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Abstract – To ensure success of big data analytics, 

effective data mining methods are essential; and in mining 

big data two of the most important problems are sampling 

and feature selection.  Proper sampling combined with 

good feature selection can contribute to significant 

reductions of the datasets while obtaining satisfactory 

results in model building or knowledge discovery.   The 

critical sampling size problem concerns whether, for a 

given dataset, there is a minimum number of data points 

that must be included in any sampling for a learning 

machine to achieve satisfactory performance. In this paper, 

the critical sampling problem is analyzed and shown to be 

intractablein fact, its theoretical formulation and proof of 

intractability immediately follow that of the previously 

studied critical feature dimension problem. Next, heuristic 

methods for finding critical sampling of datasets are 

proposed, as it is expected that heuristic methods will be 

practically useful for sampling in big data analytic tasks . 
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1 Introduction 

  One of the many challenges of big data analytics is how 

to reduce the size of datasets without losing useful 

information contained therein.  Many datasets that have been 

or are being constructed for intended data mining purposes, 

without sufficient prior knowledge about what is to be 

specifically explored or derived from the data and how to do 

it, likely have included measurable attributes that are actually 

insignificant or irrelevant, which results in large numbers of 

useless attributes (or features) that can be deleted to greatly 

reduce the size of datasets without any negative 

consequences in data analytics or data mining [1].  Likewise, 

many of these massive datasets conceivably already contain 

much more data points (or samples, vectors, patterns, 

observations, etc.) than necessary for knowledge discovery 

(model building, hypothesis validation, etc.), leading to the 

questions of what sampling size is sufficient (in, say, 

machine learning tasks) and how to generate the sample (or 

training dataset) to ensure successful data analytic results. 

 For dimension reduction, effective feature ranking and 

selection algorithms [2] can be utilized to reduce the size of 

the dataset by eliminating features that are insignificant, 

irrelevant, or useless.  The authors have recently studied the 

feature dimension problem in general settings by consider 

the question: Given a dataset with p features, is there a 

Critical Feature Dimension (or the smallest number of 

features that are necessary) that is required for, say, a 

particular data mining or machine learning process, to satisfy 

a minimal performance threshold?  That is, any machine 

learning, statistical analysis, or data mining, etc. tasks 

performed on the dataset must include at least a number of 

features no less than the critical feature dimension  or it 

would not be possible to obtain acceptable results. This is a 

useful question to investigate since feature selection 

methods generally provide no guidance on the number of 

features to include for a particular task; moreover, for many 

poorly understood complex problems to which big data 

brings hope of scientific breakthrough there is little prior 

knowledge which may be otherwise relied upon in 

determining this number (of critical feature dimension). 

 Similarly, the question about sampling size can be 

raised: Given a dataset with n points, is there a Critical 

Sampling Size (or the smallest number of data points) that is 

required for any particular data mining (or machine learning, 

etc.) process to satisfy a minimal performance requirement?  

This is also an important and practical question to consider 

since various sampling techniques provide no clue with 

regard to the critical sampling size for any specific dataset.  

When dealing with big data where the number of data points 

(the value of n) is huge, the question becomes more relevant. 

 In previous papers by these authors, the critical feature 

dimension was shown to be intractable; and yet a simple 

heuristic method based on feature algorithms was 

demonstrated to be able to find approximate critical 

dimensions for many datasets of various sizes, and therefore 

provides a practically useful solution to the problem. 

 This position paper shows that the critical sampling size 

problem, formulated in general, has the same complexity as 

the critical feature dimension problem.  In fact, the same 

proof of the complexity of the critical feature dimension 

problem carries over to the critical sampling size problem. 

 In section 2, the critical sampling size problem is 

formulated in general terms and shown to be intractable.  In 



section 3, a simple ad-hoc method is proposed as a first 

attempt to approximately solve the problem, and some 

discussions conclude the paper. 

2 Critical Sampling Size 

 Assume the dataset is represented as the typical n by p 

matrix Dn,p with n objects (or data points, objects, patterns, 

etc.) and p features (or measurements, attributes, etc.)  The 

intuitive concept of the critical sampling size of a dataset 

with n points is that there may exist, with respect to a 

specific “machine” M and a given performance threshold T, a 

unique number  ≤ n such that the performance of M exceeds 

T when some suitable sample of  data points is used; 

further, the performance of M is always below T when any 

sample with less than  data points is used. Thus,  is the 

critical (or absolute minimal) number of data points in a 

sample that is required to ensure that the performance of M 

meets the given threshold T. 

