
MPGM: A Mixed Parallel Big Graph Mining Tool

Ma Pengjiang
1

mpjr_2008@163.com

Liu Yang
1

liuyang1984@bupt.edu.cn

Wu Bin
1

wubin@bupt.edu.cn

Wang Hongxu
1

513196584@qq.com

1
School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract—The design and implementation of a scalable

parallel mining system for big graph analysis has proven

to be challenging. In this study, we propose a parallel data

mining system for analyzing big graph data generated on a

bulk synchronous parallel (BSP) computing model and

MapReduce computing model named mixed parallel graph

mining (MPGM). This system has four sets of parallel

graph mining algorithms programmed in the BSP parallel

model and one set of data extraction-transformation-

loading (ETL) algorithms implemented in MapReduce and

a well-designed workflow engine optimized for Cloud

computing to invoke these algorithms. Experimental show

that the components of graph mining algorithm in MPGM

are efficient and can make realistic application easy.

Keywords- Cloud computing; parallel algorithms; graph data

analysis; data mining; social network analysis

1 Introduction

 Graphs are the most widely used abstract data

structures in the field of computer science, and they offer a

more complex and comprehensive presentation of data

compared to link tables and tree structures . Many real

application issues need to be described with graphical

structure, and the processing of graph data is required in

almost all cases, such as the optimization of railway paths,

prediction of disease outbreaks, the analysis of technical

literature citation networks, emerging applications such as

social network analysis, semantic network analysis, and the

analysis of biological information networks.

 The graph mining theories and technique have been

improved all the time. However, as the information time

comes along, which has led to explosive growth of

information, the scale of graph-based data has increased

significantly. For example, in recent decades, with the

popularity of the Internet and the promotion of Web 2.0, the

number of webpages has undergone rapid growth. Based on

statistics provided by the China Internet Network

Information Center (CNNIC), at the end of December 2013,

the number of webpages in China had reached 150.0 billion,

22.2% increase over last year. Simultaneously, the number of

micro-blog users accounted for 54.7% of all Internet users,

which is approximately 308 million. This phenomenon

highlights the scale of big graph data come into being, and it

is challenging job to perform efficient analysis of these data.

To solve the large scale graph analysis task, we have built a

system called MPGM which provides a series of parallel

graph mining algorithms based on the BSP parallel

computing model. While the process of computing, the data

is always stored in memory of cluster, this mechanism helps

BSP model achieved a high performance, but limited the

scale of data that the system can handle. Therefore, MPGM

adds a set of data extract-transformation-loading algorithms

based on MapReduce to improve the data processing

capacity when the cluster scale is limited. Tests on real

mobile communication networks data show that our

improvement is reliable and highly- efficient.

 The remainder of this paper is structured as follows.

Section 2 reviews related works. And then describes

MPGM’s system architecture in Section 3. The application

example is presented in Section 4. Some performance

measurements are reported in Section 5. Finally we will

discuss future directions.

2 Related Work

 MGPM is closely related to parallel computing

platforms and graph mining tools. Here, we briefly summarize

those related works.

 Parallel computing platforms have been studied for a

long time, and they can be roughly categorized into three

types: (i) based on the MapReduce model, (ii) based on the

message passing interface (MPI) model, and (iii) based on

the BSP model. The MapReduce [1] model was proposed by

Google, and the most famous and successful open-source

implementation is Hadoop. The MapReduce model is extreme

suitable for process large scale data, and algorithms that do

not have many iterations, but it has a bad performance in

high iterative algorithm, which means that they are not

suitable for most graph algorithms.

 The MPI [2] model provides a model for message

passing, and many companies and universities have

implemented jobs that can be run on almost any type of

parallel computer, which support all existing graph

algorithms. However, because the MPI model uses a

communication method to integrate computing resources,

this model has several drawbacks, for example, the low

efficiency of parallel computing and the high consumption of

memory makes it difficult to manage the resources and

communication in detail.

 BSP [3] is also a widely used parallel computing

framework. BSP improved the weakness exhibited by

MapReduce, and performs well when a program has a large

number of iterations or requires a lot of communication. A

BSP program can be divided into several super-steps, each

of which consists of three ordered stages : local computation,

communication, and barrier synchronization. A BSP system

is composed of a number of computers with local memory

and disks. Each computer can run several computing

processes called peers. In the local computation stage, each

peer is computed using locally stored data. After finishing

local computation, each peer can communicate only

necessary data to other peers. When a peer finishes the

communication stage, it will wait until all the peers reach the

barrier synchronization and a super-step is completed.

