
Relevance of Information in Cell Signaling Pathways using Default
Logic

A. Doncescu1, P. Siegel2, and T. Le1
1LAAS-CNRS, University of Toulouse, Toulouse, France

2Aix Marseille Université, CNRS, LIF UMR 7279, 13288, Marseille, France

Abstract— Cell Signaling Pathway Simulation is a very
useful tool in the drug discovery process. These simula-
tion programs can be divided into dynamic simulation and
Knowledge-Based Discovery. In the first case the simulation
is based on differential equations and could be considered
in "real-time", meanwhile in the case of Knowledge Based
Discovery Programs KBDP the consistency of the model is
checked. The most efficient KBDP approach is based on
first order logic (FOL). In this paper, algorithms based
on Default Logic are proposed to check-out the consis-
tency of the simplest representation of DNA double strand
breaks. DNA double-strand breaks are among the most
severe genomic lesions. This representation is concise and
adequat for keeping the flow of information represented by
gene expression, receptor and protein structure through the
apoptosis and cell cycle.

Keywords: Double Strand Breaks, DNA Damage, Default Logic,
Extensions, Abduction, Consistent Pathway

1. Introduction
Today the conception of artificial systems attempts to

imitate the natural systems by developing new concepts
of reasoning able to handle a high level of heterogeneity
and uncertainty. These complex systems have a dynamic
evolution in terms of structure and organization. In order to
model and control these systems there is a need to observe
and reconstruct their behavior by a relevant model which
should make sense of large amounts of heterogeneous data
gathered on various scales. System Biology is a research
field, which needs an appropriate evaluation of their know-
how corroborated with the available experimental data in
order to represent knowledge and discover new knowledge.
Therefore, System Biology could be view as a complex
network constituted of protein-protein interactions, small-
molecule metabolism and gene regulation.

From the standpoint of Artificial Intelligence, cells are
sources of information that include a large amount of intra
and extra cellular signals. Disease and cancer in particular
can be seen as a pathological alteration in the signaling
networks of the cell. The study of signaling events appears
to be the key of biological, pharmacological and medical
research. For a decade signaling networks have been studied
using analytical methods based on the recognition of proteins

by specific antibodies. Parallel DNA chips (microarrays) are
widely used to study the co-expression of candidate genes to
explain the etymology of certain diseases, including cancer.
The resulting data allows the modeling of gene interactions.
The biological experts look for evidence of interactions
between metabolites and genes. Therefore the representation
by graphs is the best way to understand biological systems.
This representation includes mathematical properties as con-
nectivity; presence of positive and negative loops which is
related to a main property of genetic regulatory networks.
Biochemical reactions are very often a series of time steps
instead of one elementary action. Therefore, one direction
research in system biology is to capture or to describe the
series of steps called pathways by metabolic engineering.
All reactions that allow the transformation of one initial
molecule to a final one constitute metabolic pathways. Each
compound that participates in different metabolic pathways
is grouped under the term metabolite.

The study of gene networks poses problems well identified
and studied in Artificial Intelligence over the last thirty
years. Indeed, the description of network is not complete:
biological experiments provide a number of protein interac-
tions but certainly not all of them. On the other hand the
conditions and sometimes the difficulties of the experiments
involves these data are not always accurate. Some data may
be very wrong and must be corrected or revised in the future.
Finally the information coming from different sources and
experiences can be contradictory. It is the goal of different
logics, and particularly non-monotonic logics, to handle this
kinds of situation. Afterwards this interaction maps should
be validated by biological experiments. Of course, these
experiments are time consuming and expensive, but less than
an exhaustive experiment.

In this paper we focus on three main problems: handling
the conflicts which can occur in the gene representation,
completing in-silico the gene network and the practical
handling complexity of the algorithm allowing the inferences
for knowledge discovery on these networks. Our approach is
based on default logic allowing to handle the incomplete in-
formation, and abductive reasoning to complete the missing
information from the gene network. The last part is dedicated
to a new language of representation, which seems to be the
key to algorithm complexity handling.

