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ABSTRACT

We prove that noise speeds convergence in the back-propagation
(BP) training of a convolutional neural network (CNN).
CNNs are a popular model for large-scale image recogni-
tion. The proof builds on two recent theorems. The first
result shows that the BP algorithm is a special case of the
Expectation-Maximization (EM) algorithm. The second re-
sult states when adding noise to the data will speed conver-
gence of the EM algorithm. Then this noisy EM algorithm
(NEM) algorithm gives a simple geometrical condition for a
noise speed up in the BP training of a CNN. Noise added to
the output neurons speeds up CNN training if the noise lies
above a hyperplane that passes through the origin. Simula-
tions on the MNIST digit recognition data set show that the
noisy BP algorithm reduces the mean per-iteration training-
set cross entropy by 39% compared with the noiseless BP.
The noisy BP algorithm also reduces the mean per-iteration
training-set classification error by 47%. The noise benefit is
more pronounced for small data sets.

Index Terms— Convolutional neural network, back-
propagation algorithm, Expectation-Maximization (EM) al-
gorithm, Noisy EM algorithm, noise benefit, stochastic reso-
nance.

1. NOISE INJECTION IN CONVOLUTIONAL
NEURAL NETWORKS

We prove that noise speeds up convergence in the popular
back-propagation (BP) training algorithm [1] of a convolu-
tional neural network (CNN) [2, 3]. CNNs are standard neu-
ral network systems for large-scale image recognition [4–9].
Figure 1 shows a3-layer CNN with one hidden convolutional
layer and3 convolution masks. The proof builds on our previ-
ous result [10] that the backpropagation algorithm is a special
case of the Expectation-Maximization (EM) algorithm [11].
We then use the recent noisy EM (NEM) algorithm [12, 13]
that gives a sufficient condition to speed up convergence in
the EM algorithm. Then the NEM algorithm’s sufficient con-
dition gives a simple geometrical sufficient condition for a
noise speed up in the BP training of a CNN.

Fig. 1. Convolutional Neural Network (CNN): The figure
shows a CNN with just one hidden layer. The input image
X convolves with3 masksW1,W2, andW3. These masks
act as receptive fields in the retina. The resulting images pass
pixel-wise through logistic sigmoid functionss that give the
hidden neuron activations. Then the CNN computes element-
wise Hadamard products between the hidden neuron activa-
tion matricesZ1,Z2, andZ3 with weight matricesUk

j where
j � 1, 2, 3 andk � 1, 2, 3. The soft-max Gibbs signal func-
tion gives the activations of the output layer neurons.

Figure 2 shows the noise-benefit region for a CNN with
three output neurons. Noise added to the output neurons
speeds up the BP training of a CNN if the noise lies above a
hyperplane that passes through the origin of the noise space.
This is a simple linear condition that the noise must satisfy.
The output layer activation vectorat determines the normal
to the hyperplane.

Figure 3 shows the training-set cross entropy of a CNN
using standard noiseless BP, BP with blind noise (Blind-BP),
and BP with NEM noise (NEM-BP). Noisy back-propagation
reduces the average training-set cross entropy by 39.26%
compared with noiseless back-propagation. Figure 4 plots the
training-set classification error rates as the system trains. The
testing-set classification error rate is essentially the same at



Fig. 2. Noise-benefit region for a CNN with soft-max out-
put neurons: Noise speeds up maximum-likelihood parame-
ter estimation of the CNN with soft-max output neurons if the
noise lies above a CNN-based hyperplane that passes through
the origin of the noise space. The activation signalat of the
output layer controls the normal to the hyperplane. The hy-
perplane changes as learning proceeds because the parame-
ters and hidden-layer neuron activations change. We used in-
dependent and identically distributed (i.i.d.) Gaussian noise
with mean0, variance3, andp3, 1, 1q as the normal to the
hyperplane.

convergence. NEM-BP gives a 47.43% reduction in training-
set error rate averaged over the first 15 iterations compared
with noiseless BP. Adding blind noise only slightly improves
cross entropy and classification accuracy. Figure 5 shows
a noise-benefit inverted U-curve for NEM-BP training of a
CNN on the MNIST data set. This inverted U-curve is the
signature of a nonlinear noise benefit or so-calledstochastic
resonance[14–23]. The optimal uniform noise scale occurs
at 1. NEM noise hurts CNN training when the noise scale
increases beyond2.6.

