
Constructing a Semantic-Based Image Retrieving system

– Image Semantic Searching System (ISSS)

Yi Liu
1
, Peiyi Xiao

1
, and Michael C. Wimberly

2

1
Dept. of Electrical Engineering and Computer Science, South Dakota State University, Brookings, USA

2
GISc Center of Excellence, South Dakota State University, Brookings, USA

Abstract - Because of the great volume of image resources

produced and gathered on the web for public browsing,

image retrieving tools and systems play an important role for

users in retrieving image resources. A novel image retrieving

system, the Image Semantic Search System (ISSS), was

designed and implemented based on semantic web concepts

and techniques. The paper illustrates the methodology for

designing the sematic search system to provide user friendly

interfaces and relevant searching results. The paper also

presents the architectural design and implementation of the

system and uses a case study to demonstrate the application

of ISSS.

Keywords: semantic web; image search system; web

application

1 Introduction

 Due to the large volume image resources produced and

gathered on the internet, it becomes difficult for end users to

retrieve desired resources. Although numerous of image

retrieving systems have been developed based on different

methodologies, there are still some key problems that have

not been adequately resolved. For example, users typically

take too many responsibilities for retrieving relevant results.

Therefore, in order to provide a good searching experience to

the users, there is a need for developing more result relevant

and user friendly image retrieving systems.

A prevailing response to this need is semantic-based

image retrieving systems. Semantic-based approaches extract

the semantic meaning of the image resources using Semantic

Web [1] techniques to interpret both the resources and the

users in order to reduce users’ responsibilities and always

provide users with relevant results.

This research aims to construct a novel semantic-based

image retrieval system Image Semantic Searching System

(ISSS) to provide users better experience on searching

images. The ISSS is designed for both image seekers, who

search for the images, and image producers, who generate or

publish the images. For the image seekers, ISSS should have

simple and easy-to-use interfaces and always provide

relevant results to users without any duplicated or wasted

effort. For the image producers, ISSS should have user

friendly interfaces and should support reusability in other

websites.

Below lists the objectives for the design of ISSS.

Objective 1: The system should provide user friendly

interfaces for both image seekers and image producers.

Objective 2: The system should always provide the most

relevant results for image seekers.

 For each search, the system will provide the most relevant

result if it can be found; otherwise, it will return no result.

Objective 3: Although this image searching system was

initially designed for searching map images stored in a web

atlas, it should provide an easy way to make it reusable in

other websites as an image search component.

The paper focuses on the construction of ISSS. Section

2 illustrates the background information that is used in ISSS.

Section 3 illustrates the methodology of the design of the

ISSS. Section 4 shows architectural design of the ISSS and

Section 5 sketches the implementation. Section 6

demonstrates how to plug-in ISSS in a real world

application. Section 7 summarizes and discusses the results.

Fig.1. Semantic Web Layers

2 Background

2.1 Semantic web

The semantic web technique is adopted for developing

the ISSS. The semantic web is used to help computers

“understand” the information on the web so that they can

support richer discovery, data integration, navigation and

automation of tasks [2, 3].

Trust

Proof

Logical

Ontology vocabulary

RDF + RDF Schema

XML + NS + XML Schema

URI Unicode

The Semantic Web principles are implemented in the

layers of web technologies and standards shown in Fig. 1[1].

The Unicode and Uniform Resource Identifier (URI) layer

guarantees the international characters sets to be used to

provide identical means for resources or objects. The XML

layer ensures the Semantic Web definitions can be integrated

with other XML based standards. The RDF and RDF Schema

layers are responsible for describing each resource or object

by make statements about the URI of resources. The Ontology

layer defines the relationships between the different concepts

of each vocabulary. The Logic layer enables the writing of

rules while the Proof layer executes the rules and evaluates

together with the Trust layer mechanism for applications

whether to trust the given proof or not. At the present time,

the Logic, Proof and Trust layers are still under development

and have not yet been incorporated into the application.