2. Declarative Representation of Sig-
nalling Pathway

Figure 1 shows a simplified pathway of interactions in
a cell. Through different mechanisms, not shown here, the
ultraviolet UV drives the cell to cancer. This is represented
by an arrow : UV → cancer. On the other hand the UV
activate the protein P53 (UV → P53). This protein activates
a protein A (P53→ A)) and A blocks cancer (A a cancer).
But, in some conditions, Mdm2 binds protein P53 and the
obtained complex, activates B and B blocks A. This example
is of course very elementary, but it helps to ask questions
related to the representation of networks of genes side view
of artificial intelligence and algorithms. In practice, this may
include pathways with thousands of genes, which will pose
problems of computational complexity. In this article, to test
the representation and the algorithms, we use the example
introduced in [1] and [18] (Fig. 1) and the map given by
Pommier [21] (Fig. 2).

!
!
!

!
!
!

Unknown
Mis en forme: Police :Times New Roman,
10 pt

Fig. 1: The Simplified Model of Double Strand Break.

2.1 Double strand break of DNA
The cell’s response to a double strand break of DNA

(DBS) has been studied for some years, but the ATM-
dependant signaling pathway has only been clarified since
the discovering of H2AX [2], the phosphorylated form of
histone H2AX. All the protein interactions of this pathway
have been reported [21], including the signalization of the
double-strand break (involving important proteins such as:
H2AX, MDC1, BRCA1 and the MRN complex) but also
for the checkpoint mechanisms (involving p53, the Cdc25’s
and Chk2).

In a general way, the cell can receive information by
protein interactions that will transducer signals. First, the
information is discovered by sensor proteins, which will
recruit some other mediator proteins whose function will
be to help all the interactions between the sensors and the
transducers. These transducers are proteins that will amplify
the signal by biochemical methods such as phosphorylation.
In the end, the signal will be given to effectors that will
engage important cell process. In this pathway, the DSB
is recognized by the MRN complex, which in turn will
recruit ATM in its inactive dimer form, and then ATM
will phosphorylate itself and dissociate to become an active

!
!
!

!
!
!

Unknown
Mis en forme: Police :Times New Roman,
10 pt

Fig. 2: DNA Double Strand Break Map.

Symbols :
(a)  Proteins A and B could link, the knot represents the binding

A:B ;
(b)  Multimolecular Complex binding ;
(c)  Covalent Modification of A ;
(d)  Degradation of A ;
(e)  Enzymatic stimulation in transcription ;
(f)  Autophosphorylation
(g) General Stimulation;
(h) Necessity ;
(i) Inhibition ;
(j) Activation of transcription ;
(k)  Inhibition of transcription

monomer. This active form of ATM will phosphorylate many
mediators such as γ−H2AX, MDC1, BRCA1 or 53BP1.
Then, the signal is transduced by important proteins such
as Chk2, p53 (a very important protein, which can cause
cancer if mutated) or the Cdc25’s. The effectors can be
different with the context: p21 and Gadd45 will induce the
cycle arrest, whereas Box, Nas, Puma and Fas will induce
the cell apoptosis.

3. Logic representation
Genes and proteins are considered the same object (the

genes produce proteins). In this article, we often use a
propositional representation. But, in practice the detailed
study of interactions will be asked to represent increases or
decreases protein concentration. It therefore falls outside the
scope of propositional logic, but the basic problems are the
same, especially for the issue of computational complexity.

Indeed the protein concentration is rarely precise, and often
in practice, the biologists experiment shows a qualitative in-
terpretation of increasing or decreasing of the concentration.
To represent a change in concentration some predicates such
as increased or decrease are used.

To describe interactions between proteins it is possible to
use a language of classical logic (propositional or first order
logic). We can say, for example stimulation(UV) to say
that the cell is subjected to ultraviolet or GlassScreen →
¬stimulation(UV) to say that a glass screen protects
against ultraviolet. We are in a logical framework, so it is
possible to represent almost everything in a natural way. The
price to pay, if you use the entire first order language, is in-
completeness and the combinatorial explosion of complexity
algorithms. It is therefore essential to reduce the expressive
power of language.

3.1 Causality and Classical Inference
Interactions between genes can be seen as a very simple

form of causality. To express basic interactions, it is common
to use two binary relations trigger(A,B) and block(A,B)
[1], [10]. The first relation means, for example, a protein
A triggers or activates the production of a protein B.
The second relation is an inhibition. Conventionally, these
relations are represented by A → B and A a B. Theses
kind of relations gives a basic form of causality.

