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ABSTRACT Z,=s(X*W,)

We prove that noise speeds convergence in the back-propag W, U
(BP) training of a convolutional neural network (CNN). @ !
CNNs are a popular model for large-scale image recogni x

tion. The proof builds on two recent theorems. The firs [T T
result shows that the BP algorithm is a special case of th u
Expectation-Maximization (EM) algorithm. The second re- i3
sult states when adding noise to the data will speed conve

gence of the EM algorithm. Then this noisy EM algorithm W, @
(NEM) algorithm gives a simple geometrical condition for a 7

noise speed up in the BP training of a CNN. Noise added t 3

the output neurons speeds up CNN training if the noise lie :u:g COng'gll(JsT oN T.I.EYD;: H&?D'ff‘cRTD OUSTOPFUTT'T%),(ER
above a hyperplane that passes through the origin. Simul; forggs'{:;eggngﬁgwn}

tions on the MNIST digit recognition data set show that the

noisy BP algorithm reduces the mean per-iteration tramlngFig_ 1. Convolutional Neural Network (CNN): The figure

set cross entropy by 39% compared with the noiseless BI:s)hows a CNN with just one hidden layer. The input image

Thgz 'noisy BP algqrith_m also reduces the meaq per-itera_tiq& convolves with3 masksWi, Wy, andW3;. These masks

training-set classification error by 47%. The noise bengfit I act as receptive fields in the retina. The resulting images pa

more pronounced for small data sets. pixel-wise through logistic sigmoid functionsthat give the
Index Terms— Convolutional neural network, back- hidden neuron activations. Then the CNN computes element-

propagation algorithm, Expectation-Maximization (EM) al wise Hadamard products between the hidden neuron activa-

gorithm, Noisy EM algorithm, noise benefit, stochastic resotion matricesZ, Z-, andZs with weight matriceiJ;? where

nance. j=1,2,3andk = 1,2, 3. The soft-max Gibbs signal func-

tion gives the activations of the output layer neurons.
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1. NOISE INJECTION IN CONVOLUTIONAL

NEURAL NETWORKS , _ o _
Figure 2 shows the noise-benefit region for a CNN with

We prove that noise speeds up convergence in the populdiree output neurons. Noise added to the output neurons
back-propagation (BP) training algorithm [1] of a convolu- Speeds up the BP training of a CNN if the noise lies above a
tional neural network (CNN) [2, 3]. CNNs are standard neuhyperplane that passes through the origin of the noise space
ral network systems for large-scale image recognition J4—9 This is a simple linear condition that the noise must satisfy
Figure 1 shows a-layer CNN with one hidden convolutional The output layer activation vecta determines the normal
layer and3 convolution masks. The proof builds on our previ- to the hyperplane.

ous result [10] that the backpropagation algorithm is aigphec Figure 3 shows the training-set cross entropy of a CNN
case of the Expectation-Maximization (EM) algorithm [11]. using standard noiseless BP, BP with blind noise (Blind;BP)
We then use the recent noisy EM (NEM) algorithm [12, 13]and BP with NEM noise (NEM-BP). Noisy back-propagation
that gives a sufficient condition to speed up convergence ireduces the average training-set cross entropy by 39.26%
the EM algorithm. Then the NEM algorithm'’s sufficient con- compared with noiseless back-propagation. Figure 4 phets t
dition gives a simple geometrical sufficient condition for atraining-set classification error rates as the systemdrdihe
noise speed up in the BP training of a CNN. testing-set classification error rate is essentially thaesat
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Fig. 3. NEM noise-benefit in BP training of a CNN using
MNIST data: The figure shows that the NEM-BP training re-
Fig. 2. Noise-benefit region for a CNN with soft-max out- qyces the average training-set cross entropy of the MNIST
put neurons: Noise speeds up maximum-likelihood paramgtata set compared with standard noiseless BP training. We
ter estimation of the CNN with soft-max output neurons if thegptain a 39.26% average reduction in cross entropy for the
noise lies above a CNN-based hyperplane that passes througk:m-Bp case when compared with the standard BP over the
the origin of the noise space. The activation sigafabf the  first 15 training iterations. Adding blind noise gives a mino
output layer controls the normal to the hyperplane. The hyzyerage reduction of 4.02% in cross entropy. Training used
perplane changes as learning proceeds because the paran§yo images from the MNIST data for a CNN with one con-
ters and hidden-layer neuron activations change. We used igg|ution hidden layer. The convolutional layer used ti3ed
dependent and identically distributed (i.i.d.) Gaussiais®@ masks or filters. Factor-2 downsampling followed the convo-
with mean0, variance3, and(3,1,1) as the normal to the |ytional layer by removing all even index rows and columns of
hyperplane. the hidden neuron images. The hidden layer fully connects to
10 output neurons that predict the class label of the input.digi
We used uniform noise ovér-0.5/v/t3,0.5//t5] wheret is