The next section presents an overview of CNNs. Section 3
presents the back-propagation algorithm for CNN training.
Theorem 1 shows that the BP algorithm is a special case of
the generalized EM (GEM) algorithm. Section 4 reviews the
NEM algorithm. Section 5 presents the NEM-BP algorithm
for CNN training. Section 6 summarizes the simulations on
the MNIST data set.

2. CONVOLUTIONAL NEURAL NETWORKS

A convolutional neural network (CNN) convolves the input
data with a set of filters. This is a rough analogy to the use of
receptive fields in the retina [24] as in the Neocognitron net-
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Fig. 3. NEM noise-benefit in BP training of a CNN using
MNIST data: The figure shows that the NEM-BP training re-
duces the average training-set cross entropy of the MNIST
data set compared with standard noiseless BP training. We
obtain a 39.26% average reduction in cross entropy for the
NEM-BP case when compared with the standard BP over the
first 15 training iterations. Adding blind noise gives a minor
average reduction of 4.02% in cross entropy. Training used
1000 images from the MNIST data for a CNN with one con-
volution hidden layer. The convolutional layer used three3�3

masks or filters. Factor-2 downsampling followed the convo-
lutional layer by removing all even index rows and columns of
the hidden neuron images. The hidden layer fully connects to
10 output neurons that predict the class label of the input digit.
We used uniform noise overr�0.5{?t5, 0.5{?t5s wheret is
the training iteration number for both NEM and blind noise.

work [25]. Consider a CNN with one hidden layer for sim-
plicity. The notation extends directly to allow multiple hid-
den layers. LetX denote the input2-dimensional data of size
MX � NX whereMX andNX are positive integers. Con-
sider2D filtersW1, . . . ,WJ each of sizeMW � NW . The
convolution ofX with the filterWj gives

Cj � X�Wj (1)

where� denotes2D convolution. The2D data matrixCj has
sizepMX �MW �1q�pNX �NY �1q with pm,nq-th entry

Cjpm,nq � MW̧

a�1

NW̧

b�1

Xpa�m, b� nqWjpa, bq . (2)

PadX with zeros to define it at all points in the above dou-
ble sum. Then pass theJ matricesC1, . . . ,CJ element-wise
through logistic sigmoid functions to give the hidden-neuron
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Fig. 4. NEM noise-benefit in BP training of a CNN using
MNIST data: The figure shows that the NEM-BP training re-
duces the training-set classification error rate of the MNIST
data set compared with standard noiseless BP training. We
obtain a 47.43% average reduction in classification error rate
for the NEM-BP case when compared with the standard BP
over the first 15 training iterations. Adding blind noise gives a
minor average reduction of 4.05% in classification error rate.
Training used 1000 images from the MNIST data for a CNN
with one convolution hidden layer. The convolutional layer
used three3 � 3 masks or filters. Factor-2 downsampling
followed the convolutional layer by removing all even index
rows and columns of the hidden neuron images. The hid-
den layer fully connects to10 output neurons that predict the
class label of the input digit. We used uniform noise overr�0.5{?t5, 0.5{?t5s wheret is the training iteration number
for both NEM and blind noise.

activationsZj :

Zjpm,nq � spCjpm,nqq (3)� 1

1� expp�Cjpm,nqq . (4)

Suppose the network hasK output neurons. ApMX�MW �
1q � pNX � NY � 1q weight matrixUk

j multiplies thej-
th hidden neuron matrixZj element-wise. The soft-max or
Gibbs activation of thek-th output neuron is

atk � exp
�°J

j�1
eTZj dUk

j e
	°K

k1�1
exp

�°J

j�1
eTZj dUk1

j e
	 (5)

whered denotes the element-wise Hadamard product be-
tween two matrices.e is a vector of all1s of lengthpMX �
MW�1qpNX�NW�1q. TheJK matricesUk

j (j � 1, . . . , J

andk � 1, . . . ,K) are the weights of the connections be-
tween the hidden and output neurons. The next section
presents the back-propagation training algorithm for a CNN.
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Fig. 5. NEM noise-benefit inverted U-curve for NEM-BP
training of a CNN: The figure shows the mean percent reduc-
tion in per-iteration training-set cross entropy for NEM-BP
training of a CNN with different uniform noise variances. We
add zero mean uniformp�0.5

a
c{td, 0.5ac{tdq noise where

c � 0, 0.2, . . . , 2.8, 3, t is the training epoch, andd � 5 is
the noise annealing factor. The noise benefit increases when
c increases from0 to 1 and tends to decrease after1. The
optimal noise scale isc� � 1. NEM noise addition hurts the
training-set cross entropy whenc ¥ 2.6.

