
MPGM: A Mixed Parallel Big Graph Mining Tool 
 

Ma Pengjiang
1
 

mpjr_2008@163.com 

Liu Yang
1
 

liuyang1984@bupt.edu.cn 

 

Wu Bin
1
 

wubin@bupt.edu.cn 

Wang Hongxu
1
 

513196584@qq.com 
 

1
School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 

 

Abstract—The design and implementation of a scalable 

parallel mining system for big graph analysis has proven 

to be challenging. In this study, we propose a parallel data 

mining system for analyzing big graph data generated on a 

bulk synchronous parallel (BSP) computing model and 

MapReduce computing model named mixed parallel graph 

mining (MPGM). This system has four sets of parallel 

graph mining algorithms programmed in the BSP parallel 

model and one set of data extraction-transformation-

loading (ETL) algorithms implemented in MapReduce and 

a well-designed workflow engine optimized for Cloud 

computing to invoke these algorithms. Experimental show 

that the components of graph mining algorithm in MPGM 

are efficient and can make realistic application easy. 

Keywords- Cloud computing; parallel algorithms; graph data 

analysis; data mining; social network analysis  

1 Introduction 

    Graphs are the most widely used abstract data 

structures in the field of computer science, and they offer a 

more complex and comprehensive presentation of data 

compared to link tables and tree structures . Many real 

application issues need to be described with graphical 

structure, and the processing of graph data is required in 

almost all cases, such as the optimization of railway paths, 

prediction of disease outbreaks, the analysis of technical 

literature citation networks, emerging applications such as 

social network analysis, semantic network analysis, and the 

analysis of biological information networks. 

     The graph mining theories and technique have been 

improved all the time. However, as the information time 

comes along, which has led to explosive growth of 

information, the scale of graph-based data has increased 

significantly. For example, in recent decades, with the 

popularity of the Internet and the promotion of Web 2.0, the 

number of webpages has undergone rapid growth. Based on 

statistics provided by the China Internet Network 

Information Center (CNNIC), at the end of December 2013, 

the number of webpages in China had reached 150.0 billion, 

22.2% increase over last year. Simultaneously, the number of 

micro-blog users accounted for 54.7% of all Internet users, 

which is approximately 308 million. This phenomenon 

highlights the scale of big graph data come into being, and it 

is challenging job to perform efficient analysis  of these data. 

To solve the large scale graph analysis task, we have built a 

system called MPGM which provides a series of parallel 

graph mining algorithms based on the BSP parallel 

computing model. While the process of computing, the data 

is always stored in memory of cluster, this mechanism helps 

BSP model achieved a high performance, but limited the 

scale of data that the system can handle. Therefore, MPGM 

adds a set of data extract-transformation-loading algorithms 

based on MapReduce to improve the data processing 

capacity when the cluster scale is limited. Tests on real 

mobile communication networks data show that our 

improvement is reliable and highly- efficient. 

         The remainder of this paper is structured as follows. 

Section 2 reviews related works. And then describes   

MPGM’s system architecture in Section 3. The application 

example is presented in Section 4. Some performance 

measurements are reported in Section 5. Finally we will 

discuss future directions. 

2 Related Work 

   MGPM is closely related to parallel computing 

platforms and graph mining tools. Here, we briefly summarize 

those related works. 

         Parallel computing platforms have been studied for a 

long time, and they can be roughly categorized into three 

types: (i) based on the MapReduce model, (ii) based on the 

message passing interface (MPI) model, and (iii) based on 

the BSP model. The MapReduce [1] model was proposed by 

Google, and the most famous and successful open-source 

implementation is Hadoop. The MapReduce model is extreme 

suitable for process large scale data, and algorithms that do 

not have many iterations, but it has a bad performance in 

high iterative algorithm, which means that they are not 

suitable for most graph algorithms. 



         The MPI [2] model provides a model for message 

passing, and many companies and universities have 

implemented jobs that can be run on almost any type of 

parallel computer, which support all existing graph 

algorithms. However, because the MPI model uses a 

communication method to integrate computing resources, 

this model has several drawbacks, for example, the low 

efficiency of parallel computing and the high consumption of 

memory makes it difficult to manage the resources and 

communication in detail. 