 Formally, for dataset Dn with n points (the number of 

features in the dataset, p, is considered fixed here and 

therefore dropped as a subscript of the data matrix Dn,p),   

(an integer between 1 and n) is called the T-Critical 

Sampling Size of (Dn, M) if the following two conditions 

hold: 

1. There exists D, a -point sampling of Dn (i.e., D 

contains of the n vectors in Dn) which lets M to achieve a 

performance of at least T, i.e., 

(D  Dn) [PM(D)  T], where PM(D) denotes the 

performance of M on dataset D. 

2. For all j < , a j-point sampling of Dn fails to let M achieve  

performance of at least T, i.e., 

(∀Dj  Dn) [j <   PM(Dj) < T] 

 Note that in the above, the specific meaning of PM(D), 

the performance of machine (or algorithm) M on sample D, 

is left to be defined by the user to reflect a consistent setup 

of the data analytic (e.g. data mining) task and an associated 

performance measure.  For examples, the setup may be to 

train the machine M with D  and define PM(D) as the overall 

testing accuracy of M on a fixed test set distinct from D, or 

the setup may be to use D as training set and use Dn  D as 

testing set. The value of threshold T, which is to be specified 

by the user as well, may represent a reasonable performance 

requirement or expectation. 

 To determine whether a critical sampling size exists for 

a Dn and M combination is a very difficult problem. 

Precisely, the problem of deciding, given Dn, T, k (1 < k ≤ n), 

and a fixed M, whether k is the T-critical sampling size of 

(Dn, M) belongs to the class DP = { L1 ∩ L2 | L1  NP, L2  

coNP} [3], where it is assumed that the given machine M 

runs in polynomial time (in n). In fact, it is shown in the 

following that the problem is DP-hard.  

 Since NP and coNP are subclasses of DP (Note that DP 

is not the same as NP ∩ coNP), the DP-hardness of the 

Critical Sampling Size Problem (CSSP) indicates that it is 

both NP-hard and coNP-hard, and thus most likely to be 

intractable [3,4]. 

2.1 Proof CSSP is Hard 

 CSSP: The problem of deciding if a given k is the T-

critical sampling size of a given dataset Dn belongs to the 

class DP under the assumption that, for any Di Dn, whether 

PM(Di)  T  can be decided in polynomial (in n) time, i.e., the 

machine M can “process” Di  and has its performance 

measured against T in polynomial time. Otherwise, the 

problem may belong to some larger complexity class, e.g., 

p
2.  Note here that (NP ∪ coNP)    DP     p

2 in the 

polynomial hierarchy of complexity classes [4].  

 To prove that the CSSP is a DP-hard problem, we take a 

known DP-complete problem and transform it into the CSSP. 

We begin by considering the maximal independent set 

problem.  In graph theory, a Maximal Independent Set (MIS) 

is an independent set that is not a subset of any other 

independent set; a graph may have multiple MIS’s. 

 EXACT-MIS Problem (EMIS) – Given a graph with n 

nodes, and k ≤ n, decide if there is a maximal independent set 

of size exactly k in the graph is a problem which is DP-

complete [3].  Now we describe how to transform the EMIS 

problem to the CSSP. 

 Given an instance of EMIS (a graph G with n nodes, and 

integer k ≤ n), construct an instance of the CSSP such that 

the answer to the given instance of EMIS is Yes iff the 

answer to the constructed instance of CSSP is Yes, as 

follows: let dataset Dn represent the given graph G with n 

nodes (e.g., Dn is made to contain n data points, each with n 

features, representing the symmetric adjacency matrix of G); 

let T be the value “T“ from the binary range {T, F}; let  = k  

be the value in the given instance of EMIS; and let M  be an 

algorithm that decides if the dataset represents a MIS of size 

exactly , if yes PM = “T“, otherwise PM = “F“; then a given 

instance of the DP-complete EMIS problem is transformed 

into an instance of the CSSP.  

2.2 Explanation of Proof 

 Consider the 5-node graph given below, with its 

adjacency matrix: 

 5      1      4  
  
 2              3 

 

 

This represents a graph with exactly one MIS of size 3, which 

is {1,4,5}, correspond to the shaded rows. 