3. BACK-PROPAGATION FOR CNN TRAINING

The back-propagation (BP) algorithm performs maximum
likelihood (ML) estimation of theJ convolution matrices
W1, . . . ,WJ and theJK hidden-output weight matrices
Uk

j . Let y denote the1-in-K encoding vector of the target
label for a given input imageX. This meansyk � 1 when
k corresponds to the correct class and0 otherwise. BP com-
putes the cross entropy between the soft-max activations of
the output neurons and the target vectory:

EpΘq � � Ķ

k1�1

yk1
logpatk1

q (6)

whereΘ denotes all the parameters of the CNN – theJ convo-
lution matricesW1, . . . ,WJ and the weight matrixU. Note
that�EpΘq is the log-likelihood

LpΘq � logpatkq � �EpΘq (7)

of the correct class label for the given input image. Hence the
ML estimate ofΘ is

Θ� � argmax
Θ

LpΘq . (8)

BP performs gradient ascent on the log-likelihood surface
LpΘq to iteratively find the ML estimate ofΘ. This also



holds when minimizing squared-error because BP is equiva-
lent to ML estimation with a conditional Gaussian distribu-
tion [10, 26]. The estimate ofΘ at thepn � 1q-th iteration
is

Θpn�1q � Θpnq � η∇ΘEpΘq���
Θ�Θpnq (9)

whereη is a positive learning rate. A forward pass in BP
computes the activations of all hidden and output neurons in
the CNN. Back-propagating the output neuron activation er-
rors through the network gives the gradient of the data log-
likelihood function with respect to the CNN parameters. The
gradient ascent in (9) updates these parameters.

The hidden neuron activations in a CNN are “latent” or
unseen variables for the purposes of the EM algorithm. BP
here performs ML estimation of a CNN’s parameters. The
EM algorithm is a popular iterative method for such ML es-
timation [11]. The EM algorithm uses the lower-boundQ of
the log-likelihood functionLpΘq:
QpΘ|Θpnqq � EppZ1,...,ZJ |X,y,Θpnqqtlog ppZ1, . . . ,ZJ ,y|X,Θqu

(10)

TheJ matricesZ1, . . . ,ZJ are the latent variables in the al-
gorithm’s expectation (E) step. Then the Maximization (M)
step maximizes the Q-function to find the next parameter es-
timate

Θpn�1q � argmax
Θ

QpΘ|Θpnqq . (11)

The generalized EM (GEM) algorithm performs this opti-
mization by stochastic gradient ascent. Theorem 1 from [10]
shows that BP is a special case of the GEM algorithm.

Theorem 1. Backpropagation is a special case of the GEM
Algorithm [10]
The backpropagation update equation for a differentiable
likelihood functionppy|x,Θq at epochn

Θpn�1q � Θpnq � η∇Θ log ppy|x,Θq���
Θ�Θpnq (12)

equals the GEM update equation at epochn

Θpn�1q � Θpnq � η∇ΘQpΘ|Θpnqq���
Θ�Θpnq (13)

where GEM uses the differentiable Q-functionQpΘ|Θpnqq in
(10).

This result lets us use the noisy EM algorithm to speed up
BP training of a CNN. The next section details the noisy EM
algorithm.

4. NOISY EXPECTATION-MAXIMIZATION (NEM)
ALGORITHM

The Noisy Expectation-Maximization (NEM) algorithm [12,
13] provably speeds up the EM algorithm. It adds noise to the

data at each EM iteration. The noise decays with the itera-
tion count to ensure convergence to the optimal parameters of
the original data model. The additive noise must also satisfy
the NEM condition below that ensures that the NEM param-
eter estimates will climb faster up the likelihood surface on
average.