Many works were written to represent causality. It is
possible to use symbolic or numeric formalisms. You can
use Bayesian approaches, probabilistic logics [24]. It is
impossible here to go around all these works. We will simply
try to describe and use a form of causality (the simplest
possible) sufficient for the application to the cell.

The inferences of classical logic A → B or A ` B are
fully described formally, with all the "good" logic properties
(tautology, not contradiction, transitivity, contraposition..).
But the causality cannot be seen as a classical logic relation.
A basic example is "If it rains the grass gets wet". The
formula Rain→ lawn−wet meant that if it rains the grass
is always wet. But this formula is too strong. Indeed, there
may be exceptions to this rule (the lawn is under a shed...).

In a first approach, the first properties that we want to
give can be expressed naturally:

(1) If A triggers B and A is true, then B is true.
(2) If A blocks B and A is true, then B is false.
Depending on the context, true can mean the known,

certain, believed, proved... The first idea is to express these
laws in classical logic by axioms:
trigger(A,B) ∧A→ B
block(A,B) ∧A→ ¬B
They can also be weakly expressed by inference rules,

close to Modus Ponens :
trigger(A,B), A ` B
block(A,B), A ` ¬B

But these two formulations are problematic when there
is conflict. If for example we have a set of four formulas
F = {A,B, trigger(A,C), blocks(B,C)} , we will in the
two approaches above infer from F , B and ¬B. This is
inconsistent. To solve such conflicts, we can try to use
methods inspired by constraint programming, such as the use
of negation by failure in Prolog or Solar. It is also possible
to use a non-monotonic logic.

The first method, negation by failure, poses many theoret-
ical and technical problems if you go further as the simple
cases. These problems are often solved by adding properties
to the formal system, properties that pose other problems.
Therefore, we will use a classical non-monotonic formalism,
the default logic of Reiter.

3.2 Causality and Default Logic
To resolve the conflicts seen above, the intuitive idea is

to weaken the formulation of rules :
(1) If A trigger B, if A is true and it is possible that B,

then B is true.
(2) If A blocks B, if A is true and it is possible that B is

false then B is false.
The question then is to describe, what is formally

possible. This question began to arise in artificial intel-
ligence thirty years ago. In this type of reasoning, one
has to reason with incomplete information, uncertain and
subject to revision and sometimes false. On the other hand
we must often choose between several possible conclusions
contradictory. Here we use default logic [23]. This logic
can be seen as an improvement and a generalization of the
negation by failure in Prolog. It is also a generalization of
ASP formalisms which appeared later [17]. With default
logic the previous rules will be expressed intuitively :

(1) If A trigger B, if A is true and if B is not contradictory,
then B is true.

(2) If A blocks B, if A is true and if ¬B is not
contradictory then ¬B is true.

In default logic, these rules can be represented by normal
defaults which are special, and specific, inference rules
written :

d1 =
A : B

B
and d2 =

A : ¬B
¬B

• A is the prerequiste of default d1 and d2
• : B (resp. : ¬B) are the justifications of d1 (d2)
• B (resp. ¬B) are the consequents of d1 (d2)
Therefore, the information is represented here using de-

faults theory ∆ = {W,D} where W is a set of classical
logic formula and D is the set of defaults.

3.3 Extension and choice of extension
The goal of default logic is to find extensions of a

default theory ∆ = {W,D}. Simplifying, an extension E
is a consistent set of formulas obtained by adding, under
condition, to W a maximal set of consequents of D. An

extension can for example, represent a subgraph without
conflict, of the gene network.

The classical definition of extension is based on the
utilization of W and a subset of defaults D. An extension
is built starting with W and subsequently it is added the
maximum consistent set of consequences of D. The condi-
tion to use a default starts by checking if the prerequisites
(here A for d1) are satisfied and the justification (here : B
for d1) does not lead to contradiction. In a simple manner
that means the negation of B is not verified. If this request
is True we add the consequent B to W and the algorithm
is restarted until all defaults has been used.

For example if we consider ∆ = {W,D} with W = {A}
and D = {d1, d2} , we obtain two extensions :
E1 = {A,B} if d1 is used.
E2 = {A,¬B} if d2 is used.
By using default logic, the conflict is resolved, but it is

not possible to rank the extensions: B is true or false? In fact
this will really depend on the context. For biologists, some
times the positive interactions are preferred to negatives
(or reverse). Another possibility is to use probabilistic or
statistical methods or to weight each extension based on the
evaluation of the knowledge. From an algorithmic viewpoint
the ranking of extension could also be evaluated during the
calculation of the extensions and even the off-line ranking
could be preferred.

