

Lessons Learned: Building a Big Data Research and

Education Infrastructure

G. Hsieh, R. Sye, S. Vincent and W. Hendricks

Department of Computer Science, Norfolk State University, Norfolk, Virginia, USA

[ghsieh, wthendricks]@nsu.edu, [r.sye, s.m.vincent]@spartans.nsu.edu

Abstract – Big data is an emerging technology which has

been growing and evolving rapidly in related research,

development, and applications. It is used by major

corporations and government agencies to store, process,

and analyze huge volumes and variety of data. The open

source Apache Hadoop platform and related tools are

becoming the de facto industry standard for big data
solutions. It is a very powerful, flexible, efficient, and

feature-rich framework for reliable, scalable, distributed

computation using clusters of commodity hardware. On the

other hand, Hadoop and its ecosystem are very complex and

they change rapidly with new releases, features, packages,

and tools. They are also relatively new, and thus lack

adequate documentation and broad user experience base

that come with mature products. Hence, it is very

challenging to learn, install, configure, operate, and

manage Hadoop systems, especially for smaller

organizations and educational institutions without plenty of

resources. In this paper, we describe our experiences and
lessons learned in our efforts to build up a big data

infrastructure and knowledge base in our university during

the past nine months, using a variety of environments and

resources, along with an incremental and iterative learning

and implementation approach. In addition, we discuss the

plan being implemented to enhance the infrastructure to

provide enterprise-class capabilities by the end of 2014.

Keywords: big data, Hadoop, lab, learning.

1 Introduction

In a recent report by the National Institute of Standards

and Technology Big Data Public Working Group [1], “Big

Data refers to the inability of traditional data architectures to
efficiently handle new data sets.”

“Big Data consists of extensive datasets, primarily in

the characteristics of volume, velocity, and/or variety that

require a scalable architecture for efficient storage,

manipulation, and analysis.”

Big data is an emerging technology which has been

growing and evolving rapidly in related research,

development, and applications. It is used by major

corporations (e.g., Google, Facebook, and Amazon) and

government agencies (e.g., Department of Defense) to store,

process, and analyze huge volumes and variety of data to

help make better decisions, improve situational awareness,

grow customer base, and gain strategic advantage. In a

recent forecast published in Dec. 2013 [2], International

Data Corporation (IDC) “expects the Big Data technology

and services market to grow at a 27% compound annual

growth rate through 2017 to reach $32.4 billion."
The open source Apache Hadoop platform and related

tools [3] are becoming the de facto industry standard for big

data solutions. It is a very powerful, flexible, efficient, and

feature-rich framework for reliable, scalable, distributed

computation using clusters of commodity hardware. On the

other hand, Hadoop and its ecosystem are very complex and

they change rapidly with new releases, features, packages,

tools, and even modified API’s distributed in a very fast

pace. They are also relatively new, with a major portion in

beta or production releases within the past year or two.

Thus, they lack adequate documentation and broad user

experience base that come with mature products. Overall it

is very challenging to learn, install, configure, and operate
Hadoop systems, especially for smaller organizations and

educational institutions without plenty of resources.

Recognizing the importance of big data, a new

research effort was launched at Norfolk State University

(NSU) in August 2013, with Raymond Sye and Shontae

Vincent, both M.S. students in the Department of Computer

Science, conducting research in this subject area for their

M.S. Thesis/Project under the supervision of Dr. George

Hsieh, a professor in the department. The main objectives of

this coordinated research effort were:

(a) Learn the fundamentals of Hadoop architecture,
processing model, and key technological components.

(b) Install and configure small-scale Hadoop clusters in

the lab to gain hands-on knowledge, skills and

experiences.

(c) Apply the acquired knowledge and skills, and use the

established lab infrastructure to perform graph-based

computations.

1.1 Phased Approach

To accomplish these objectives, an incremental and

iterative approach was used to tackle the complexity and

challenges discussed earlier.