convergence. NEM-BP gives a 47.43% reduction in trainin S . . ;
g g > 9 He training iteration number for both NEM and blind noise.

set error rate averaged over the first 15 iterations comparé
with noiseless BP. Adding blind noise only slightly impreve
cross entropy and classification accuracy. Figure 5 shows i ) . )
a noise-benefit inverted U-curve for NEM-BP training of aWork [25]. Consider a CNN with one hidden layer for sim-

CNN on the MNIST data set. This inverted U-curve is thePliCity. The notation extends directly to allow multipledhi
signature of a nonlinear noise benefit or so-caiathastic den layers. LeX denote the inpuz-dimensional data of size
resonancd14-23]. The optimal uniform noise scale occursMx * Nx whereMx and Nx are positive integers. Con-
at 1. NEM noise hurts CNN training when the noise scaleSider2D filters Wi, ..., W, each of sizelly, x Nw . The
increases beyor6. convolution ofX with the filter W ; gives

The next section presents an overview of CNNs. Section 3
presents the back-propagation algorithm for CNN training. C,i=X:%W; 1)
Theorem 1 shows that the BP algorithm is a special case of
the generalized EM (GEM) algorithm. Section 4 reviews theyhere:: denoteD convolution. TheD data matrixC; has
NEM algorithm. Section 5 presents the NEM-BP algorithmsize(MX + My —1) x (Nx 4+ Ny — 1) with (m, n)-th entry
for CNN training. Section 6 summarizes the simulations on

the MNIST data set. N

s

My
Cj(m,n) = Z X(a—m,b—n)W;(a,b). (2)
a=1 1

b

2. CONVOLUTIONAL NEURAL NETWORKS

A convolutional neural network (CNN) convolves the input PadX with zeros to define it at all points in the above dou-
data with a set of filters. This is a rough analogy to the use dble sum. Then pass thematricesCy, ..., C; element-wise
receptive fields in the retina [24] as in the Neocognitron netthrough logistic sigmoid functior to give the hidden-neuron
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Fig. 4 NEM noise-benefit in BP training of a CNN using Fig.- 5. NEM noise-benefit inverted U-curve for NEM-BP
MNIST data: The figure shows that the NEM-BP training re-training of a CNN: The figure shows the mean percent reduc-
duces the training-set classification error rate of the MINIS tion in per-iteration training-set cross entropy for NENR-B
data set compared with standard noiseless BP training. W&aining of a CNN with different uniform noise variances. We
obtain a 47.43% average reduction in classification erter ra @dd zero mean uniforfa-0.54/c/t%, 0.54/c/t%) noise where

for the NEM-BP case when compared with the standard BP = 0,0.2,...,2.8,3, t is the training epoch, and = 5 is

over the first 15 training iterations. Adding blind noiseegwa  the noise annealing factor. The noise benefit increases when
minor average reduction of 4.05% in classification errog.rat ¢ increases frond to 1 and tends to decrease after The
Training used 1000 images from the MNIST data for a CNNOpPtimal noise scale is* = 1. NEM noise addition hurts the
with one convolution hidden layer. The convolutional layertraining-set cross entropy wherg 2.6.