4. Completing the Signaling Networks
by Default Abduction

Previously, we introduced a fun-filled example which
sums up the question:

"How to block cancer by preventing B ?"
For this example, biological experiments have shown that

a protein X could be a candidate for this block. Figures 3 and
4 show two types of interactions with X to hypothesize the
blocking of B. Here the biologist completes the causal graph
and, for the case of big data, it is necessary to automatize
the process. The problem is thus complete in-silico network
genes. Biological experiments are done to try to complete it,
but these experiments are time consuming and expensive. We
need to find, in-silico, a molecule (a future drug) which has
a chance to act effectively. This is a problem of abduction.

Classical logic primarily uses three types of reasoning:
deduction, induction and abduction. The purpose of deduc-
tion is to find out when a result R is inferred from a set
of information C, written C ` R. Induction generalizes
the deduction, whereas information is not complete in all
its generality, but we know the special cases (examples,
experiences..). It should then use these cases to discover
general rules.

To simplify, abduction generalizes induction. Here, we
do not share examples. The information is incomplete and
make abduction amounts to adding to C a set of hypotheses

!
!

!

Fig. 3: mdm2 binds X.
!

!

!Fig. 4: p53 binds X.

H such that C ∧ H ` R and H is consistent with C.
In Artificial Intelligence, the notion of abduction is of
paramount importance.

The trouble comes with implementation of the algorithms.
Abduction algorithms are far too high computational com-
plexity. Even limited to propositional calculus, the theo-
retical complexity revolves around

∑p
2 which is totally

unacceptable when we go beyond small examples. Many
theoretical studies have been done on the complexity of
the abduction and research sub-language of propositional
calculus where complexity is reduced. These sub-languages
most often cover the Horn clauses and renaming. But even
here the complexity is too great for even, more or less, NP-
complete. Conversely, existing polynomial classes provide
only a low power of expression on issues to be addressed. On
the other hand, for many real applications, experience shows
that it is not necessary to use the full expressive power of
logic. It seems that this is particularly the case for the study
of gene networks.

For genes networks, abduction is used mainly to search
missing interactions. These interactions would yield a result
(for example "block cancer"). To search if one of these
missing interactions:
X → Y

can be used to obtain the result, it is possible to consider
a default of type:

X : Y

Y

Then you must calculate extensions that contain the result
and see the defaults used in these extensions.

5. Logic Representation of Signaling
Pathway to Reduce Computational Com-
plexity

Today, programming language does not exist allowing
abduction reasoning under the incomplete and uncertain in-
formation. We present the outline of a language dedicated to
discovery of biological interactions answering these requests.
This formalism uses the default logic and also has a dynamic
approach by considering time as a succession of events. The
syntax inspired from Prolog is described in the next section.

5.1 Clauses and Horn clauses.
In our representation, product(P53) means that the pro-

tein p53 increases in concentration and ¬product(P53)
means that it is not possible to determine if the p53 con-
centration is increasing. The dynamic of the system can
be, for example, specified by concentration(p53, 100, T)
which means the concentration of p53 at the time T is equal
to 100 a.u. And ¬concentration(P53, sup(200), T+3) says
that at the time T+3, the concentration of p53 is not greater
than 200 a.u.

The simplest formulas are the clauses. Formally, a clause
is a disjunction of literals l1 ∨ .. ∨ ln. If the connectors are
deleted, a clause is a set or a list of literals. For example
{a,¬b,¬c, d} or a,¬b,¬c, d represents a ∨ ¬b ∨ ¬c ∨ d. A
Horn clause is a clause with a maximum of one positive
literal. The clauses a and ¬b∨¬c∨ d and ¬b∨¬c are Horn
clauses. And a ∨ b is not one. For the rest we use Horn
clauses which are interesting for two reasons.

First using Horn clauses is a natural way to represent
knowledge. In fact the formula a∧b∧c∧d→ d is equivalent
to the Horn clause ¬a ∨ ¬b ∨ ¬c ∨ d. In the same time the
formula ¬(a∧b) (a and be cannot be True in the same time)
is equivalent to the negative Horn clause ¬a ∨ ¬b.