The main activities for this research effort can be

grouped into six major steps in a roughly sequential order:

(1) Get started with Hadoop using Hortonworks Sandbox

[4] and its interactive tutorials in a single-node virtual

machine configuration.
(2) Install and configure a multi-node Hadoop cluster in

virtual machines, using Hortonworks Data Platform

(HDP) [5] and Ambari cluster management tool [6] .
(3) Install and configure a five-node Hadoop cluster on

commodity hardware, using HDP and Ambari.
(4) Get started with Hadoop application development,

using Cloudera QuickStart VM [7], in a single-node

virtual machine configuration.

(5) Install and configure a seven-node Hadoop cluster on

commodity hardware, using Cloudera’s CDH [8] and

Cloudera Manager [9].
(6) Develop a Hadoop graph-based application, using the

Cloudera based, multi-node Hadoop cluster.
Note that we chose Hortonworks and Cloudera, which are

among the top commercial vendors that provide customized
Hadoop software distributions based on the common

Hadoop code managed by Apache Software Foundation.

These vendors also develop and supply additional tools and

capabilities beyond the common Hadoop code base, such as

Cloudera Manager, to simplify and automate the

installation, configuration, and administration of Hadoop

systems.

We also chose the open-source CentOS Linux [10] as

the base operating system for all of our Hadoop systems,

virtual and physical, primarily because of its ease of use,

enterprise-class features, and security enhancements.

1.2 Infrastructure Enhancement

In February 2014, Norfolk State University was

awarded an equipment grant entitled “Building a Cloud

Computing and Big Data Infrastructure for Cybersecurity

Research and Education” by the U.S. Army Research

Office. The funds from this grant will allow NSU to

significantly enhance its big data research and education
infrastructure by bringing in enterprise-class capabilities in

computing, storage, and networking.

The knowledge, skills, and experiences accumulated

through the past year are extremely useful for planning and

designing this new phase of infrastructure expansion. To

date, all necessary hardware, software, and facilities for the

planned expansion have been selected, designed, and

ordered. We plan to stand up the expanded infrastructure

around the fourth quarter of 2014.

1.3 Outline

 The remainder of the paper is organized as follows. In

Section 2 we provide an overview of the major steps used in

our phased approach. In Section 3 we describe our planned

expansion of the infrastructure in more detail. In Section 4

we conclude the paper with a summary and some how-to

recommendations for building up a big data research and

education infrastructure in a timely and cost-effective

manner without requiring significant upfront investments in
people and resources.

2 Initial Infrastructure

 In this section, we discuss the six steps used to build

up our initial big data research and education infrastructure

from both human expertise and system resources

perspectives, during the past nine months from September

2013 to May 2014.

2.1 Getting Started with Hadoop

Given the complexity and rapid changing pace of

Hadoop and its ecosystem, it was truly challenging to figure

out an effective way of getting started with Hadoop without

relying on professional services or staff.

After a relatively short period of investigation and

experimentation, we chose Hortonworks Sandbox as the

preferred platform for the “getting-started” training on

Hadoop for ourselves and five additional members who
joined the research team later.

According to Hortonworks, “Sandbox is a personal,

portable Hadoop environment that comes with a dozen

interactive Hadoop tutorials. Sandbox includes many of the

most exciting developments from the latest HDP

distribution, packaged up in a virtual environment that you

can get up and running in 15 minutes!” [4]

We started with Version 1.3 of Sandbox and then

migrated to Version 2.0 when the newer version became

available. Sandbox is provided as a self-contained virtual

machine for three different virtualization environments: (a)
Oracle VirtualBox; (b) VMware Fusion or Player; and (c)

Microsoft Hyber-V. We tried to use Sandbox with both

VirtualBox and VMware environments, and found that

Sandbox worked better with VirtualBox which is also the

recommended virtualization environment for Sandbox.

After downloading the Sandbox VM image, the next

step was to import the appliance into VirtualBox. This step

was very straightforward for people with basic knowledge

and experience in VirtualBox.