used three3 x 3 masks or filters. Factor-2 downsampling

followed the convolutional Ia_lyer by removi|_’1g all even inde_x 3. BACK-PROPAGATION FOR CNN TRAINING

rows and columns of the hidden neuron images. The hid-

den layer fully connects tﬂ?Oloutput neurons .that predict the The back-propagation (BP) algorithm performs maximum
class label of the input digit. We used uniform noise oveljikelihood (ML) estimation of theJ convolution matrices
[0.5/3/15,0.5/7/15] wheret is the training iteration number w, ' W, and theJK hidden-output weight matrices

for both NEM and blind noise. U*. Lety denote thel-in-K encoding vector of the target
label for a given input imag&. This meansg;; = 1 when
activationsz: k corresponds to the correct class @notherwise. BP com-
tes the cross entropy between the soft-max activations of
Z; = 5(C; 3 M
j(mom) = s( J(m’nl)) 3) the output neurons and the target vegtor
= : (@)
1+ exp(—C;j(m,n)) K
E©) =~ )} yk log(at,) (6)
Suppose the network h&s output neurons. AM x + My — ot

1) x (Nx + Ny — 1) weight matrix UY multiplies the;-
th hidden neuron matrig; element-wise. The soft-max or where© denotes all the parameters of the CNN —iheonvo-
Gibbs activation of thé-th output neuron is lution matricesWy, ..., W ; and the weight matriXU. Note

J that—FE(O) is the log-likelihood
exp (ijl e’Z; ® U?e)

ZkKlzleXp<Z}‘leeTZj ®U§1e) R

_ of the correct class label for the given inputimage. Henee th
where ® denotes the element-wise Hadamard product bey | estimate of® is
tween two matricese is a vector of allls of length(Mx +
My —1)(Nx+Nw—1). TheJK matricesU% (j = 1,...,J e* = argmng(@) . (8)
andk = 1,..., K) are the weights of the connections be-
tween the hidden and output neurons. The next sectioBP performs gradient ascent on the log-likelihood surface
presents the back-propagation training algorithm for a CNN L(©) to iteratively find the ML estimate o®. This also

(5) L(©) = log(a}) = ~E(©) @)

aj, =



holds when minimizing squared-error because BP is equivalata at each EM iteration. The noise decays with the itera-
lent to ML estimation with a conditional Gaussian distribu-tion count to ensure convergence to the optimal parameters o
tion [10, 26]. The estimate d® at the(n + 1)-th iteration the original data model. The additive noise must also satisf
is the NEM condition below that ensures that the NEM param-
(ntl) _ () _ eter estimates will climb faster up the likelihood surface o
© =6 VeE(O)| ., ®)  average.

wheren is a positive learning rate. A forward pass in BP

computes the activations of all hidden and output neurons i4-1. NEM Theorem
the CNN. Back-propagating the output neuron activation er- .
rors through the network gives the gradient of the data IogThe NEM Theorem [12, 13] states when noise speeds up the

. . ; EM algorithm’s convergence to a local optimum of the like-
likelihood function with respect to the CNN parameters. Thqihoodgsurface The ngM Theorem usespthe following nota-
gradient ascent in (9) updates these parameters. j

The hidden neuron activations in a CNN are “latent” ortlon' The noise random variabN has pdip(n|x). So the

; : oiseN can depend on the data Vector h denotes the
unseen variables for the purposes of the EM algorithm. BI?atent variables in the model{©(™)} is a sequence of EM

here performs ML estimation of a CNN’s parameters. The__,. o (n) ;
EM algorithm is a popular iterative method for such ML es_esﬂmates f08. O, = limyy, 6™ is the converged EM

e : estimate foi©. Define the noisyy functionQn (0]0™) =
timation [11]. The EM algorithm uses the lower-bouRdf N : i
the log-likelihood function.(©): Enpx,0, [Inp(x + N, h|#)]. Assume that the differential en

tropy of all random variables is finite and that the additive
QO6M) = Epz,... 7, X.y.000){l0gp(Z1, ..., Z;,yX,0)} noise keeps the data in the support of the likelihood fumnctio
(10) Then we can state the general NEM theorem [12,13].