The second advantage of Horn clauses, fundamental here,
is that their use drastically reduces computational complex-
ity. Indeed, any logical formula can be rewritten as a set
of clauses, so complexity problems may arise in terms of
clauses. For propositional calculus the fundamental problem
is whether a set of clauses is consistent or not. This is the
problem SAT which is NP-complete. Otherwise all known
algorithms are exponential in the worst case. On the other
hand, if all clauses are Horn causes, algorithms can be linear
proportional to the size of the data. For genes pathways, the
use of Horn clauses provides practically usable algorithms .

Obviously Horn clauses can not represent all formulas.
In particular a ∨ b is not a Horn clause. But in practice,
this type of positive disjunctive information is quite rare.
We have not really found it for the gene networks that
we studied. If there are, most of the time you can use
renaming techniques to solve the problem. Finally, if nothing

works and it is impossible to use only Horn clauses, there
are techniques to limit the combinatorial explosion. For
example use strong backdoors, managing mutual exclusion
and cardinality, recognition of symmetries [4] [5]. Here we
are in the topic of practice solving NP-complete problems.

5.2 Language syntax
A rule is a triplet (< type >,< corps >,< weight >).
• <type> can take 2 values : hard or def . If the value is

hard the rule is an hard-rule and represents an Horn clause,
which is sure and non-revisable. If the value is def the rule
represents a normal default.
• <weight> weights the rule. These weights will make it

possible to choose between the different extensions proposed
by the algorithm.
• <corps> is a couple (L,R). The left element L is a set

of literals (l1, ..ln) perhaps empty. This set is identified to
l1 ∧ .. ∧ ln. The right element R is either a single literal or
empty. If the rule is hard, the couple (L,R) represents the
formula L→ R. If the rule is a default, the couple represents
a normal default L:R

R An increased attention is done to these
two cases.

Hard Rules
A hard rule (L,R) represents the formula L→ R where

L is a conjunction of literals and R a literal. How we decided
to restrict our algorithm to Horn clauses all literals of L are
positive. The literal R can be positive or negative. Here we
have two special cases. :

1) L is empty. Therefore the rule represents a positive
or negative unary clause. The unary clauses are elementary
sources of information. They did not contain variables,
they are ground clauses. This allows the decidability of the
algorithm. However the other clauses can contain variables,
leave the pure propositional calculus.

2) R is empty. For this empty-consequence, the rule L→
∅ is equivalent to ¬L equivalent to a negative clause. For
example, we can use such a clause to represent a mutual
exclusion "It is impossible to trigger and to block a protein
at the same time".

Default Rules
If the rule (L,R) is a default, then it represents a normal

default, the prerequisite is L, and R is the justification and
also in the same time the consequent. If the prerequisite is
empty, the default is without justification. By definition of
the defaults it is impossible to have an empty consequence.
Contrary of the hard rules the prerequiste R can contains
negative literals.

5.3 Cell Signaling Pathway Representation
We have worked on the bibliographic data of the response

to DSBs translated on a map of molecular interactions Figure
2 given by Pommier et al. [21]. A draw back of this map
is that it is very difficult to add a new interaction or protein
without full reassessment. In particular the management

of conflicts (for example simultaneous trigger and block
interaction) is very difficult. So we worked on the translation
of this map into our language. Initial results have translated
this map and tested some algorithms [14], [15].

Today, the map is translated by 206 rules in a very natural
way, without having to "tweak" the predicates or the rules.
The rules are expressed in the syntax above. These rules can
be hard rules or defaults. With our syntax it is very simple to
change the nature of the rules to test different configurations.
We can calculate the extensions in a very short time. We
never needed to use non Horn clauses. This reinforces our
opinion that it is possible to use a nonmonotonic logic and
also abduction and also time, on real applications.

5.4 Rule Examples
In the context of cell pathways, a predicate can be an

action on one or more protein. For example :
product(P), binding(P,Q,R), block-bindind(P,Q),
stimulation(P), phosphorylation(P)
dissociation, transcription-activating..

The predicate can also represent properties on protein con-
centration :
concentration(P,> 1000),
incrasse(P) and decrease(P)..