Once the Sandbox VM is started, a user can initiate a

Sandbox session by opening a web browser and entering a

pre-configured IP address (e.g., http://127.0.0.0:8888/).
Once connected to the web server running locally, a user

can learn Hadoop on Sandbox by following a dozen or more

hands-on tutorials.

We found Hortonworks Sandbox to be a very effective

learning environment for “getting-started” with Hadoop.

Sandbox’s integrated, interactive, and easy-to-use tutorial

environment enables a user to focus on the key concepts for

the tasks on hand, without having to learn the detailed

mechanics behind the scene immediately. It also provides a

rich set of video, graphical, and text based instructions along

with informative feedback during exercises and suggestions
for corrective actions when errors occurred.

Running Sandbox for learning Hadoop does not

require a great deal of hardware resources. It runs well on

commodity 64-bit systems with virtualization technology

hardware support and a minimum of 4 GB RAM. Note that

some Intel 64-bit processors do not provide virtualization

technology hardware support, and Sandbox will fail to run

on these systems.

2.2 Multi-Node HDP Cluster in VMs

After completing the tutorials provided by Sandbox

and having gained the basic knowledge about Hadoop, we

proceeded to learn and experiment with installing and

configuring a multi-node Hadoop cluster using Hortonworks

Data Platform running in multiple virtual machines on the

same physical host system. This step was designed to

leverage our familiarity with Hortonworks Sandbox gained

earlier while tackling the more challenging task of setting up

a multi-node Hadoop cluster.

We chose to install and configure the HDP 2.0 based
Hadoop cluster using the Apache Ambari Install Wizard

[11]. Ambari provides an easy-to-use graphical user

interface for users to deploy and operate a complete Hadoop

cluster, manage configuration changes, monitor services,

and create alerts for all the nodes in the cluster from a

central point, the Ambari server.

The first step in this implementation was to layout a

design for the Hadoop cluster including:

(a) The number of hosts: 6.

(b) The types of hosts - Ambari Server: 1; Masters: 2;

Slaves: 2; and Client: 1.
(c) FQDN and IP address for each host (without using

DNS).

The second step was to create six VMs each loaded with

CentOS 6.4 (or newer). Then configure each VM to set up

the appropriate hostname, IP address, host file, password-

less SSH, and other prerequisite software (e.g., JDK).

The third step was to install Apache Ambari on the

host designated as Ambari Server. Once the Ambari service

was started, the next step was to access the Ambari Install

Wizard through a web browser to complete the installation,

configuration and deployment of this Hadoop cluster.

We found the Apache Ambari to be a very easy-to-use
tool for installing, configuring, and deploying a Hadoop

cluster, as it automates many of the underlying tasks for the

user who only needs to supply high-level information such

as the hosts, their roles (manager, master, slave, or client),

and the services to be assigned to the hosts.

Ambari allocates these services to the appropriate

hosts for load balancing and reliability concerns, and then

proceeds to install, configure, start and test the appropriate

software on these hosts automatically.

For this exercise, we used commodity Windows based

PC’s with moderate processing power (e.g., 64-bit CPU
with 2 to 4 cores, and 8 to 16 GB RAM). Installation using

Ambari did run into capacity related problems from time to

time, especially when the Ambari server was downloading

and installing software to all targeted hosts simultaneously.

Some of the underlying tasks could fail and thus cause the

installation to fail. One side effect of this failure was that the

rpm database often got corrupted. Rebuilding the rpm

database often resolved this kind of problem and allowed

the installation to proceed (at least incrementally until the

next failure occurred).

2.3 Multi-Node HDP Cluster

The experiences gained in designing, installing,

configuring, and operating the six-node HDP based Hadoop

cluster in a virtual environment were very useful for our

next step of setting up a multi-node HDP cluster using

multiple physical hosts.

As shown in Table 1, four commodity systems were

used for this Hadoop cluster based on HDP and managed by

Apache Ambari.