         BSP [3] is also a widely used parallel computing 

framework. BSP improved the weakness exhibited by 

MapReduce, and performs well when a program has a large 

number of iterations or requires a lot of communication. A 

BSP program can be divided into several super-steps, each 

of which consists of three ordered stages : local computation, 

communication, and barrier synchronization. A BSP system 

is composed of a number of computers with local memory 

and disks. Each computer can run several computing 

processes called peers. In the local computation stage, each 

peer is computed using locally stored data. After finishing 

local computation, each peer can communicate only 

necessary data to other peers. When a peer finishes the 

communication stage, it will wait until all the peers reach the 

barrier synchronization and a super-step is completed.  

         Popular parallel data mining tools include the following 

things. Mahout [4], which is supported by the Apache 

Foundation, supply classification, clustering, pattern mining, 

regression, and dimension reduction and other machine 

learning algorithms, but lacks the graph mining function. 

GraphLab [5] improves on the MapReduce abstraction by 

compactly expressing asynchronous iterative algorithms 

with sparse computational dependencies. However, there 

may be problems while implied a synchronous iterative 

graph algorithm. PEGASUS [6] is an open-source large 

graph mining system implemented on Hadoop. The key idea 

of PEGASUS is to convert graph mining operations into 

iterative matrix-vector multiplication. While it supports large-

scale graph data, in practice, not all of the graph mining 

algorithms can be modeled by matrix-vector multiplications. 

Dryad [7] is a general parallel computing platform proposed 

by Microsoft Research, which abstracts the computing and 

communication in data mining operations into vertexes and  

edges to form a dataflow graph. The platform executes the 

vertexes on work nodes and refines the dataflow graph to 

optimize the running process . Big Cloud parallel data mining 

(BC-PDM) [8] was developed by China Mobile Research 

Institute (CMRI), and it provides visualization operations for 

data mining and the analysis of graph data. However, it is 

based on Hadoop, and the graph mining algorithms 

therefore cannot achieve a high level of performance. Pregel 

[9], which was motivated by BSP and implemented by 

Google, provides a complete solution for large-scale graph 

computing, but it has not been published in the public 

domain. BC-BSP [10] is another implementation of the BSP 

parallel platform. While most BSP platforms use memory to 

exchange the temporary data, BC-BSP designed a 

mechanism of spill data (including static data and dynamical 

data) on the local disk to improve the data processing 

capacity when the cluster scale is limited, but the 

management and updating of this data spill mechanism 

requires extra communication and system resources , while 

introducing new defects to the platform.   

3 System Architecture 

    This system focuses on big graph management and 

graph mining. We noticed that, while the original data is 

huge, but most graph mining application using part of the 

original data. In response to this feature, we use MapReduce 

to extract the graph data from original data, and construct 

the graph. To manage graph data and original data, we 

designed a data I/O management component in the parallel 

platform layer and a data management component in the 

logical layer. The algorithm layer divided into two parts, the 

ETL algorithm set and graph mining algorithm set. In the 

graph mining field, graph pattern mining, graph clustering 

mining, graph classification mining, and dynamic graph 

mining are the most popular topics. We built the graph 

mining algorithm set to implement graph clustering mining 

and graph classification mining algorithms, and the graph 

attribute analysis as the foundation of the graph analysis. 

Finally, we made this system extendable to enable the 

addition of other algorithm components. 

         An overview of the architecture of MPGM is presented 

in Figure 1. The system consists of four layers. The function 

of each layer is described as follows: 
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  Figure 1: Architecture of PGM 



3.1 The Parallel Platform Layer 

    The Parallel Platform Layer comprises four components: 

a Distributed Graph File System, YARN, Parallel Computing 

Engine, and Graph I/O Management component. We used 

the Hadoop Distributed File System (HDFS) to construct the 

Distributed Graph File System, enabling the storage of big 

graph data. YARN, a framework for cluster resource 

management and  job scheduling, comprises a 

ApplicationMaster (AM) which should integrates multiple 

computing frameworks, e.g. MR, BSP. Because the BSP 

model achieves a high performance in graph mining 

algorithms, we chose Hama BSP [11] as the parallel 

computing engine, and used it to handle message 

communication, data distribution, and fault tolerance, and 

use MapReduce as the graph data pre-processing engine for 

extract graph information from original data. The Graph I/O 

Management component is responsible for the transfer of 

data from the database into the graph data form that the 

MPGM can handle, and it then exports the resulting MPGM 

data. 