 Popular parallel data mining tools include the following

things. Mahout [4], which is supported by the Apache

Foundation, supply classification, clustering, pattern mining,

regression, and dimension reduction and other machine

learning algorithms, but lacks the graph mining function.

GraphLab [5] improves on the MapReduce abstraction by

compactly expressing asynchronous iterative algorithms

with sparse computational dependencies. However, there

may be problems while implied a synchronous iterative

graph algorithm. PEGASUS [6] is an open-source large

graph mining system implemented on Hadoop. The key idea

of PEGASUS is to convert graph mining operations into

iterative matrix-vector multiplication. While it supports large-

scale graph data, in practice, not all of the graph mining

algorithms can be modeled by matrix-vector multiplications.

Dryad [7] is a general parallel computing platform proposed

by Microsoft Research, which abstracts the computing and

communication in data mining operations into vertexes and

edges to form a dataflow graph. The platform executes the

vertexes on work nodes and refines the dataflow graph to

optimize the running process . Big Cloud parallel data mining

(BC-PDM) [8] was developed by China Mobile Research

Institute (CMRI), and it provides visualization operations for

data mining and the analysis of graph data. However, it is

based on Hadoop, and the graph mining algorithms

therefore cannot achieve a high level of performance. Pregel

[9], which was motivated by BSP and implemented by

Google, provides a complete solution for large-scale graph

computing, but it has not been published in the public

domain. BC-BSP [10] is another implementation of the BSP

parallel platform. While most BSP platforms use memory to

exchange the temporary data, BC-BSP designed a

mechanism of spill data (including static data and dynamical

data) on the local disk to improve the data processing

capacity when the cluster scale is limited, but the

management and updating of this data spill mechanism

requires extra communication and system resources , while

introducing new defects to the platform.

3 System Architecture

 This system focuses on big graph management and

graph mining. We noticed that, while the original data is

huge, but most graph mining application using part of the

original data. In response to this feature, we use MapReduce

to extract the graph data from original data, and construct

the graph. To manage graph data and original data, we

designed a data I/O management component in the parallel

platform layer and a data management component in the

logical layer. The algorithm layer divided into two parts, the

ETL algorithm set and graph mining algorithm set. In the

graph mining field, graph pattern mining, graph clustering

mining, graph classification mining, and dynamic graph

mining are the most popular topics. We built the graph

mining algorithm set to implement graph clustering mining

and graph classification mining algorithms, and the graph

attribute analysis as the foundation of the graph analysis.

Finally, we made this system extendable to enable the

addition of other algorithm components.

 An overview of the architecture of MPGM is presented

in Figure 1. The system consists of four layers. The function

of each layer is described as follows:

Logical

Layer

Data Export

Graph I/O
Management

Data Transfer

Graph Mining Algorithm Set

Parallel Computing Engine

Graph Mining
Interface

Login Interface
Information Manage

Interface
Data Manage

Interface

System Interface

Algorithm

Layer

Parallel

Platform

Layer

Interface

Layer

User
Management

Management Component

Data
Management

Hadoop Distribute File System

Graph Attribute
Analysis

Algorithm Set

Graph Partition
Algorithm Set

Graph
Clustering

Algorithm Set

BSP

Graph Ranking
Algorithm Set

Work Flow Engine
Algorithm Component

Management

MapReduce

Data ETL
Set

ETL
Algorithm

Set

Distribute Graph File System

YARN

 Figure 1: Architecture of PGM

3.1 The Parallel Platform Layer

 The Parallel Platform Layer comprises four components:

a Distributed Graph File System, YARN, Parallel Computing

Engine, and Graph I/O Management component. We used

the Hadoop Distributed File System (HDFS) to construct the

Distributed Graph File System, enabling the storage of big

graph data. YARN, a framework for cluster resource

management and job scheduling, comprises a

ApplicationMaster (AM) which should integrates multiple

computing frameworks, e.g. MR, BSP. Because the BSP

model achieves a high performance in graph mining

algorithms, we chose Hama BSP [11] as the parallel

computing engine, and used it to handle message

communication, data distribution, and fault tolerance, and

use MapReduce as the graph data pre-processing engine for

extract graph information from original data. The Graph I/O

Management component is responsible for the transfer of

data from the database into the graph data form that the

MPGM can handle, and it then exports the resulting MPGM

data.