2.2 Dublin Core

 The Dublin Core metadata terms [4,5] are a set of

vocabulary terms which can be used for the purposes of

discovery and generic resource description. The terms can be

used to describe a full range of web resources: video, images,

web pages, and etc. The simple Dublin Core Metadata

Element Set (DCMES) consists of 15 metadata elements [6]:

 title identifier source language relation

 coverage rights creator subject description

 publisher contributor date type format

These metadata terms can represent the characteristics

of each resource in different perspectives, and each resource

can be described or organized around these terms. Based on

different needs, terms from the set can be adopted to describe

new resources, or the original term set can be extended to add

more terms. For ISSS, we adopt title, subject, coverage, date,

and format to describe image resources, and we rename them

to be theme, event, location, period and style, respectively.

3 Methodology

In order to satisfy objective 2 to provide the most

relevant results to image seekers, ISSS should interpret both

users’ input and resources correctly. We propose a

methodology for describing resources, extracting information,

organizing resource properties and inferring resources. The

whole interpretation process, as shown in Fig. 2, is divided

into three parts: resource description, information extraction,

and resource inference.

3.1 Resource Description

 One of the Semantic Web techniques, Resource

Description Framework (RDF), is used to organize and

describe resources thoroughly. For interpreting each resource

effectively, a resource model with five basic properties

(adoption of the Dublin core) – theme, event, location,

period and style is designed and applied into RDF.

 It is not reasonable to produce duplicated resources, so

we assume that there are no duplicated resources in storage,

which means that no two resources have identical properties.

In this way, the properties make each resource unique and

searchable. For example, a resource whose properties are

West Nile Virus (theme), Incidence Rate (event), South

Dakota (location), 2011 (period) and JPG (style) differs from

another newly produced resource with the properties – West

Nile Virus (theme), Incidence Rate (event), South Dakota

(location), 2012 (period) and JPG (style). Even though they

have similar properties, the difference of their period

property makes them different and unique.

 By applying the resource description model, each

resource can be interpreted by checking and identifying all

its associated properties. If all the properties of a resource are

exactly match those a user indicates, then the resource is the

user’s wanted result. To get relevant results, interpreting

only resources is not enough. It is not possible to match a

resource without users’ indication as reference. So, another

important issue is how to interpret input from the users.

Fig. 2. Interpretation process

3.2 Information Extraction

 Information Extraction is used to analyze user input

and extracts useful information to find out users' target

results. To avoid missing any useful information and provide

flexibility of user input, the system extracts information in

two different ways - Syntax Interpretation and Semantic

Interpretation.

 The syntactic styles of users’ input can vary, based on

different spelling habits. For example, “West Nile Virus” is

treated as same as “WNV” or “West Nile.” For interpreting a

word or a phrase in different syntactic styles, it is necessary

to collect and organize the different syntactic forms of that

word or phrase. Another way to interpret a phrase or a word

in a different syntax is to identify its misspelling forms. For

example, a misspelled phrase “West Nile Virous” has

explicit meaning of “West Nile Virus”. Thus, organizing and

identifying the misspelled phrases also facilitates interpreting

user input. A Syntax Thesaurus is attached to the system to

help the system identify user input in various syntactic forms.

The Syntax Thesaurus organizes common words and their

spelling and misspelling variations.

 The Semantic Interpretation focuses on words'

synonyms. The meaning of a word can be represented by

identifying and interpreting its synonyms. For instance,

“incidence rate” has the same meaning as “incidence

proportion”. Similar to the process of Syntax Interpretation,

a Synonym Thesaurus is constructed to identify the

synonyms of the core words used to describe a resource.

3.3 Inference Rule

 An Inference Rule is the act of inferring the unknown

information of a resource based on the interpreted

information. Due to the large volume of resources that may

accumulate in resource storage, we designed an Inference

Rule for inferring the target resources by narrowing down the

searching range purpose. Fig.3 shows the Inference Rule.