Example 1: k=3. Threshold T = “T“ from the binary range {T, 

F} to mean true,  = 3, and an exact MIS of size 3 exists in 

D5 as highlighted in the adjacency matrix of G above. So, 

0 1 1 0 0 

1 0 1 0 1 

1 1 0 1 0 

0 0 1 0 0 

0 1 0 0 0 



algorithm M that decides if the dataset D5 contains a MIS of 

size exactly 3 (or M “verifies” that some D3  corresponds to 

a MIS of size 3) succeeds; i.e., PM(D3) = “T“ for some D3. 

Since the solution to the instance of EMIS problem is yes, 

solution to the constructed instance of the CSSP is also yes, 

as required for a correct transformation. 

Example 2: k=4. The constructed instance of CSSP has T = 

“T“ and  = 4.  From D5 it can be seen that there does not 

exist any independent sets of size 4, so no exact MIS of size 

4 exists.  Let M be an algorithm that decides if the dataset D5 

represents a graph containing a maximal independent set of 

size 4. In this instance M fails to find an exact MIS of size 4 

and thus PM = “F“, i.e., PM(D4) = “F“ for all possible D4.  So 

the solution to the constructed instance of CSSP is no, as is 

the solution to the given instance of EMIS. 

Example 3: k=2. The constructed instance of CSSP has T = 

“T“ and  = 2. Independent sets of size 2 exist but they are 

not MIS’s, so algorithm M that decides that some D2  D5 

correspond to an MIS of size exactly 2 fails. The solution to 

the constructed instance of CSSP is no, as is the solution to 

the given instance of EMIS, as required. 

The DP-hardness of the Critical Sampling Size Problem 

indicates that it is both NP-hard and coNP-hard; therefore, 

it’s most likely to be intractable (that is, unless P = NP). 

In mining a big dataset Dn,p the data analyst is naturally 

interested in obtaining D, (a -point sampling with  

selected features, and hopefully  << n and  << p) to 

achieve high accuracy in model building or knowledge 

extraction. From the above analysis of the CFDP and CSSP, 

this is clearly a highly intractable problem and therefore calls 

for heuristic solutions. 

 

3 Heuristic Methods for CSSP 

 The authors of this paper have previously studied heuristic 

methods for solving the critical feature dimension problem 

due to its theoretical intractability, heuristic methods for 

approximate solutions are clearly called for [5]. Among the 

findings of the large number of experiments on datasets: 

 Simple methods (such as eliminating one feature at a time) 

produced successful results in finding a critical number of 

features that is necessary to ensure performance of M 

exceeds a threshold.  The heuristic method used in [5] 

works in conjunction with a feature ranking algorithm and 

purports to identify the critical features. 

 The critical feature dimension, as determined 

experimentally by the heuristic method, is in fact different 

frombut hopefully close tothe formally defined critical 

feature dimension. 

 For datasets with large numbers of features, their critical 

feature dimension may be much smaller than the total 

number of features, as shown in Figure 1. 

 Many datasets, of various sizes, exhibit the phenomenon of 

having a critical feature dimension. 

 If the critical feature dimension indeed exists for a dataset, 

then the performance of M is largely preserved when only 

the critical features are used, as shown in Figure 2. 

 The feature ranking algorithm employed in the heuristic 

method has more significant influence (than the learning 

machine) on the value of the critical feature dimension. 

 

Figure 1. Reduction in feature size at the critical dimension 

 

Figure 2. Accuracies with all features, and with critical 

                 features selected by the heuristic method 

 As the simple heuristic method is computationally 

feasible and appears to be quite sufficient (for many of the 

datasets studied in the experiments) in finding the critical 

feature dimension despite the problem’s intractability, hope 

is raised that heuristic methods can be designed to 

approximately solve the critical sampling size problem 

satisfactorily as well. Proposed in the following as our 

position on the CSSP problem is such a heuristic method: 

1. Apply a clustering algorithm such as k-means to partition 

Dn into k clusters. 

2. Select, say randomly, m points from each cluster to form 

a sampling D with mk points. 

3. Apply M (learning machine, analytic algorithm, etc.) on 

the sample, then measure performance PM(D). 

4. If PM(D)  T, then D is a critical sampling, and its size  

is the critical sampling size for (Dn, M).  Otherwise 

enlarge D by randomly select another m points from each 

cluster, and repeat until a critical sampling is found, or 

the whole Dn is exhausted and procedure fails to find. 