Table 1. Multi-node HDP cluster

Hosts Hostname/
local IP

CPU RAM Disk

Ambari
Server

HDPcs2AMBARI
199.111.112.169

Intel Xeon
(4C) 3GHz

8 GB 500
GB

Master
Node

HDPcs2MASTER
199.111.112.171

Intel Core 2
Duo 3GHz

4 GB 250
GB

Data

Node 1

HDPcs2DN1

199.111.112.180

Intel Core 2

Duo 3GHz

4 GB 250

GB

Data
Node 2

HDPcs2DN2
199.111.112.189

Intel Xeon
(4C) 3.2GHz

12 GB 900
GB

Monitoring and managing a large scale distributed

Hadoop cluster is a non-trivial task. To help the users deal

with the complexity, Ambari collects a wide range of

information from the nodes and services and presents them

in an easy-to-use dashboard, as shown in Figure 1. Ambari

also allows users to perform basic management tasks such

as starting and stopping services, adding hosts to a cluster,
and updating service configuration.

Figure 1. Ambari Dashboard display

2.4 Cloudera QuickStart VM

Cloudera has been considered the market leader among

pure play Hadoop vendors that provide Hadoop related

software and services. It also builds proprietary products on

top of open source Hadoop code with an “open source plus

proprietary model”.

On such product is Cloudera Manager [9] which is

included in Cloudera Express and Cloudera Enterprise. With

Cloudera Express, which is a free download, users can

easily deploy, manage, monitor and perform diagnostics on

Hadoop clusters. Cloudera Enterprise, which requires an

annual subscription fee, includes all of these capabilities
plus advanced management features and support that are

critical for operating Hadoop and other processing engines

and governance tools in enterprise environments.

Given Cloudera’s market leadership position and the

potential benefits of its proprietary products, we simply did

not want to ignore it.

The easiest way to get started with Cloudera’s products

was to use its QuickStart VM [12] which contains a single-

node Apache Hadoop cluster including Cloudera Manager,

example data, queries, and scripts. The VM is available in

VMware, VirtualBox and KVM flavors, and all require a 64

bit host OS. This VM runs CentOS 6.2. We used primarily
the CDH 4.4 and CDH 4.6 versions of the QuickStart VM.

Cloudera QuickStart VM did not provide an integrated

tutorial environment or a collection of tutorials that were as

easy to use as those provided by Hortonworks Sandbox. On

the other hand, it provided all the commonly used Hadoop

platform and tools. Thus, users did not need to download,

install, and configure these packages individually.

In addition, Cloudera QuickStart VM included many

of the commonly used software development tools (e.g.,

Eclipse and JDK) which made it a more suitable platform

for developing Hadoop applications than Hortonworks
Sandbox.

Getting started with developing Hadoop applications,

beyond the simple “Hello World” type of tutorial app, can

be quite challenging. Many tasks require executing Linux

shell scripts with long lists of command line arguments. In

addition, the binaries, shell scripts, and configuration files

can be in different locations, depending on how the Hadoop

system is installed and configured and which Hadoop

distribution is used. Furthermore, the user accounts can be

set up differently. All these factors make it challenging to

get started with Hadoop application development, as the

user needs to first gain a good understanding of the lay of
the land so (s)he can navigate around these issues. The user

also needs to have a sufficient level of proficiency in

working with Linux OS and prior software development

experiences in general.

To gain the basic knowledge and skills in Hadoop

application development, we used primarily two books as

resources. The first book entitled “Hadoop Beginner’s

Guide” [13], by Gary Turkington and published in February

2013, provided a very useful introduction to Hadoop

application development with clear description and good

example code. It was also not too difficult to get started with
running the example code, as we used the Cloudera

QuickStart VM as the platform which already contained the

vast majority of the Hadoop software and prerequisite

software development tools. Furthermore, the example code,

although written with the older versions of Hadoop software

and tools at the time of publication, worked well with the

newer versions bundled with Cloudera QuickStart VM.

Another book we used for learning Hadoop application

development was entitled “Hadoop in Practice” [14] by

Alex Holmes and published in October 2012. The Appendix

A contained background information on all the related
Hadoop technologies in the book. Also included were

instructions on how to build, install, and configure related

projects.