3.2 The algorithm layer

 The algorithm layer is the main layer of MPGM. This

layer can be roughly divided into 2 parts. The ETL algorithm

set and graph mining algorithm set. In the graph mining

algorithm set, we implemented four sets of 20 graph mining

algorithm components in the BSP parallel model and four

group of data ETL algorithm for transform original into graph

data. The ETL algorithm set is composed of data cleaning set

for detect and remove error value, data transform set for

transform value into the format we need, data extract set and

data update set. Those graph mining algorithm components

can be divided into four sets. The graph ranking set

comprises PageRank [12], HITS [13], and RWR [14]

algorithms components , the graph clustering set comprises

GN [15], CNM [16], CPM [17], and LPA [18] algorithm

components, and the K-means algorithm is used for the

processing of general data. The graph attribute analysis set

contains the graph diameter, closeness centrality, clustering

coefficient, network density, betweenness centrality , and

five other algorithm components , while the graph partition

set contains components that are based on the MSP [19]

algorithm component and the Metis [20] algorithm

component. Those algorithm components can be run either

in the console, or can be invoked in a user-defined workflow

from the user interface.

3.3 The logical layer

 The logical layer is based on Open Service Gateway

Initiative(OSGi), to implement a stable and efficient scalable

system, which is service platform and manager all kinds of

services that are supported by this layer, such as User

Management Service, Data(HDFS) Management Service ,

Algorithm Service (Each algorithm is a kind of service), and

the workflow engine Service.

 Figure 2 shows the operation of the logical layer.

Getting the start command from tomcat servlet which is a

container in the interface layer, OSGi container will execute a

train of operations, starting the life cycle, activating and

registering the each service that hosted in bundle-services

management. With the tomcat servlet invoking one of

services, Service Register queries and gets service that is

requested by the tomcat from the services pool, and then

Execution Environment (EE) calls the workflow engine

service to perform the requested service which is ultimately

implemented in the algorithm layer. There are two important

features:

Interface

Layer

OSGI Container

Graph Minning
Algorithm Services

Data ETL Algorithm

Services

Execution
Environment

Tomcat
Container

Life
Cycle

Service
Register

Servlet

Bundle-
Service
Manag-
ement

Bundle-Services

WorkFlow
Engine
Service

Other Algorithm

Services

Data Management
Service

Algorithm Layer

Logical Layer

User Management
Services

St
ar

t

Register

Start

Active

Execute

Ex
ec

ut
e

Execute Run

Run

Run

Run

Run

Run

Ru
n

 Figure 2: O peration flow of the Logical Layer

3.3.1 Hot- plugging of Bundle-Services.

 Each service that provided by Bundle-Services

Management is a plug-in or bundle with highly cohesion,

low coupling features. With the independent class loader,

OSGi prevents the external system accessing to detail of the

bundle, just exposing externally callable interfaces, and

provides a dynamic service management strategy. In other

words, receiving the operation from the interface layer,

Execution-Environment can dynamically install and uninstall

the bundle-services, without shutting down the system.

3.3.2 High scalability and flexibility of Workflow

Engine.

 The workflow engine implemented in this system

abstracts data-intensive computing into an orderly and plain

workflow instance. Meanwhile, the workflow engine defining

a set of unified interfaces can be seamless integrated with

multiple computing frameworks, e.g. MR, BSP. Figure 3

shows an example workflow instance which includes three

algorithms that can be divided into two categories , based on

MR and based on BSP. When the interface layer sends a

command to execute, Workflow Engine automatically

analyzes the workflow and orderly executes the each

component. Workflow Engine also achieve computing

operation monitoring and provides an flexible configuration .

3.4 The interface layer

 The interface layer is built in HTML, and flex provides

an interactive interface with which the user can login to the

MPGM, management information, and most importantly, use

the graph algorithms’ mining graph data.

