
Integrating Declarative Processes and SOA: A Declarative Web
Service Orchestrator

Natália Silva1,2, Renata Carvalho1, Ricardo Lima1, and Cesar Oliveira1
1Center of Informatics, Federal University of Pernambuco, Recife, Pernambuco, Brazil

2C.E.S.A.R - Recife Center for Advanced Studies and Systems, Recife, Pernambuco, Brazil
Email: {ncs, rwm, rmfl, calo}@cin.ufpe.br

Abstract— Service Oriented Architecture (SOA) is a com-
puter model that aims at building new software by assem-
bling independent and loosely coupled services. Traditional
web service orchestration is a mechanism for combining and
coordinating different web services based on a predefined
pattern. However the orchestration requirements may evolve
due to business needs. In business context, the declarative
approach has emerged to provide flexibility by modeling
what must be done but not how it must be executed through
business rules. When working with such a model, the results
produced depend on the users’ preferences. It is therefore
fundamental that orchestration mechanisms provide simple
yet efficient ways to dynamically make service composition.
This paper proposes a web service orchestrator for declar-
ative processes that makes service composition at runtime.
The resulting business process obey all the business rules.
The composition is done as the user chooses the service to
run, providing an application-aligned infrastructure that can
be scaled based on the needs of each business process, since
it is described using declarative strategy.

Keywords: Service Oriented Architecture, runtime orchestration,
flexible process, dynamic service composition.

1. Introduction
Service Oriented Architecture (SOA) is a software ar-

chitecture that focuses on delivering functionalities through
services that can be reused across an enterprise. However
these services are independent, they are defined in sequences
to fulfill business processes. Services operate without any
context from other processes within the organization.

Not only can SOA deliver on its promises of reusability
and ability (usefulness), but it can also reduce the overall cost
of ownership through the standards-based approach (ease of
use) [1]. Moreover, SOA provides a complete integration
between data and application.

Web services are an established technology for imple-
menting SOA. They can be composed to create a higher
level services or applications. Through service composition
a complex service can be created by aggregating com-
ponent services available. Conventionally, the web service
composition specifies what services need to be invoked, in
what order, and how to handle exceptional conditions [2].

Standard interfaces (such as WSDL), protocols (such as
SOAP) for describing and invoking web services, and the
loose-coupling of these services are important characteristics
that lead to more interoperable distributed systems [3].

The SOA orchestration mechanism uses a central process
to control the execution of web services. It receives the
client requests and invokes the component services. This
mechanism is referred as a centralized orchestration [4].

The orchestrator behavior may evolve as the business
requirements change. Hence, several approaches emerged to
provide more flexibility to business process execution [5].
The declarative approach provides the desired flexibility
by modeling what must be done but not how it must be
executed [6]. When working with such a model, users are
driven by the system to produce required results. However,
the manner in which results are produced depends on the
usersÕ decisions along the process execution. Since the
orchestrator behavior changes whenever the user invokes a
service execution, it is important to provide a simple and ef-
ficient way to modify the services composition dynamically.

This paper proposes an orchestration mechanism that
makes the service composition at runtime. Instead of binding
pre-modeled compositions, the proposed flexible orchestrator
binds the output data of a service to the input data of another
service at runtime. The composition is done as the user
chooses the service to run, following a declarative approach
for the business process. For the automated arrangement,
coordination, management, and binding of services, the user
must provide some data configuration through an intuitive
XML file. Our orchestrator provides an application-aligned
infrastructure that can generate various web service composi-
tion at runtime based on the needs of each business process,
since it is described using the declarative strategy.

The remainder of the paper is organized as follows. We
first introduce the concept of flexible process in Section 2.
Some related works and their main contributions are com-
pared to this work in Section 3. Section 4 presents our web-
service orchestrator. The section shows the benefits provided
by our orchestrator and details its architecture. Section 5
conducts a case study. Finally, Section 6 discuss the main
conclusions we draw in this paper.



2. Flexible Processes
When the company tasks are less repetitive and pre-

dictable, workflows are not able to properly represent the
possible flows of work [5]. They often are either too simple,
thus unable to handle the variety of situations that occur;
or they are too complex, trying to model every imagined
possible situation but being hard to maintain. In both cases
they may cause several problems to the company. To tackle
these problems, flexible processes surged as a shift paradigm
from traditional approaches [7]. The word flexible in this
context means the process is not static, it can change or
get adjusted during its execution according to different
situations.

Several different implementations of tool support for man-
aging enterprises employing flexible processes have been
proposed. They can be split into two categories:

• change-oriented: allow the business process change at
runtime;

• declarative: less prescriptive than workflow; it adopts
declarative languages.

This paper focuses on declarative process, whose the
main concept is to define the business process behavior
by business rules described through a declarative language.
Traditional workflows take an “inside-to-outside” strategy,
where all the executions alternatives must be detailed on
the process model. On the other hand, a declarative process
takes an “outsite-to-inside” strategy, where the execution op-
tions are guided by constraints [8]. Adding new constraints
reduces the number of execution options.

In this constraint-based approach, a process model is
composed of two elements: activities and constraints. An
activity is an action that updates the enterprise status and
is executed by a resource. A constraint is a business rule
which must be respected during the whole process execution.
Thereby, the permission to execute activities is controlled by
business rules, where each activity is enabled to be executed
as soon as the business rules allow it.