To set up an environment as specified in the appendix,

we started with creating a virtual machine loaded with

CentOS 6.4 (Software Development Workstation option).

We next installed the Hadoop base using CDH 3.0

distribution and configure our Hadoop system for the

pseudo-distributed mode. We then installed and configured

the remaining nineteen packages manually and individually.

These packages included MySQL, Hive, Pig, Flume, HBase,

Sqoop, Oozie, R, etc.
It was very challenging to go through all the steps to

install and configure this target Hadoop system using

primarily manual procedures and separate packages one at a

time. Many of these challenges could be alleviated by using

cluster provisioning and management tools such as Apache

Ambari and Cloudera Manager.

Nonetheless, going through this process helped us to

gain much deeper understanding and appreciation of the

interdependencies and intricacies involved in getting all

these packages installed and configured correctly so they

can function together. This kind of knowledge and skills are
important for troubleshooting problems and customizing

installations, configurations, and operations, even with the

cluster management tools available. Some of the important

lessons learned include:

(a) Installing a Linux OS option pre-packaged with

software development tools can save a lot of time and

effort, as numerous extra packages are generally

required to be downloaded, installed, configured, and

even built on demand.

(b) The installed directories for the same software could

be different, depending on the installation procedures

and instructions. For example, installing from tarballs
versus installing via rpm/yum could install the same

software in different directories. So it is important to

recognize this potential difference and make plans or

adjustments accordingly.

(c) Make sure all the required environmental variables

(e.g., PATH), and profiles are set up correctly. It is

useful to have them set up consistently across user

accounts and across hosts. Some Hadoop packages

require specific global environmental variables to be

defined in their specific configuration files.

(d) There could be many hard and symbolic (soft) links
in the file system allowing multiple filenames (or

directories) to be associated with a single file (or

directory). It is important to understand these links to

make sure that the correct files (or directories) are

updated and links are not broken accidentally.

(e) Similarly, it is important to understand the Linux

alternatives system which uses symbolic links

extensively to manage the alternatives for a given

generic name. For example, several different Java

packages and JDK’s may be installed on the same

system. Activating the specific packages may require
rearranging the alternatives (in their preferences).

2.5 Multi-Node CDH Cluster

The next step was to set up a multi-node Hadoop

cluster using Cloudera distribution while taking advantage

of the capabilities provided by Cloudera Manager.

For this exercise, we installed and configured a seven-

node cluster, one as the Manager, two as masters, and four
as slaves. The Manager node has two Ethernet connections,

one to Internet and the other to an internal network for the

Hadoop cluster. All remaining nodes are connected only to

the internal network physically. The Manager node also

performs IP forwarding for the remaining nodes so they can

access the Internet indirectly through the Manager node.

Figure 2 shows the connectivity among the nodes.

Again, the nodes were implemented using commodity

machines all running CentOS 6.4 (Software Development

Workstation option). The Cloudera software deployed was

based on Cloudera Express 5.0.0-beta-2 release which
contained Hadoop Version 2.2.0. Also installed was Hue

Version 3.5.0 which is an open-source Web interface that

supports Hadoop and its ecosystem. Hue provides a Web

application interface for Apache Hadoop. It supports a file

browser, JobTracker interface, Hive, Pig, Oozie, HBase, and

more. Table 2 shows the hardware configurations for the

Cloudera based Hadoop cluster.

Figure 2. Multi-node Cloudera cluster

Table 2. Hardware configuration for CDH cluster

Hosts Hostname/
local IP

CPU RAM Disk

Manager CDHcs1mgr
192.168.48.1

Intel Xeon
(4C) 3GHz

8 GB 500
GB

Master1

CDHcs1MN1
192.168.48.10

Intel Xeon
(4C) 2.5GHz

8 GB 150
GB

Master2

CDHcs1MN1

192.168.48.2

Intel Xeon

(4C) 2.5GHz

8 GB 150

GB

DataNode1 CDHcs1DN1
192.168.48.11

Intel Xeon
(4C) 2.5GHz

8 GB 150
GB

DataNode2 CDHcs1DN2
192.168.48.12

Intel Xeon
(4C) 3.2GHz

8 GB 150
GB

DataNode3 CDHcs1DN3
192.168.48.13

Intel Core 2
Duo 3GHz

4 GB 250
GB

DataNode4 CDHcs1DN4

192.168.48.14

Intel Core 2

Duo 3GHz

4 GB 250

GB

We chose to use the Cloudera Express 5.0.0-beta-2

release, because a decision had been made around that time

to deploy Cloudera distribution for the new equipment being
acquired for our infrastructure enhancement effort. Thus, we