4 Application Example

 Here we use the key user of mobile communication

discovery as an example to demonstrate our plat-form.

Figure 3: O peration flow of the Key User Discovery

application

 The discovery of key person in mobile communication is

an important and valuable application. It is trying to find a

number of users that influence people around them called

the key user from communication information data with

graph mining algorithm. The experience proven that delivery

advertisement or making market strategy direct to those key

users is more effective. The graph can be constructed from

user mobile phone call record, and apply PageRank

algorithm on the graph data, then the user with higher rank

value has the higher influence to other users which means a

key user.

 However, in realistic application there is no purely graph

data to make PageRank running on it, and the scale may be

too large for our BSP platform on the cluster. The call

information record has number of call and called user, the

phone duration the phone happening time and data, some of

user number cloud be null as they belong to other mobile

operator. So we need to clean the data, select the call

duration longer than 5 seconds, the less may be spam call,

and get the purely graph data. The operation flow of this

application in our platform is showed in Figure 3. The flow

starts with data import, and removes null value (RNV) to

ignore the other mobile operator users, then removes

extreme value (REV) to eliminate the spam call, and then

builds graph and runs PageRank on the graph, finally list the

users in order of decrease PageRank value.

 The running result proved that the ETL operation in

MapReduce can handle 1.3GB call information record and

the extracted graph data is about 150MB, and the whole

operation takes 2633seconds on our 4 computing nodes

cluster. The single BSP platform can’t handle the original

size of data, and the single MapReduce platform can’t finish

computing so fast.

5 Performance

 We have tested the MPGM for its functionality,

reliability, usability, efficiency, maintainability, and

portability. The evaluation was performed on clusters

having 9 nodes, where each node consis ts of 2 Intel(R)

Xeon(R) CPU E5530, 48 GB main memory and 1024 GB hard

drive. The evaluation data is a randomly generated graph

data set scale ranging from 10,000 edges to 2000,000 edges.

We also deployed a BC-PDM on the same cluster and run

some social network analysis algorithms using Google web

data. Some of the results are presented in Figure 4. Finally,

we compared MPGM and BC-BSP with the PageRank

algorithm on a 4-node cluster, but where the nodes have the

same hardware. The results are recorded in Figure 5. The

characteristics of these graphs’ data are shown in Table 1.

Table 1. Networks Basic Structural Properties

Name Type

data_set_1 17500 100000 Random

data_set_2 72000 500000 Random

data_set_3 175000 1000000 Random

data_set_4 720000 5000000 Random

data_set_5 1750000 10000000 Random

data_set_6 3500000 20000000 Random

GoogleWeb 875713 5105039 Web

 Table 2 show that most graph mining jobs can be

accomplished in a short time and benefit from well-designed

architecture. Also, the MPGM has a higher performance

than BC-PDM and BC-BSP.

Table 2. Runtime of some Graph Mining Algorithm Components(Second)

Graph Data

Set

Eigenvector

Centrality

Measure

InDegree

Count
MSP PageRank

Closeness

Centrality

Personal

Centrality

Clustering

Coefficient
RWR

data_set_1 16.2 13.2 166.1 25.2 31.2 13.1 13.1 22.2

data_set_2 25.1 16.2 310.1 40.2 70.5 16.1 19.1 28.1

data_set_3 28.2 22.1 343.0 61.5 31.4 19.1 19.2 37.2

data_set_4 88.2 64.2 696.1 202.4 25.4 22.0 31.1 169.2

data_set_5 173.6 73.2 995.2 439.6 32.1 31.2 55.2 313.4

data_set_6 643.7 199.3 1278.3 1241.6 55.7 52.2 151.2 688.7

GoogleWeb 199.2 79.2 721.3 304.6 31.7 34.2 52.2 331.5

Figure 4: Comparison of MPGM and BC-PDM on data_set_5

Figure 5: PageRank Performance of MPGM and BC -BSP

6 CONCLUSION

 In this study, we introduced MPGM based on Cloud

computing. It has the ability to analyze big graph data and

achieved a better performance than the Hadoop-based data

mining tools BC-PDM and BSP-based parallel platform BC-

BSP. We expected to mix more parallel computing model to

achieve a higher performance of graph mining both in data

scale and computing speed.