4.1. NEM Theorem

The NEM Theorem [12, 13] states when noise speeds up the
EM algorithm’s convergence to a local optimum of the like-
lihood surface. The NEM Theorem uses the following nota-
tion. The noise random variableN has pdfppn|xq. So the
noiseN can depend on the datax. Vector h denotes the
latent variables in the model.tΘpnqu is a sequence of EM
estimates forΘ. Θ� � limnÑ8Θpnq is the converged EM
estimate forΘ. Define the noisyQ functionQNpΘ|Θpnqq �
Eh|x,Θk

rln ppx�N,h|θqs. Assume that the differential en-
tropy of all random variables is finite and that the additive
noise keeps the data in the support of the likelihood function.
Then we can state the general NEM theorem [12,13].

Theorem 2. Noisy Expectation Maximization (NEM)
The EM estimation iteration noise benefit

QpΘ�|Θ�q �QpΘpnq|Θ�q ¥ QpΘ�|Θ�q �QN pΘpnq|Θ�q
(14)

or equivalently

QNpΘpnq|Θ�q ¥ QpΘpnq|Θ�q (15)

holds on average if the followingpositivity condition holds:

Ex,h,N|Θ� �ln�ppx�N,h|Θkq
ppx,h|Θkq 
� ¥ 0 . (16)

The NEM Theorem states that each iteration of a prop-
erly noisy EM algorithm gives higher likelihood estimates on
average than do the regular EM’s estimates. So the NEM al-
gorithm converges faster than EM for a given data model. The
faster NEM convergence occurs both because the likelihood
function has an upper bound and because the NEM algorithm
takes larger average steps up the likelihood surface. NEM
also speeds up the training of hidden Markov models [27]
and the K-means clustering algorithm [28] used in big-data
processing [29].

5. NOISY BACKPROPAGATION FOR CNN
TRAINING

We add noise to the1-in-K encoding vectory of the target
class label. The next theorem states the noise-benefit suffi-
cient condition for Gibbs activation output neurons used in
CNN K-class classification.



Theorem 3. Forbidden Hyperplane Noise-Benefit Condi-
tion for CNN
The NEM positivity condition holds for ML training of a CNN
with Gibbs activation output neurons if

Ey,Z1,...,ZJ ,n|X,Θ�!nT logpatq) ¥ 0 (17)

where the activation of thek-th output neuron is

atk � exp
�°J

j�1
eTZj dUk

j e
	°K

k1�1
exp

�°J

j�1
eTZj dUk1

j e
	 (18)

whered denotes the element-wise Hadamard product be-
tween two matrices.e is a vector of all1s of lengthpMX �
MW � 1qpNX �NW � 1q.
Proof. Add noise to the target1-in-K encoding vectory at
the output neurons. Then the likelihood ratio in the NEM
sufficient condition becomes

ppy � n,Z1, . . . ,ZJ |X,Θq
ppy,Z1, . . . ,ZJ |X,Θq � ppy � n|Z1, . . . ,ZJ ,Θq

ppy|Z1, . . . ,ZJ ,Θq .

(19)

The output soft-max activationsatk from (5) simplify the ratio
on the right-hand side of the above equation. This gives

ppy � n|Z1, . . . ,ZJ ,Θq
ppy|Z1, . . . ,ZJ ,Θq � K¹

k�1

patkqtk�nkpatkqtk � K¹
k�1

patkqnk .

(20)

Substituting the above equation in (16) gives

Ey,Z1,...,ZJ ,n|X,Θ�# log

�
K¹

k�1

patkqnk

�+ ¥ 0 (21)

or

Ey,Z1,...,ZJ ,n|X,Θ�! Ķ

k�1

nk logpatkq) ¥ 0 . (22)

Figure 2 illustrates the sufficient condition in (17) for a
CNN with three output neurons. All noisen above the hyper-
planetn : nT logpatq � 0u speeds CNN training on average.