3.2 The algorithm layer 

    The algorithm layer is the main layer of MPGM. This 

layer can be roughly divided into 2 parts. The ETL algorithm 

set and graph mining algorithm set. In the graph mining 

algorithm set, we implemented four sets of 20 graph mining 

algorithm components in the BSP parallel model and four 

group of data ETL algorithm for transform original into graph 

data. The ETL algorithm set is composed of data cleaning set 

for detect and remove error value, data transform set for 

transform value into the format we need, data extract set and 

data update set. Those graph mining algorithm components 

can be divided into four sets. The graph ranking set 

comprises PageRank [12], HITS [13], and RWR [14] 

algorithms components , the graph clustering set comprises 

GN [15], CNM [16], CPM [17], and LPA [18] algorithm 

components, and the K-means algorithm is used for the 

processing of general data. The graph attribute analysis set 

contains the graph diameter, closeness centrality, clustering 

coefficient, network density, betweenness centrality , and 

five other algorithm components , while the graph partition 

set contains components that are based on the MSP [19] 

algorithm component and the Metis [20] algorithm 

component. Those algorithm components can be run either 

in the console, or can be invoked in a user-defined workflow 

from the user interface. 

3.3 The logical layer 

    The logical layer is based on Open Service Gateway 

Initiative(OSGi), to implement a stable and efficient scalable 

system, which is service platform and manager all kinds of 

services that are supported by this layer, such as  User 

Management Service, Data(HDFS) Management Service , 

Algorithm Service (Each algorithm is a kind of service), and 

the workflow engine Service.  

    Figure 2 shows the operation of the logical layer. 

Getting the start command from tomcat servlet which is a 

container in the interface layer, OSGi container will execute a 

train of operations, starting the life cycle, activating and 

registering the each service that hosted in bundle-services 

management. With the tomcat servlet invoking one of 

services, Service Register queries and gets service that is 

requested by the tomcat from the services pool, and then 

Execution Environment (EE) calls the workflow engine 

service to perform the requested service which is ultimately 

implemented in the algorithm layer. There are two important 

features: 

 

Interface 

Layer 

OSGI Container

Graph Minning 
Algorithm Services

Data ETL Algorithm 

Services

Execution 
Environment

Tomcat 
Container

Life
Cycle

Service
Register

Servlet

Bundle-
Service 
Manag-
ement

Bundle-Services

WorkFlow 
Engine 
Service

Other Algorithm 

Services

Data Management 
Service

Algorithm    Layer 

Logical  Layer

User Management 
Services

St
ar

t

Register

Start

Active

Execute 

Ex
ec

ut
e

Execute Run

Run

Run

Run

Run

Run

Ru
n

 Figure 2: O peration flow of the  Logical Layer 

 

 

3.3.1 Hot- plugging of Bundle-Services.  

     Each service that provided by Bundle-Services 

Management is a plug-in or bundle with highly cohesion, 

low coupling features. With the independent class loader, 

OSGi prevents the external system accessing to detail of the 

bundle, just exposing externally callable interfaces, and 

provides a dynamic service management strategy. In other 

words, receiving the operation from the interface layer, 

Execution-Environment can dynamically install and uninstall 

the bundle-services, without shutting down the system.  

3.3.2 High scalability  and  flexibility of Workflow 

Engine.  

           The workflow engine implemented in this system 

abstracts data-intensive computing into an orderly and plain 

workflow instance. Meanwhile, the workflow engine defining 

a set of unified interfaces can be seamless integrated with 

multiple computing frameworks, e.g. MR, BSP. Figure 3 

shows an example workflow instance which includes three 

algorithms that can be divided into two categories , based on 



MR and based on BSP. When the interface layer sends a 

command to execute, Workflow Engine automatically 

analyzes the workflow and orderly executes the each 

component. Workflow Engine also achieve computing 

operation monitoring and provides an flexible configuration . 

3.4 The interface layer 

    The interface layer is built in HTML, and flex provides 

an interactive interface with which the user can login to the 

MPGM, management information, and most importantly, use 

the graph algorithms’ mining graph data. 

4 Application Example 

        Here we use the key user of mobile communication 

discovery as an example to demonstrate our plat-form. 