We give here some examples of rules written for our
example :

hard : stimulate(dsb, dna)
that is an elementary fact (a ground unary clause) who says
that dsb stimulates ADN.
def : stimulate(dsb, dna)→ product(altered-dna)

that is default rule "Generally when dsb stimulates DNA,
altered DNA is produced.
hard : product(p-atm-atm-bound)

→ ¬product(atm-atm)
that is a negative clause.
product(p-s15-p53-mdm2) ∧ product(p-chk1)
→ phosphorylation(p-chk1, p-s15-p53-mdm2)

Using a simple logic formalism can express much of what
biologists are needed to represent.

6. Algorithm and implantation.
The algorithm is written with SWI Prolog.
A rule :
(< type >,< corps >,< weight >)

is represented by a unary Prolog clause:
rule(< type >,< corps >,< weight >).
Therefore, the rules and the algorithm are in the same

Prolog program, which is very practical. Another advantage
to use Prolog is that the unification, the backtracking and
the lists management are well optimized. Of course Prolog
is interpreted, so it is slower than compiled languages (but
not that much). In the other hand Prolog programs are short

and simple, which saves a lot of time to test programs and
heuristics.

This algorithm calculates the extensions. As the clauses
are Horn clauses and as the defaults are normal, the research
tree is optimized. Particularly it is easy to calculate exten-
sions without duplication (we do not calculate several times
the same extension). For algorithms, we can also use a weak
form of negation as failure [6,28].

For initial tests, given by the map of the entire network
of Pommier [21], we can calculate all extensions in a short
time. For example with most of the rules by default, there
are two extensions. The calculation takes 500000 LIPS and
0.4 seconds of CPU time on MacBook. The temporal aspect
of gene networks has been tested for small examples, but the
scaling has not yet been done. For the abduction, it is almost
the same. The algorithm has been tested on small examples
and passing the scale remains to be done, but again that
should be possible. There are no theoretical problems.

1/16	

PML regulates p53 acetylation and premature senescence induced by oncogenic Ras.
The mechanism of p53 activation by oncogenes remains largely unknown

Fig. 5: DNA double strand break generated automatically by
using the most relevant extension.

7. Results
Basically, many researchers are trying to complete the

Signaling Map. In our approach the map is simplified which
is very useful for biological experiments. Introducing time
in defaults (the prerequisite considered at time t and the
conclusion at time t + 1), we obtained a simplified map of
Pommier. The most interesting result is the identification
of the molecule "X" from figure 1 as be PML which
regulates p53 acetylation and premature senescence induced
by oncogenic Ras.

Fig. 6: The Molecular Interaction Map and Rationale for
Chk2 build-up "manually" by Pommier [22] using biological
cause-effect graph.

At first we tested the notion of production fields and a con-
sequence finding algorithm for producing clauses [7], [19].
We tested also the SOLAR language that uses production
field and this algorithm. The results are mixed in the case of
"big" examples. We also looked at the ASP formalism [17].
Again the impression is mixed. Indeed ASP deal mainly with
normal defaults without prerequisites. Getting all the power
representation of defaults with prerequisite is possible by
rewriting techniques. But you lose a lot of clarity and also
efficiency.

By generating automatically the DNA double strand
breaks map (Figure 5) we noticed that the protein p73
is not directly involved in activation of apoptosis as in
the case of Pommier map (Figure 6). This result obtained
from incomplete knowledge constitutes a theory formation
framework for "Knowledge Discovery" using Default Logic.

8. Conclusion.
The A.I. challenge is to explain new phenomena using

automatic causal discovery. To do that, we introduced for-
malism able to infer signaling pathway by using defaults
approach and abductive reasoning. In this paper we define a
new approach for the build up automatic the Double Strand
Break Signaling Pathway. This map keeps only relevant
proteins and it is very close to the bioregulatory network
related to the histone γ-H2AX-ATM-Chk2-p53-Mdm2 path-
way defined by Pommier.

References
[1] N. Tran, C. Baral, Hypothesizing and reasoning about signaling

networks. Journal of Applied Logic, 7, 253-274,2007.
[2] CH. Bassing, FW Alt. H2AX may function as an anchor to hold broken

chromosomal DNA ends in close proximity. Cell Cycle 2004; 3:149-53.
[3] J. Bartkova, Z. Horejsi,et al., DNA damage response as a candidature

anticancer barrier in early human tumorigenesis. Nature 2005;
434:864-70.

[4] B. Benhamou, P. Siegel, Symmetry and Non-Monotonic Inference. Proc.
Symco’08, Sydney, Australia, Sept. 2008.

