno M. SHRiMP2:
sensitive yet practical Short Read Mapping. Bioinformatics
2011, 27:1011-102.

[7] Homer N, Merriman B, Nelson SF. BFAST: An alignment tool
for large scale genome resequencing. PLoS ONE (2009). 4(11):
e7767.

[8] CA Albers, G Lunter, Daniel G MacArthur, Gilean McVean,
Willem H Ouwehand, Richard Durbin. Dindel: Accurate indel
calls from short-read data. Genome Research: 2010

[9] Erik Garrison, Gabor Marth. Haplotype-based variant detection
from short-read sequencing. ArXiv:1207.3907[q-bio.GN]

[10] Wei Z, Wang W, Hu P, Lyon GJ, Hakonarson H. SNVer: a
statistical tool for variant calling in analysis of pooled or
individual next-generation sequencing data. Nucleic Acids Res.
2011 Oct; 39(19):e132

[11] Qi J, Zhao F, Buboltz A, et al. InGAP: an integrated next-
generation genome analysis pipeline. Bioinformatics
2010;26:127-9.

[12] Ryan E. Mill, Stephen Pittard, et al. Natural genetic variation
caused by small insertions and deletions in the human genome.
Genome Res. 2011. 21: 830-839

Mapper Caller Minutes Total Minutes % Reads Mapped Total Indels Called True Indels
BFAST 38 0.5437498

Samtools 5
SNVer 18 61 20486 8
Freebayes 37 80 358574 139

Bowtie2 27 0.4850195
Samtools 4
SNVer 19 50 9812 6
Freebayes 16 47 114679 54

BWA 23 0.412648
Samtools 4
SNVer 18 45 6388 5
Freebayes 9 36 30789 14

Shrimp 143 1.7618786
Samtools 4
SNVer 145 292 9145 9
Freebayes 59 206 168684 76

Table 1 : Mapper, caller, pipeline run-time, percent mapped, and indels called on 10 million real human 100bp reads