wanted to become familiar with the Cloudera 5.0 release,

even when it was still in beta stage, so we would be

prepared to work with it when the new equipment is

deployed. As a result, we had to work with the beta version

of the Cloudera Manager Installation Guide which did not

contain as much information as the most recent Version

(5.0.1) of the guide [15] published on May 28, 2014.

Although Cloudera Manager provided an automated

installation option, “This path is recommended for

demonstration and proof of concept deployments, but is not

recommended for production deployments because it’s not
intended to scale and may require database migration as

your cluster grows.” [15].

Based on this recommendation, we chose to follow the

Installation Path B – Manual Installation Using Cloudera

Manager Packages. This path required a user to first

manually install and configure a production database for the

Cloudera Manager Server and Hive Metastore. Next, the

user needed to manually install the Oracle JDK and

Cloudera Manager Server packages on the Cloudera

Manager Server host. To install Oracle JDK, Cloudera

Manager Agent, CDH, and managed service software on
cluster hosts, we used Cloudera Manager to automate

installation.

Table 3 shows the roles assigned to the CDH cluster

hosts to implement the selected features while balancing the

computing, storage, and networking resources needs. Figure

3 shows the status display of the deployed cluster by

Cloudera Manager.

Table 3. Roles assigned to CDH cluster hosts

Hostname Roles

CDHcs1mgr

Cloudera Activity Monitor; Cloudera Alert
Publisher; Cloudera Event Server; Cloudera Host
Monitor; Cloudera Reports Manager (enterprise
version); Cloudera Service Monitor. Hive
Gateway; Hive Metastore. Hue Server.

CDHcs1MN1

HBase Master. HDFS Httpfs; HDFS Namenode-
Active. Hive Gateway; Hive HiveServer2.
Spark Master. Zookeeper Server – follower.

CDHcs1MN2 HBase Region Server. HDFS Datanode; HDFS
NFSGateway; HDFS NameNode – Secondary.
Solr Server. Spark Worker.

CDHcs1DN1 HBase Region Server. HDFS Datanode. HIVE
Gateway. Oozie Server. YARN Job History;
YARN Node Manager; YARN Resource
Manager.

CDHcs1DN2 HBase Region Server. HDFS Datanode. Hive
Metastore; Hive HiveServer2; Hive WebCat.
YARN Node Manager.

CDHcs1DN3 Flume Agent. HBase REST server. HDFS
Datanode. YARN Node Manager. Zookeeper

Server – leader.

CDHcs1DN4 HBase Thrift Server. HDFS Datanode. YARN
Node Manager. Zookeeper Server – follower.

Figure 3. Cloudera Manager status display

Installing and configuring this Hadoop cluster using the

semi-automated approach was quite challenging. Some of

the important lessons learned include:

(a) Permissions. Many of the Hadoop packages require
access to shared resources. The beta version of the

installation guide, as far as we knew, did not include

detailed instructions on setting up the appropriate

permissions for various Hadoop components so they

could work together. Hence, we needed to figure out

how to grant permissions, primarily through group

memberships and group permissions, to various

Hadoop software and resources (e.g., mapred must be

a member of the hadoop group as well). This issue

has been addressed by the latest version of the

installation guide.

(b) User accounts and groups. Similarly, the latest guide
also provided detailed instructions on the user

accounts and groups that Cloudera Manager and

CDH used to complete their tasks. This standardized

setup should be followed to make sure the user

accounts, groups, and permissions are consistent

across all hosts. This also makes it easier to ensure

that the environmental variables and profiles are set

up consistently across hosts.