[5] B. Benhamou,T. Nabhani, P. Siegel, Reasoning by symmetry in
non-monotonic logics. Proc. 13th international workshop on Non-
Monotonic Reasoning NMR 2010, Toronto, Canada, mai 2010.

[6] B. Benhamou,L. Paris, P. Siegel, Dealing with Satisfiability and n-ary
CSPs in a logical framework. Journal of Automated Reasoning,Volume
48, Number3, Pages 391-417, 2012.

[7] J.M. Boi, E. Innocenti, A. Rauzy, P. Siegel, Production Fields : A New
approach to Deduction Problems and two Algorithms for Propositional
Calculus. Revue d’Intelligence Artificielle, 25(3) : 235-255, 1992.

[8] G. Bossu, P. Siegel. Saturation, Nonmonotonic Reasoning and the
Closed World Assumption. Artificial Intelligence, 25(1) :13-63, 1985.

[9] M.O. Cordier, P. Siegel, A Temporal Revision Model for Reasoning
about World Change. Proc KR 1992 p. 732-739, 1992.

[10] A. Doncescu, Y. Yamamoto, K. Inoue, Biological systems analysis
using Inductive Logic Programming. Proc. of the 21st International
Conference on Advanced Information Networking and Applications
(AINA 2007), pages 690-695, IEEE Computer Society, 2007.

[11] A. Doncescu, K. Inoue, Y. Yamamoto, Knowledge-based discovery in
systems biology using CF-induction. New Trends in Applied Artificial
Intelligence. Proc. 20th International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems
(IEA / AIE 2007), Lecture Notes in Artificial Intelligence, volume
4570, pages 395-404, Springer, 2007.

[12] A. Doncescu, J. Weisman, G. Richard, G. Roux, Characterization of
bio-chemical signals by inductive programming. Knowledge Based
Systems, 15 (1), 129-137, 2002.

[13] A. Doncescu, T. Le, P. Siegel, Default Logic for Diagnostic of Discrete
Time Systems. Proc. BWCCA-2013 - 8th International Conference on
Broadband and Wireless Computing, Communication and Applications
p. 488-493, Compiegne, France, Oct 2012

[14] A. Doncescu, P. Siegel, The Logic of Hypothesis Generation in Kinetic
Modeling of System Biology, Proc. 23rd IEEE International Conference
on Tools with Artificial Intelligence, p. 927-929, Boca Raton, Florida,
USA, Nov. 2012

[15] A. Doncescu, T. Le, P. Siegel, Utilization of Default Logic for
Analyzing a Metabolic System in Discrete Time. Proc.13th International
Conference on Computational Science and Its Applications, ICCSA
2013, p. 130-136, Ho Chi Min, Vietnam, June 2013.

[16] D. Kayser, F. Levy, Modeling symbolic causal reasoning, Intellecta
2004, 1, 38, pp 291-232, 2004

[17] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, H. Turner, Non-
monotonic causal theories. Artificial Intelligence, No. 1-2 vol.153
pp.49-104, 2004.

[18] K. Inoue,A. Doncescu, H. Nabeshima. Completing causal networks
by meta-level abduction. Machine Learning, 91 (2) :239-277, 2013.

[19] H. Nabeshima, K. Iwanuma, K. Inoue, O. Ray. SOLAR: An automated
deduction system for Finding consequence. AI Commun, 23 (2-3): 183-
203 (2010)

[20] R. Ostrowski, L. Paris, L. Sais, P. Siegel, Computing Horn Strong
Backdoor Sets Thanks to Local Search. ICTAI’06, p. 139-143, IEEE
Computer Society, Washington D.C., US, nov. 2006

[21] Pommier Y. and all. Targeting Chk2 Kinase : Molecular Interaction
Map and Therapetic Rationale. Current pharmacy design, 11(22):2855-
72, 2005.

[22] Pommier Y. and all. Chk2 Molecular Interaction Map and Rationale
for Chk2 Inhibitors Clin Cancer Res. 2006 May 1;12(9):2657-61..

[23] R. Reiter A Logic for Default Reasoning. Artif. Intell. 13(1-2): 81-132
(1980).

[24] T Sato, Y Kameya. PRISM: a language for symbolic-statistical
modeling. International Joint Conference on Artificial Intelligence 15,
1330-1339.