 

Figure 3: O peration flow of the Key User Discovery 

application 

       The discovery of key person in mobile communication is 

an important and valuable application. It is trying to find a 

number of users that influence people around them called 

the key user from communication information data with 

graph mining algorithm. The experience proven that delivery 

advertisement or making market strategy direct to those key 

users is more effective. The graph can be constructed from 

user mobile phone call record, and apply PageRank 

algorithm on the graph data, then the user with higher rank 

value has the higher influence to other users which means a 

key user.  

       However, in realistic application there is no purely graph 

data to make PageRank running on it, and the scale may be 

too large for our BSP platform on the cluster. The call 

information record has number of call and called user, the 

phone duration the phone happening time and data, some of 

user number cloud be null as they belong to other mobile 

operator. So we need to clean the data, select the call 

duration longer than 5 seconds, the less may be spam call, 

and get the purely graph data. The operation flow of this 

application in our platform is showed in Figure 3. The flow 

starts with data import, and removes null value (RNV) to 

ignore the other mobile operator users, then removes 

extreme value (REV) to eliminate the spam call, and then 

builds graph and runs PageRank on the graph, finally list the 

users in order of decrease PageRank value. 

         The running result proved that the ETL operation in 

MapReduce can handle 1.3GB call information record and 

the extracted graph data is about 150MB, and the whole 

operation takes 2633seconds on our 4 computing nodes 

cluster. The single BSP platform can’t handle the original 

size of data, and the single MapReduce platform can’t finish 

computing so fast. 

5 Performance 

         We have tested the MPGM for its functionality, 

reliability, usability, efficiency, maintainability, and 

portability. The evaluation was performed on clusters 

having 9 nodes, where each node consis ts of 2 Intel(R) 

Xeon(R) CPU E5530, 48 GB main memory and 1024 GB hard 

drive. The evaluation data is a randomly generated graph 

data set scale ranging from 10,000 edges to 2000,000 edges. 

We also deployed a BC-PDM on the same cluster and run 

some social network analysis algorithms using Google web 

data. Some of the results are presented in Figure 4. Finally, 

we compared MPGM and BC-BSP with the PageRank 

algorithm on a 4-node cluster, but where the nodes have the 

same hardware. The results are recorded in Figure 5. The 

characteristics of these graphs’ data are shown in Table 1.  

Table 1. Networks Basic Structural Properties  

Name    Type 

data_set_1 17500 100000 Random 

data_set_2 72000 500000 Random 

data_set_3 175000 1000000 Random 

data_set_4 720000 5000000 Random 

data_set_5 1750000 10000000 Random 

data_set_6 3500000 20000000 Random 

GoogleWeb 875713 5105039 Web 

 

        Table 2 show that most graph mining jobs can be 

accomplished in a short time and benefit from well-designed 

architecture. Also, the MPGM has a higher performance 

than BC-PDM and BC-BSP. 



Table 2. Runtime of some Graph Mining Algorithm Components(Second) 

Graph Data 

Set 

Eigenvector 

Centrality 

Measure 

InDegree 

Count 
MSP PageRank 

Closeness 

Centrality 

Personal 

Centrality 

Clustering 

Coefficient 
RWR 

data_set_1 16.2 13.2 166.1 25.2 31.2 13.1 13.1 22.2 

data_set_2 25.1 16.2 310.1 40.2 70.5 16.1 19.1 28.1 

data_set_3 28.2 22.1 343.0 61.5 31.4 19.1 19.2 37.2 

data_set_4 88.2 64.2 696.1 202.4 25.4 22.0 31.1 169.2 

data_set_5 173.6 73.2 995.2 439.6 32.1 31.2 55.2 313.4 

data_set_6 643.7 199.3 1278.3 1241.6 55.7 52.2 151.2 688.7 

GoogleWeb 199.2 79.2 721.3 304.6 31.7 34.2 52.2 331.5 

 

 

Figure 4: Comparison of MPGM and BC-PDM on data_set_5 

 

Figure 5: PageRank Performance of MPGM and BC -BSP 

 

6 CONCLUSION 

   In this study, we introduced MPGM based on Cloud 

computing. It has the ability to analyze big graph data and 

achieved a better performance than the Hadoop-based data 

mining tools BC-PDM and BSP-based parallel platform BC-

BSP. We expected to mix more parallel computing model to 

achieve a higher performance of graph mining both in data 

scale and computing speed. 
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