7 Acknowledgment

 This work is supported by the National Key Basic

Research and Department (973) Program of China

(No.2013CB329603) and the National Science Foundation of

China (Nos.61375058,and 71231002). This work is also

supported by the Special Coconstruction Project of Beijing

Municipal Commission of Education.

8 References

[1] J. Dean, and G. Sanjay, MapReduce: Simplified data

processing on large clusters, Communications of the ACM.,

vol. 51, no. 1, pp. 107-113,2008.

[2] S. Marc, S. W. Otto, D. W. Walker, J. Dongarra, and S.

Huss-Lederman, MPI: The Complete Reference. MIT press,

1995.

[3] L. G. Valiant, A bridging model for parallel computation,

Communications of the ACM., vol. 33, no. 8, pp. 103-111,

1990.

[4] S. Owen, A. Robin, T. Dunning, and E. Friedman,

Mahout in Action. Manning, 2011.

[5] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,

and J. M. Hellerstein, Graphlab: A new framework for parallel

machine learning, arXiv preprint., arXiv:1006.4990, 2010.

[6] U. Kang, C. E. Tsourakakis, and C. Faloutsos,

Pegasus:A peta-scale graph mining system implementation

and observations, in Data Mining, 2009. ICDM’09. Ninth

IEEE International Conference on, 2009.

[7] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

Dryad: Distributed data-parallel programs from sequential

building blocks, ACM SIGOPS Operating Systems Review,

vol. 41, no. 3, pp. 59-72, 2007.

[8] L. Yu, J. Zheng, W. Shen, B. Wu, B. Wang, L. Qian,

and B. Zhang, BC-PDM: Data mining, social network

analysis and text mining system based on cloud computing,

presented at the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

2012.

[9] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,

I.Horn, N. Leiser, and G. Czajkowski, Pregel: A system

forlarge-scale graph processing, in Proceedings of the

2010ACM SIGMOD International Conference on

Management of Data, 2010.

[10] Y. Bao, Z. Wang, Y. Gu, G. Yu, F. Leng, H. Zhang, B.

Chen, C. Deng, and L. Guo, BC-BSP: A BSP-based parallel

iterative processing system for big data on cloud

architecture, in Proc.Database Systems for Advanced

Applications, Springer Berlin Heidelberg, 2013.

[11] S. Seo, E. J. Yoon, J. Kim, S. Jin, J. Kim, and S. Maeng,

Hama: An efficient matrix computation with the mapreduce

framework, in Cloud Computing Technology and Science

(CloudCom), 2010 IEEE Second International Conference on,

2010.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd, The

PageRank citation ranking: Bringing order to the web, 1999.

[13] http://malt.ml.cmu.edu/mw/index.php/Random walk

with restart.

[14] J. M. Kleinberg, Authoritative sources in a hyperlinked

environment, Journal of the ACM (JACM), vol. 46, no. 5, pp.

604-632, 1999.

[15] M. Girvan and M. E. J. Newman, Community

structurein social and biological networks, Proceedings of

theNational Academy of Sciences, vol. 99, no. 12, pp. 7821-

7826, 2002.

[16] A. Clauset, M. E. J. Newman, and C. Moore, Finding

community structure in very large networks, Physical

Review E, vol. 70, no. 6, 2004.

[17] M. E. J. Newman and M. Girvan, Finding and

evaluating community structure in networks, Physical

Review E, vol. 69, no. 2, 2004.

[18] U. N. Raghavan, R. Albert, and S. Kumara, Near linear

time algorithm to detect community structures in largescale

networks, Physical Review E, vol. 76, no. 3, 2007.

[19] Z. Zeng, B. Wu, and H. Wang, A parallel graph

partitioning algorithm to speed up the largescale distributed

graph mining, in The 1st International Workshop on Big

Data, Streams and Heterogeneous Source Mining:

Algorithms, Systems, Programming Models and

Applications, 2012.

[20] G. Karypis and V. Kumar, Metis -unstructured graph

partitioning and sparse matrix ordering system, version 2.0,

1995.

[21] J. Yang and D. Zhang, Lightweight workflow engine

based on Hadoop and OSGI, presented at the 5th IEEE

International Conference on Broadband Network &

Multimedia Technology, Beijing, China, 2013.