Fig.3. Inference Rule

Consider each resource property in the resource model

as theme (T), event (E), location (L), period (P) and style (S),

and then we have the following inference logic:
T → E

¬ T → ¬ E

(T → E) ∧ T → L

(T → E) → L ∧ T ∧ E → P

((T → E) → L) → P ∧ T ∧ E ∧ L→ S

(T ∧ ¬ E) → ¬ L

(T ∧ E ∧ ¬ L) → ¬ P

(T ∧ E ∧ P ∧ ¬ E) → ¬ S

(T → E) ∧ (E → L) → (T→ L)

(T → E) ∧ (E → L) ∧ (L → P) → (T→ P) ∨ (E→ P)

 (T → E) ∧ (E → L) ∧ (L → P) ∧ (P → S) → (T→ S) ∨ (E→ P) ∨

(E→ S) ∨ (L→ S)

(T → E ∧ E ∧ P ∧ ¬ E) → ¬ S

A traditional method for inferring resource information

is schematizing the content of Resource Description

Framework (RDF) by using Resource Description Framework

Schema (RDFS) and using RDF query language such as

SPARQL [7] to parse the RDF and RDFS files to query and

infer resource information. This requires the construction of a

resource schema file and the annotation of the relationships

between the information. In addition, an extra query

language is needed for querying the resource description and

resource description schema files. The query processes may

be complicated and time consuming based on the

construction and format of the parsed files. Our method

focuses on constructing a resource information file, which is

formatted automatically based on the Inference Rule when

resources are generated. There is no need to construct a

resource schema file, or use a query language and the

associated query rule to get the information. Therefore, our

method is more efficient and convenient compared to the

traditional method.

4 Architectural Design of ISSS

 The following assumptions are made to serve as the

basis of the architectural design of ISSS.

(1) The resources include many different image types such as

JPEG, PDF, PNG, KML, and KMZ and so on. The

image resource is stored in the system and available for

retrieval.

(2) Two different user interfaces are provided for two types

of users – resource seekers and resource providers.

Resource seekers search and view the resources stored in

the system through a data reading interface, and resource

providers generate the resource and store them in the

system through a data providing interface.

Fig. 4. ISSS Components

ISSS adopts the client-server architecture for the entire

system. Resource seekers and resource providers are on the

client side and they are provided user interfaces to interact

with the server side. Components Information Extraction

(IE), Search Engine (SE), Resource Storage (RS) and

Resource Generation (RG), are sitting on the server side to

perform the tasks of storing resources, analyzing the resource

seekers’ inputs, and conducting searching.

Information Extraction (IE) Component

IE maps to Information Extraction that is described in

the methodology. IE is responsible for collecting the resource

seeker’s input and extracting the semantic meaning of the

input through the data reading interface. A Syntax

Thesaurus and a Synonym Thesaurus are attached to the IE

component to check and interpret the input information.

Resource Storage (RS) Component

RS maps to the Resource Description for storing all the

resources and monitors the requests from other components.

Each resource stored in RS is described and organized based

on the applied Resource Description Model. RS also provides

the functionality for retrieving resources from storage and

sending them to other components. For example, RS will

provide the requested resource to SE when it sends a request.

Search Engine (SE) Component

SE maps to Inference Rule for searching target

resources. It carries users’ input and accesses other

components to query and check resources, and then provides

resource properties information or searching results to users.

Theme, event, location, period and style are used as the basic

properties to describe each resource. The inference rule

specified in section 3 is applied into SE for identifying the

resource properties, checking the resource availability and

reducing the target resource’s range. SE communicates with

IE and gets the extracted properties of the resources from it.

With the known resource properties from IE, SE provides a

user-friendly interface to get the unknown properties from the

users through the interface. After all the properties are

collected by SE, it interacts with the RS to query resources.

Resource Generation (RG) Component

RG allows the resource provider to generate resources

and store them into the RS. The operations and interfaces of

RG are provided in the resource generator view. It provides

three operations,

addForResource(),addForSourceCheck()and

addForThesaurus(). After generators finish creating the

resource, the operation addForResource() stores the created

resource into RS, operation addForSourceCheck() puts the

resource property information into the Inference Rule file,

and addForThesaurus() sends the resource property synonym

information to the Synonym Thesaurus.

Resource providers produce resources through the user

interface provided by RG. RG communicates with RS and

stores all the produced resources in RS. IE monitors users’

searching requests and extracts the information from their

input. It then contacts SE to send users’ requests and the

related data of resources. Finally, SE searches the resources

and sends the requests to RS to retrieve and display the

search result to users. Their interactions are illustrated in

Fig.5.