(c) Interdependencies. Although it might not be stated in

the documentation, the order in which the various

packages are installed may make a difference in the
ease of configuring these packages that have

interdependencies. For example, our experience

indicated that it was better to install and configure the

ZooKeeper before installing Hive. Attempting to

install ZooKeeper after Hive was installed could

cause issues with the HiveServer service.

(d) Performance. Although Hadoop has a very flexible

distributed architecture, sometimes it is better to run

closely related services/tasks on the same physical

host to reduce the latency and overhead. This was

especially important during the installation phase and

using hardware with limited resources.

(e) It is critical to keep a close watch on disk storage and

memory use. The available disk space could be

depleted when a large volume of log files were
generated. The available memory could also be

depleted after a period of operation. Running low on

disk space and memory usually caused systems to

reboot or become nonresponsive.

(f) Files in some directories could be deleted by

Cloudera Manager after making configuration

changes through Manager. Make sure important files

are not kept in these directories or they are backed up

somewhere else.

2.6 Hadoop App for Graph Processing

Graph-based processing was one of the first categories

of Hadoop applications in which we were interested. So we

worked with Apache Giraph (v1.0.0) which “is an iterative

graph processing system built for high scalability. For

example, it is currently used at Facebook to analyze the

social graph formed by users and their connections.” [16]

Again, we used a phased approach in working with

Giraph. First, we followed the Giraph Quick Start guide [17]
to install and run Giraph in a single-node, pseudo-distributed

Hadoop cluster on a VM loaded with Ubuntu Server 12.04.2

(64-bit) OS. We verified that the installation was operational

by running the “SimpleShortestPathsComputation” example

job and obtaining the desired output successfully.

Next we proceeded to install Giraph on the multi-node

Cloudera based cluster described in the previous section. For

this exercise, we used the information contained in another

resource [18] to help install Giraph on CentOS which is the

base OS for our Cloudera based cluster. Again, we ran the

“SimpleShortestPathsComputation” example job to verify

that the Giraph installation on this cluster was operational.
Our experience indicated that the node on which

Giraph is executed should also have YARN (MR2) Node

Manager service, HDFS DataNode service and ZooKeeper

service running on the same node for better performance and

increased level of robustness.

Without accessibility to Zookeeper, we experienced

problems with running example Giraph jobs, as multiple

failures could occur without clear error messaging. Also,

other execution errors occurred with Giraph when the job

was not run on a node with YARN Node Manager or the

YARN node is not specified. Giraph and YARN work
closely together. With large Giraph calculations, the

connectivity to a remote Mapreduce service could become

disconnected and cause the Giraph job to fail.

Running Giraph job was a bit of a challenge. As stated

before, denoting the nodes that run the ZooKeeper service

can help prevent failures. Giraph does come with example

code that provides a wide range of functionality. For

example, “SimpleShortestPath” works well with a properly

formed file with adjacency lists. However, a user needs to

make sure that no extraneous white spaces or blank lines are

included in the input text file. Otherwise, this example job

could fail. However, the “PageRankBenchmark” example

job did not actually produce any output, although it could be

completed successfully.

3 Infrastructure Enhancement Planned

As mentioned earlier, an enhancement to the current

infrastructure is planned for completion by 4Q2014. A new

“production” system with five master nodes and twelve data
nodes will be installed in a server room, while another new

“integration and testing” system with five master and data

nodes will be deployed in a research lab. The current

systems will remain in the research lab and used primarily

for learning, development, and development testing

purposes.

The new equipment will add approximately six

hundred Intel Xeon 64-bit CPU cores, 350 terabytes of disk

storage, 3 terabytes of RAM, and three high-performance

L2/L3 Ethernet switches supporting 40GbE connectivity.