6. SIMULATION RESULTS

All simulations used the MNIST data set of handwritten dig-
its. The MNIST data set contains28�28 gray-scale pixel im-
ages with pixel intensities between 0 and 1. Figure 6 shows20

sample images from this data set. Figure 7 shows a schematic
diagram of the BP training of a CNN using images from the
MNIST data set. The simulations used at least1000 images

Data: T input imagestX1, . . . ,XT u, T target label
1-in-K vectorsty1, . . . ,yT u, numberJ of
convolution masks, sizeMW �NW of each
convolution mask, number of BP epochsR

Result: Trained CNN weight matrices
while epochr : 1Ñ R do

while training image numbert : 1Ñ T do Compute theJ hidden activation matrices
Z1, . . . ,ZJ using (2) and (3); Downsample theJ hidden activation
matricesZ1, . . . ,ZJ by a factor of2. 
Compute theK-D output soft-max activation
vectora using (5); Generate noise vectorn;
if nT logpaq ¥ 0 then Add NEM noise:yt � yt � n;
else Do nothing
end Compute erroryt � a; Back-propagate error to compute cross
entropy gradient∇ΘEpΘq; Update network parametersΘ using gradient
descent in (9);
.

end
end
Algorithm 1: The NEM-BP Algorithm for a CNN.

from the MNIST training-set. We modified an open-source
Matlab toolbox [30] to add noise during CNN training. The
CNN contained one convolution layer with three3 � 3 pixel
masks each. We followed the convolution layer with factor-2
down-sampling to increase system robustness and to reduce
the number of CNN parameters [2].

The output layer neurons used the soft-max or Gibbs
activation function for10-way classification. All hidden neu-
rons used the logistic sigmoid function. We used uniform
noise overp�0.5

a
c{td, 0.5ac{tdq wherec � 0, 0.2, . . . , 3,

d � 1, 2, . . . , 5, and t is the training epoch. The noise
variance thus decreased to0 as training epochs proceed.
Figure 3 shows the training-set cross entropy of a CNN for
three algorithms: standard noiseless BP, BP with blind noise
(Blind-BP), and BP with NEM noise (NEM-BP). We ob-
tain a 39.26% average reduction in training-set cross entropy
over the first 15 iterations using NEM-BP compared with
the noiseless BP. Figure 4 plots the training-set classification
error rates as the CNN learns. NEM-BP gives a 47.43% re-
duction in training-set error rate averaged over the first 15
iterations as compared with noiseless BP. Adding blind noise
(Blind-BP) gave only a minor improvement of4.05%.

We next plot the relative average reduction in cross en-
tropy for NEM-BP as the noise scalec varies from0 to 3 in



Fig. 7. CNN Training on MNIST: The figure shows a schematic diagram for training a CNN using an image from the MNIST
data set. A forward pass through the CNN computes the hidden and output neuron activations. The error between the output
activation vectorat and the true target vectorp0, 0, 1q then propagates back through the CNN to compute the gradientof cross
entropy. Then gradient descent updates the weights of the CNN using this gradient.

Fig. 6. MNIST Digits: The figure shows 20 sample images
from the MNIST data set. Each digit is a28 � 28 pixel
grayscale image.

steps of0.2. Figure 5 shows the resulting characteristic noise-
benefit inverted U-curve. The optimal uniform noise scale oc-
curs atc� � 1 and NEM-BP gives a 39.26% improvement in
average cross entropy. NEM noise hurts CNN training when
the noise scale increases beyond2.6.

We also explored how the training-data set size affects
NEM performance. We varied the MNIST training-set size
over1000, 2000, . . . , 5000 and computed the relative average
reduction in training cross entropy for NEM-BP using the op-
timal noise variance. Figure 8 shows the resulting decreas-
ing bar chart: NEM-BP’s performance falls as the number of
training data samples increases. This shows that NEM-BP is
especially useful when the number of training data samples is
small relative to the number of estimated CNN parameters.

7. CONCLUSIONS

Proper noise injection speeds up the back-propagation (BP)
training of a convolutional neural network (CNN). This fol-
lows because the BP algorithm is a special case of the EM
algorithm and because the recent noisy EM (NEM) theorem
gives a sufficient condition for speeding up the EM algorithm
using noise. NEM noise injection experiments on the MNIST
data set show substantial reduction in training-set cross en-
tropy and classification error rate as compared with the noise-
less BP algorithm. Blind noise gave at best a small noise ben-
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Fig. 8. Variation of NEM-BP performance benefit with in-
creasing training-set size: The bar chart shows the relative
average reduction in training-set cross entropy for NEM-BP
as the training-set size increases. The noise benefit is greater
for smaller training-data set sizes.

efit. Simulations show that the NEM noise benefit was largest
for smaller data sets. Future work will explore adding noise
to both the input data and hidden neurons.
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