Fig.5. ISSS component interactions

5 Implementation

 The server side of ISSS was coded in PHP 5[8]. The

Client side scripts were developed in HTML for the structure

of user interfaces, JavaScript and AJAX [9] for the

interactions, and Cascading Style Sheets (CSS) [10] for

adding styles to the web page layouts.

RDF and Inference Rule

All the resources are defined and stored in the RDF

based on the applied Resource Description Model. In RDF,

XML is used to express the resource information in form of

triples: Subject-Property-Value. User defined tags are used in

RDF to describe the attributes or characteristics of each

resource. The name/link of each image resource is treated as

the Subject. The property of description model is the

Property, and the text content of the property is the Value.

Fig. 6 shows an example of image resource description. Tag

<regardTo> is for the property Theme, displayed is for Event,

<recoding> is for Period, <occurred> is for Location, and

<madeInto> is for Style. The inference rules for resource

descriptions are stored in an inference rule file shown in Fig.

7.
 <resource>

 <image id="0" name="Timeseries incidence rates from 2002-

2011"

 link="/model/maps/asia_trip_n.kmz">

 <regardTo resource="west nile virus" />

 <displayed resource="incidence rate" />

 <recording resource="2002-2011" />

 <occurred resource="northern great plains" />

 <madeInto resource="kml" />

 </image>

</resource>
Fig. 6. A sample resource description with one piece of image resource

Fig. 7. Inference rule file

Implementation of Information Extraction (IE) Component

The main operation of the IE component is

extractProperties(), which tries to extract all the properties

information of resources. This operation includes several sub

functions, each of which is for extracting one of the

properties in the Resource Description Model. During

information extraction, IE opens and parses the attached

syntax and synonym thesauruses for the syntax and semantic

interpretation. The thesauruses are well organized by using

XML. Fig. 8 shows the partial codes of IE and Fig.9 and 10

show the partial content of the thesauruses.

Search Engine

(SE)

Resource

Generator

Resource

Storage (RS)

Information

Extraction (IE)

class InformationExtraction

{ function extractProperties($content, $theme, $event,

 $location, $period, $style)

 { extractTheme(); extractEvent(); extractLocation();

extractPeriod(); extractStyle();

 }

 …

}
Fig. 8. Partial code of IE component

<?xml version="1.0"?>

<syntax from="WIKI MISSPELLING DATABASE">

 <aFile commnet="all the words start with alphabet-a">

 <author>

 <autor />

 </author>

 <authority>

 <autority />

 </authority>

 </aFile>

 </syntax>
Fig.9. Partial code of syntax thesaurus

Fig.10. Partial code of synonym thesaurus

Implementation of Resource Storage (RS) Component

In the RS component, the method displayResource()

identifies resource types by parsing RDF and gets resources

for users. RDF is easily parsed using PHP. Because RDF is an

XML based file, many XML query techniques such as XPath,

Simple XML, XML DOM and so forth that can be used to

read and write data to RDF. In the implementation of ISSS,

XPath is used for parsing RDF. Fig.11 shows the partial

code of the RS component.

class ResourceStorage

{ function displayResource($theme, $event, $location,

 $period, $style)

 {//check resource type

 checkResourceType ($style);

 //get resource from the resource storage

 fetchResource($theme, $event, $location, $period, $style);

 }

 function fetchResource($theme, $event, $location,$period,

$style)

 { ...
 $xmlRDF = new DOMDocument();

 $xmlRDF -> load(RDF);

 $xmlRDFXpath = new DOMXPath($xmlRDF);

 $resource = $xmlRDFXPath->

 query("//theme[@id='".$theme."']/

 event[@id='".$event."']/location[@id='".$location."']/

 period[@id='".$period."']/style[@id='".$style."']");

 ...

 }

}
 Fig.11. Partial code of RS component

Implementation of Search Engine (SE) Component

 In SE component, the operation searchProperties() parses

the inference rule file and infers resource properties via the

extracted information or user’s indication. After all the

needed properties are inferred and collected by SM, it

communicates with RS to get the target resource. Fig. 12

shows the partial code of the function searchProperty.

class SearchEngine

{ ...