 The values of the parameters k and m are to be decided in 

consideration of the size and nature of the dataset, the 

specific data analytic problem or task being undertaken, and 

the amount of resource available. As usual in all data analytic 

problems, prior knowledge and domain expertise are always 



helpful in designing the experimental setup. Likewise, 

whether the random sampling is done with or without 

replacement is a decision to be made according to the dataset 

and the problem.  Also, experiments may need be performed 

repeatedly and adaptively (with regard to k and m) to obtain 

good results. 

 The authors are conducting experiments on many large 

datasets to observe if the “critical sampling size” indeed 

exists, and if so whether it is much smaller than the size of 

the whole dataset. 

 

4 Conclusions 

The issue of data mining and association rule extraction, 

etc. from small samples of large datasets have been studied 

by many authors before [6,7,8,9], and formal sampling 

techniques have been studied extensively in e.g. [10].  

However, the problem of the critical sampling size of a 

dataset has not been studied previously. Not surprisingly, a 

complexity analysis of the problem, in its most general 

formulation, shows that it is highly intractable (in the sense 

of being both NP-hard and coNP-hard), thus defying any 

attempt for exact solutions and calling for heuristic methods 

for approximation. 

Encouraged by the success of simple heuristic methods in 

finding critical feature dimensions of datasets with large 

numbers of features [11], a heuristic method is proposed in 

this paper for finding the critical sampling size of large 

datasets, and experiments are underway to validate the 

concept.  Even though simple enough, the heuristic 

methodif it turns out to be successful like the simple 

heuristic method for finding critical feature dimensioncan 

serve to provide a practical solution for sampling in data 

mining, which should be highly useful in coping with some of 

the challenges of big data [12]. 

We conclude with this statement of our position: Under 

formally defined conditions of optimality, both the feature 

selection problem and the sampling problem easily become 

intractable; however, simple and practically useful heuristic 

solutions can often be developed to deal with the feature 

selection and sampling size problems in data mining. 

 

5 References 

  

[1] H. Almuallim and T. G. Dietterich, “Learning with 

many irrelevant features”, Ninth National Conference 

on Artificial Intelligence, MIT Press, pp.547-552, 

1991. 

[2] A. Blum and P. Langley, “Selection of relevant 

features and examples in machine learning”, Artificial 

Intelligence, Vol. 97, 1997. 

[3] C. H. Papadimitriou and M. Yannakakis, “The 

complexity of facets (and some facets of 

complexity)”, Journal of Computer and System 

Sciences Vol. 28 No. 2, pp.244-259, 1984. 

[4] M. R. Garey and D. S. Johnson, “Computers and 

Intractability: A Guide to the Theory of NP-

Completeness”, W. H. Freeman and Compnay, 1979. 

[5] Q. Liu, B. M. Ribeiro, A. H. Sung and D. Suryakumar, 

“Mining the big data: the critical feature dimension 

problem”, Proceedings of 2nd International 

Conference on Smart Computing and Artificial 

Intelligence (ICSCAI 2014), August 2014. 

[6] J. Kivinen and H. Mannila, “The power of sampling in 

knowledge discovery”, Proceedings of PODS ’94, the 

13th ACM SIGACT-SIGMOD-SIGART Symposium on 

Principles of Database Systems, pp.77-85, 1994. 

[7] H. Toivonen, “Sampling large databases for association 

rules”, Proceedings of VLDB’96, 22th International 

Conference on Very Large Data Bases, pp.134-145, 

1996. 

[8] C. Goh, M. Tsukamoto and S. Nishio, “Fast methods 

with magic sampling for knowledge discovery in 

deductive databases with large deduction results”, 

Proceedings of ER’98, the Workshops on Data 

Warehousing and Data Mining: Advances in Database 

Technologies, pp.14-28, 1999. 

[9] C. Domingo, R. Gavaldà and O. Watanabe, “Adaptive 

sampling methods for scaling up knowledge discovery 

algorithms”, Data Mining and Knoledge Discovery, 

Kluwer Academic Publishers, Vol. 6 No. 2, pp.131-

152, 2002. 

[10]  J. S. Vitter, “Random sampling with a reservoir”, ACM 

Transactions on Mathematical Software, Vol. 11 No. 

1, pp.37-57, 1985. 

[11]  D. Suryakumar, “The Critical Dimension Problem  

No Compromise Feature Selection”, Ph.D. 

Dissertation, New Mexico Institue of Mining and 

Technology, 2013. 

[12]  National Research Council, “Frontiers in Massive 

Data  Analysis”, The National Academies Press, 2013. 

 