The J matricesZ,, ..., Z, are the latent variables in the al- Theorem 2. Noisy Expectation Maximization (NEM)

gorithm’s expectation (E) step. Then the Maximization (M) The EM estimation iteration noise benefit

step maximizes the Q-function to find the next parameter es-

timate Q(04]0x) = Q(O™M0.) > Q(04]0:) — Qn(0™6)

14
0+ = argmaxQ(O|0™) . (11) -
© or equivalently
The generalized EM (GEM) algorithm performs this opti-
mization by stochastic gradient ascent. Theorem 1 from [10] QnOM|0,) = QO™ |6,) (15)

shows that BP is a special case of the GEM algorithm.

o ] holds on average if the followingpsitivity condition holds:
Theorem 1. Backpropagationis a special case of the GEM
Algorithm [10] E 1 p(x + N, h|O) S 16
The backpropagation update equation for a differentiable x,h,N|©* |1 p(x,h|O}) =0. (16)
likelihood functiorp(y|x, ©) at epochn

The NEM Theorem states that each iteration of a prop-

et = 0™ 1 Ve log p(y|x, @)‘efem) (12)  erly noisy EM algorithm gives higher likelihood estimates o
_ B average than do the regular EM’s estimates. So the NEM al-
equals the GEM update equation at epach gorithm converges faster than EM for a given data model. The

(n+1) _ o (n) (n) faster NEM convergence occurs both because the likelihood
© =06 +1VeQ(6|0 )‘@:@(n) (13)  function has an upper bound and because the NEM algorithm

) ) ) _ takes larger average steps up the likelihood surface. NEM
where GEM uses the differentiable Q-functign®|©™) in 4150 speeds up the training of hidden Markov models [27]
(10). and the K-means clustering algorithm [28] used in big-data

This result lets us use the noisy EM algorithm to speed uprocessing [29].
BP training of a CNN. The next section details the noisy EM

algorithm. 5. NOISY BACKPROPAGATION FOR CNN
TRAINING
4. NOISY EXPECTATION-MAXIMIZATION (NEM)
ALGORITHM We add noise to thé-in-K encoding vectoy of the target
class label. The next theorem states the noise-benefit suffi-
The Noisy Expectation-Maximization (NEM) algorithm [12, cient condition for Gibbs activation output neurons used in
13] provably speeds up the EM algorithm. It adds noise to th€NN K-class classification.



Theorem 3. Forbidden Hyperplane Noise-Benefit Condi-
tion for CNN

The NEM positivity condition holds for ML training of a CNN
with Gibbs activation output neurons if

Data: T inputimages X, ..., Xy}, T target label
1-in-K vectors{ys, ..., yr}, numberJ of
convolution masks, siz&fy, x Ny of each
convolution mask, number of BP epochs

Result Trained CNN weight matrices

while epochr : 1 - R do

Ey,zl,...,zJ,n\x,@*{nT 10g(at)} >0 a7)
while training image numbet: 1 — T do

where the activation of the-th output neuron is

exp (Zj_l eTZ' @U’?e)
= (18)
Zkl 1exp<2 _1¢e7Z; @Ul‘1 )

where © denotes the element-wise Hadamard product be-
tween two matricese is a vector of allls of length(Mx +
My — 1)(NX + Nw — ].)

ay =

e Compute theJ hidden activation matrices
Z1,...,7Z;using (2) and (3);
e Downsample the hidden activation
matricesZ, ..., Z; by a factor of2. e
Compute thek-D output soft-max activation
vectora using (5);
e Generate noise vectar,
if n log(a) > 0then

| o Add NEM noise:y; < y; + n;

else
| e Do nothing
end

Proof. Add noise to the target-in-K encoding vectoy at

the output neurons. Then the likelihood ratio in the NEM

sufficient condition becomes .
e Compute erroy; — a;

ply+n,Zi,...,2;X,0) ply+nl|Zy,...,7Z;,0) e Back-propagate error to compute cross
p(Y7 Zla R ZJ|X7 @) a p(y|Z1, R ZJ7 @) . entropy gradienVGE(@);
(19) ¢ Update network parametegsusing gradient
descentin (9);

The output soft-max activatiorg, from (5) simplify the ratio

on the right-hand side of the above equation. This gives end
end
oy +n|Z1,.. ZJ, H (al )tk+nk ﬁ( 'y Algorithm 1: The NEM-BP Algoritnm for a CNN.
a A
p(y|Z1,...,ZJ7 i (ap)t Filet b
(20)

from the MNIST training-set. We modified an open-source
Matlab toolbox [30] to add noise during CNN training. The
CNN contained one convolution layer with thrge< 3 pixel
g £\ masks each. We followed the convolution layer with factor-2
By2...25nx0%9 log kljl(ak’) =0 @1 down-sampling to increase system robustness and to reduce
a the number of CNN parameters [2].