 //search the properties of target resource

 function searchProperty()

{ searchTheme(); searchEvent(); searchLocation();

searchPeriod(); searchStyle();

 }

}
Fig. 12. Partial code of SE component

Implementation of Resource Generation (RG) Component

RG provides a user interface in resource generator’s

view to let resource generators indicate all the information

for each resource property when they are creating resources.

The operation addForResource() takes resource properties’

information and communicates with RS to write the

information into RDF. addForSourceCheck() opens and

parses the Inference Rule file to add the resource information

into the file. RG collects synonym information of resource

properties from the resource generator, and

addForThesaurus() adds synonyms into the Synonym

Thesaurus. Fig. 13 shows the partial code of the

implementation of the RG component.

class GenerateResource

{ ...

 //function to add resource to RDF

 function addResource($staticmapfiles, $name, $theme,

 $event, $location, $period)

 { ...}

 //add resource to inference

 function addForResourceCheck($staticmapfiles, $theme,

 $event, $location, $period)

 { ... }

 //add resource to thesaurus

 function addForThesaurus($theme, $event, $location,

 $period, $synonym1, $synonym2, $synonym3)

 {...}

}
Fig. 13. Partial code of RG component

Implementation of ISSS Plug-In

ISSS plug-in class is implemented to address objective 3

for providing reusability. The independent module ISSS

plug-in can be instantiated for plugging ISSS into any existed

web site for image retrieving. The plug-in class provides

operations for configuring both the source file and the

destination file, and then it ships ISSS to the plugged site.

Partial code of the ISSS Plug-In is shown in Fig. 14.

class ISSS

{ protected $newPath; protected $sourcePath;

 protected $jsPath; protected $cssPath;

 protected $pluginFile; protected $componentName;
 public function ISSSPlugIn()

 { //config ISSS component

 $this->configApplication();

 //setup ISSS component

 $this->setupModules($this->newPath, $this->sourcePath);

 //plug ISSS component

 $this->PagePlugIn();

 }

 public function configApplication()

 { // code for setting up the $componentName, $newPath,

 //$sourcePath, $jsPath, $cssPath, pluginFile

 }

 public function shipFiles($newAppPath, $fwaPath)
 { // code for shipping the needed files to the destination }

 public function PagePlugIn()

 { // code for plug the search page to the website }

 }
Fig. 14. Partial code of ISSS plug-in

6 Use of ISSS

6.1 Plug In ISSS

The design and implementation of ISSS supports

reusability. It can be plugged into any website as an image

retrieval system. To plug ISSS in, the developer needs to (1)

configure and setup ISSS by indicating both the ISSS source

file path and target path; and (2) plug- ISSS user interface

into any web page by indicating the path of that page. The

following shows an example of plugging ISSS to an existing

website EASTWeb[11]. EASTWeb is a collaborative project

involving scientists from South Dakota State University and

the USGS Center for Earth Resources Observation and

Science (EROS), along with partners from government

agencies, and nongovernmental organizations. EASTWeb

collects various types of images of public health maps, and it

provides public access to the web users to retrieve these

image resources. ISSS is plugged into EASTWeb to facilitate

web users to retrieve web resources.

 i. Indicate all the paths for plugging ISSS into EASTWeb
$newPath="eastweb/ISSS";

$sourcePath="web/ISSS";

$jsPath="web/js";

$cssPath="web/css";

$pluginFile="eastweb/homepage.html";

$componentName="eastweb/search";

 ii. Instantiating the new ISSS
$eastwebISSS=new ISSS();

 iii. Invoking the plug-in method

 $eastwebISSS->ISSSPlugIn($newPath, $sourcePath,

 $jsPath, $cssPath, $pluginFile, $componentName);

After the setup and plug-in of ISSS is complete, the search

interface is displayed in the plugged page. EASTWeb ISSS is

ready to be used by the end users to search image resource.

6.2 Resource Seeker’s View

ISSS provides a search text box to users for typing target

resource information and a button to start searching

resources. Fig.15 displays the EASTWeb searching UI.