4 Summary

This paper presented our lessons learned in building a

big data research and education infrastructure. As big data
continues to gain rapid growth in research, development, and

deployment, it is important and beneficial for organizations

in both public and private sectors to leverage big data to gain

insights and improve their operation. It is also important and

beneficial for educational institutions to engage in big data

related research, education, and workforce development to

help advance the state of the art of this critically important

technology, and address the talent shortage problem forecast

for many years to come.

However, due to the complexity, immaturity, and fast

pace in evolving of big data platforms and tools, it is very

challenging to build up a big data research and education
infrastructure in both human and system resources,

especially for small to medium businesses, organizations,

and educational institutions without plenty of resources.

We took an incremental and iterative approach to build

a small size infrastructure at a university with about 6,000

students in enrollment, without requiring investments in staff

and hardware/software resources. The knowledge and skills

were acquired through student research projects required for

their degrees. This approach provided additional benefits to

the students’ professional development. The hardware used

for this effort was all commodity hardware already available
in the institution. The software used was all open source or

free.

Even so, it was very challenging to get it done. Good

planning, perseverance, and dedicated personnel can prevail.

5 Acknowledgement

 This research was supported in part by U.S. Army

Research Office, under grant numbers W911NF-12-1-0081

and W911NF-14-1-0045, and U.S. Department of Energy,

under grant number DE-FG52-09NA29516/A000.

6 References

[1] NIST Big Data Public Working Group, "DRAFT NIST Big
Data Interoperability Framework: Volume 1, Definitions (Draft
Version 1)," April 23, 2014.

[2] International Data Corporation, "Worldwide Big Data
Technology and Services 2013–2017 Forecast," Dec 2013.

[3] "Apache Hadoop," [Online]. Available:
http://hadoop.apache.org/. [Accessed 31 May 2014].

[4] "Hortonworks Sandbox," [Online]. Available:
http://hortonworks.com/products/hortonworks-sandbox/.
[Accessed 31 May 2014].

[5] "Hortonworks Data Platform," [Online]. Available:

http://hortonworks.com/hdp/. [Accessed 31 May 2014].

[6] "Apache Ambari," Hortonworks, [Online]. Available:
http://hortonworks.com/hadoop/ambari/. [Accessed 31 May
2014].

[7] "Cloudera QuickStart VM," [Online]. Available:
http://www.cloudera.com/content/cloudera-content/cloudera-
docs/DemoVMs/Cloudera-QuickStart-
VM/cloudera_quickstart_vm.html. [Accessed 31 May 2014].

[8] "Cloudera CDH," [Online]. Available:
http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh.html. [Accessed 31 May 2014].

[9] "Cloudera Manager," [Online]. Available:
http://www.cloudera.com/content/cloudera/en/products-and-
services/cloudera-enterprise/cloudera-manager.html. [Accessed
31 May 2014].

[10] "CentOS," [Online]. Available: http://www.centos.org/.
[Accessed 31 May 2014].

[11] "Hortonworks Data Platform: Installing Hadoop Using Apache
Ambari," Hortonworks, 2013.

[12] "Cloudera QuickStart VM," [Online]. Available:
http://www.cloudera.com/content/support/en/downloads/downl

oad-components/download-
products.html?productID=F6mO278Rvo. [Accessed 31 May
2014].

[13] G. Turkington, Hadoop Beginner's Guide, Birmingham: Packt

Publishing, 22 Feb 2013, p. 398.

[14] A. Holmes, Hadoop in Practice, Shelter Island, NJ: Manning
Publications Co., October 2012, p. 536.

[15] Cloudera, "Cloudera Manager Installation Guide (Version
5.0.1)," Cloudera, 2014.

[16] "Apache Giraph," Apache Software Foundation, [Online].
Available: https://giraph.apache.org/. [Accessed 4 June 2014].

[17] "Apache Giraph Quick Start," Apache Software Foundation,

[Online]. Available: http://giraph.apache.org/quick_start.html.
[Accessed 4 June 2014].

[18] "Install giraph in hadoop node," [Online]. Available:
http://www.sbarjatiya.com/notes_wiki/index.php/Install_giraph

_in_hadoop_node. [Accessed 4 June 2014].