The output layer neurons used the soft-max or Gibbs
K activation function forl 0-way classification. All hidden neu-
Ey,zl,...,ZJ,n|X,®*{ Z Ny 10g(a2)} >0. (22) rons used the logistic sigmoid function. We used uniform
k=1 noise over(—0.54/c/t%,0.54/c/t?) wherec = 0,0.2,..., 3,
o 4= 12..5 andt is the training epoch. The noise
variance thus decreased foas training epochs proceed.
Figure 2 illustrates the sufficient condition in (17) for a Figure 3 shows the training-set cross entropy of a CNN for
CNN with three output neurons. All noiseabove the hyper- three algorithms: standard noiseless BP, BP with blindenois
plane{n : n” log(a®) = 0} speeds CNN training on average. (Blind-BP), and BP with NEM noise (NEM-BP). We ob-
tain a 39.26% average reduction in training-set cross pytro
over the first 15 iterations using NEM-BP compared with
the noiseless BP. Figure 4 plots the training-set clastifica

All simulations used the MNIST data set of handwritten dig-€'Tor rates as the CNN learns. NEM-BP gives a 47.43% re-
its. The MNIST data set contais x 28 gray-scale pixel im- duction in training-set error rate averaged over the first 15
ages with pixe| intensities between 0 and 1. Figure 6 shows iterations as Compared with noiseless BP. Addlng blindenois
sample images from this data set. Figure 7 shows a schemaff@lind-BP) gave only a minor improvement {05%.

diagram of the BP training of a CNN using images from the  We next plot the relative average reduction in cross en-
MNIST data set. The simulations used at leBE¥i0 images tropy for NEM-BP as the noise scatevaries from0 to 3 in

Substituting the above equation in (16) gives

or

6. SIMULATION RESULTS
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Fig. 7. CNN Training on MNIST: The figure shows a schematic diagrantrining a CNN using an image from the MNIST
data set. A forward pass through the CNN computes the hiddématput neuron activations. The error between the output
activation vecton® and the true target vectdd, 0, 1) then propagates back through the CNN to compute the graofienbss
entropy. Then gradient descent updates the weights of tié @ihg this gradient.

steps of).2. Figure 5 shows the resulting characteristic noise-
benefit inverted U-curve. The optimal uniform noise scale oc
curs atc* = 1 and NEM-BP gives a 39.26% improvement in
average cross entropy. NEM noise hurts CNN training when
the noise scale increases beyangl
if j We also explored how the training-data set size affects

NEM performance. We varied the MNIST training-set size
over1000, 2000, .. ., 5000 and computed the relative average
reduction in training cross entropy for NEM-BP using the op-

1.5 3 timal noise variance. Figure 8 shows the resulting decreas-
ing bar chart: NEM-BP’s performance falls as the number of
training data samples increases. This shows that NEM-BP is

ﬂ G especially useful when the number of training data samples i
small relative to the number of estimated CNN parameters.

7. CONCLUSIONS

Proper noise injection speeds up the back-propagation (BP)
Fig. 6. MNIST Digits: The figure shows 20 sample imagestraining of a convolutional neural network (CNN). This fol-
from the MNIST data set. Each digit is 28 x 28 pixel ~ lows because the BP algorithm is a special case of the EM
grayscale image. algorithm and because the recent noisy EM (NEM) theorem
gives a sufficient condition for speeding up the EM algorithm
using noise. NEM noise injection experiments on the MNIST
data set show substantial reduction in training-set crass e
tropy and classification error rate as compared with theenois
less BP algorithm. Blind noise gave at best a small noise ben-
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Fig. 8. Variation of NEM-BP performance benefit with in-

creasing training-set size: The bar chart shows the relatii10]

average reduction in training-set cross entropy for NEM-BP

as th

for smaller training-data set sizes.

efit. Simulations show that the NEM noise benefit was largest

e training-set size increases. The noise benefit itegrea

for smaller data sets. Future work will explore adding noise
to both the input data and hidden neurons.
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