Fig. 15. EASTWEB searching UI

After a user types the content for describing the target

resource, ISSS will extract the information and try to get the

result by inferring each property of the resource. ISSS

provides resource seekers user friendly interfaces with

recommended resource properties for indicating “unknown”

properties. Fig. 16-19 shows the searching processes of

property indication. In the example, the resource information

“wnv hot spot kml” is typed in the text box by users. “wnv” is

extracted by ISSS to be the theme of the resource, “hot spot”

and “kml” are treated as the resource’s event and style. For

the unknown information, it provides the recommended

options of location and period to users.

Fig. 16. EASTWeb resource location indicating UI

Fig. 17. EASTWeb resource period indicating UI

6.3 Resource Generator’s View

ISSS provides user interfaces for generating resource in

resource generator’s view. Resource generators can create

resources by giving all the information of the resource. As

soon as the resource is created by the generator, it is stored in

Resource Storage. Fig.20 shows the resource generation

interface. It is the generator’s responsibility to provide the

information of theme, event, location, period, and style.

When an image is being uploaded, its style property can be

automatically extracted by the system from its type extension.

The generator can also illustrate the synonyms that will the

used in the Synonym Thesaurus for semantics interpretation.

Fig.18. EASTWeb resource indicating UI

Fig.19. EASTWeb result UI

Fig.20. EASTWeb resource generation UI

7 Discussion

ISSS is designed and developed for searching and

retrieving web image resources and it facilitates the

construction of web based image search system websites.

ISSS is designed with the aim for user friendliness, relevant

search results and reusability of implementation. In order to

address the user friendliness and result relevancy, we adopted

the sematic web approach and designed a methodology for

describing resources, extracting information, organizing

resource properties and inferring resources to interpret both

users and resources for retrieving target resources thoroughly.

The architectural design of the system addressed the

reusability.

Section 6 uses a case study to presents the reusability of

the ISSS system. The achievement of the user-friendliness

and result relevancy is evaluated based on the results from a

focus group survey. Two Focus Groups with eight members

in each participated in a survey containing questionnaires

addressing the user friendly interfaces and search result

relevancy. The first group was given a 35-minute

presentation on ISSS and the second group was given a 5-

minute instruction on how to use the semantic search

function in a testing website. None of the participants has

experience in developing a semantic search engine. A

specific task was given to the participants for conducting a

search. 94% of the participants think that ISSS is user

friendly and the user interface is meaningful and

straightforward to use. 100% of participants agree with that

ISSS always provides relevant results without any duplicated

or useless accompany. Based on these results, we believe

ISSS successfully achieved the objectives of user friendly

interface and result relevancy.

It can be concluded that ISSS is an image retrieving

system, which is user- friendly, result relevant, and reusable.

8 Acknowledgment

This work is supported by NIH grant R01AI079411 “An

Integrated System for the Epidemiological Application of

Earth Observation Technologies”.

9 References

[1] W3C Semantic Web Activity. http://www.w3.org/2001/sw/.

[2] T. Berners-Lee. “Weaving the Web”. Harper, San

Francisco, CA, 1999.

[3] D. Fensel, Wahlster, W., Lieberman, H., Hendler, J., eds.:

“Spinning the Semantic Web: Bringing the World Wide

Web to Its Full Potential”. MIT Press, 2002.

[4] G. Jane. “Dublin Core: History, Key Concepts, and

Evolving Context”. DC-2010 International Conference on

Dublin Core and Metadata Applications. October 20, 2010.

[5] P. Steve. “Expressing Dublin Core in Topic Maps”.

Lecture notes in Computer Science volume 4999, pp. 186-

197. 2008.

[6] Dublin Core Metadata Initiative website.

 http://dublincore.org/documents/dces/.

[7] SPARQL. http://en.wikipedia.org/wiki/SPARQL.

[8] PHP: Hypertext Preprocessor. http://us.php.net/.

[9] J.J Garrett. "Ajax: A New Approach to Web

Applications".
http://www.adaptivepath.com/ideas/essays/archives/000385.php.

[10] Cascading Style Sheets.

 http://www.w3.org/Style/CSS/Overview.en.html.
[11] EASTWeb project.
 http://globalmonitoring.sdstate.edu/projects/eastweb/.