3. Related Works
There are some tools available to support the execution

of declarative processes [9] [10] [11] [12]. However none
of them employs Service Oriented Computing (SOC) con-
cepts. In all these systems, the activities are not actually
executed by the tool . The user only informs when he starts
and conclude/cancel each activity but its execution is not
integrated to the system. The user has to manually execute
the activities.

Current web service solutions are not able to execute
flexible processes because their implementations provide a
static execution [13]. BPEL [14], the facto standard for web
services business process description, is static and not easy
to adapt [15]. Hence, there is a need for service oriented
solutions to be more flexible since the business policies and

environments change quickly. In this context, some solutions
[16][17] [18] [19] [20][21] employs SOC and intends to
make BPEL descriptions more flexible or adaptable.

These solutions makes the BPEL more adaptive by allow-
ing dynamic composition. The idea is to make the service
composition during runtime. This is less prescriptive than the
traditional static composition strategy. Some works [16][17]
aims at improving the QoS and prevent SLA violations.
They keep the composition structure and monitor the QoS
parameters to decide which service to invoke from a group
of possible services.

Other dynamic composition solutions [18] [19] [20][21]
adapt the business process structure to reflect the current
status of the process execution. Such approaches do not
redeploy the process after modifying their structure.

VxBPEL [18] is an extension to the standard BPEL
language that provides VariationPoint. VariationPoint is a
container of possible BPEL codes available for selection at
runtime.

AO4BPEL [19]is another extension that improves the
business process flexibility using aspect-oriented concepts.
The BPEL structure can be changed through the aspects
defined. The user can activate the aspects during runtime and
then the web service flow composition can change at run-
time. CEVICHE [20] is a tool that employs the AO4BPEL.
CEVICHEÕs users do not activate the aspects. Instead, it
activates the aspects through a Complex Event Processing
(CEP) engine. CEVICHE can automatically decide when
and how to adapt the system by analyzing events with CEP
technology.

Xiao et al. [21] proposes a constraint-based framework
that employs process fragments. A process fragment is a
portion of a process that can be reused across multiple
processes. These fragments are selected and composed based
on some business constraints and policies. The resulting
process is a standard BPEL process, deployable on standard
BPEL engines.

Another dynamic composition proposal is the SCENE
service execution environment [22]. It allows the BPEL to
be changed at runtime by choosing the correct service to
be invoked based on business rules. These rules are used to
realize the correct bindings between the BPEL engine and
the services. For this purpose, there is a rule engine that
makes the decisions about the services selection.

All the aforementioned works are extensions to BPEL
aiming at making it more adaptive. However, none of them
provide ways to execute declarative processes. Since declar-
ative processes do not have any predefined structured, it is
not possible to execute them using BPEL or its extensions.

4. A declarative Web-service orchestra-
tor

In the absence of solutions to execute declarative business
processes through web services composition, we propose a



flexible orchestrator. Our work aims at allowing users to
compose services at runtime, generating a business process
that respect the business rules. As in declarative processes, if
the business rules do not prohibit the execution of an activity,
it is enabled. The user chooses one of the enabled activities
(service operation) to execute, generating a state transition.
Then, the engine evaluates the process rules to determine the
set of enabled transition in the next state.

To implement the orchestration mechanism, the engine
must register the input/output data of the services executed.
The current implementation supports values of the following
types: int, float, double, String, or boolean types, or a list of
any of these types.

This section presents our declarative orchestration mech-
anism and the architecture of our solution.

4.1 Process Definition
Before starting the process execution, the user must spec-

ify the process activities, their respective service bindings,
and the business rules of the business model. Moreover,
the user should provide the data bindings necessary for the
execution of each activity (service operation). We created a
XML-based language to express such business model and
service properties. The code in 1 presents an example of a
process definition using this language.

<process>
<globalData>

<variable name="list"
type="STRING_LIST"></variable>

<variable name="output" type="INT"
initialValue="5"></variable>

</globalData>
<activities>

<activity name="activtyA">
<serviceBinding operation="operationName"

wsdlUrl="serviceUrl"
portType="portType"
binding="binding" />

<dataInputBinding>
<variableBinding variableName="list"

global="true"
expression="xpath:/input/list" />

<variableBinding
variableName="localVariable"
global="false" type="FLOAT"
expression="xpath:/input/test" />

</dataInputBinding>
<dataOutputBinding>

<variableBinding variableName="output"
expression="//servicoResponse/return"
/>

</dataOutputBinding>
</activity>

</activities>

</process>
XML 1: Process Definition

The main tag process contains all the necessary informa-
tion to the process execution.The user must specify the ac-
tivities and the global data the orchestrator will manage. The
tags activities and globalData are used with this propose.

The globalData tag contains the list of global variables.
These variables are public. Any activity in the process
can access and modify their values during its execution.
A variable tag contains three attributes: name, type, and
initialValue. The name and type are required and refer to
the variable name and variable data type respectively. The
initialValue is optional and indicates the variableÕs initial
value.. If it is not defined, the variable is initialized with the
default value for its data type.

The activities tag contains a list of activities. Each one has
only one attribute, that defines its name, and three properties:
serviceBinding, dataInputBinding, and dataOutputBinding.
The serviceBinding tag includes all the necessary informa-
tion to associate this activity execution with a service invoca-
tion. Such information is described through four attributes::
operation, wsdlUrl, portType, and binding. The wsdlUrl
informs the url where the wsdl can be accessed from;
operation is the serviceÕs operation name; and portType and
binding determine which portType and binding defined in the
wsdl will be used.

The dataInputBinding specifies the variable binds required
for each type of operation. Each operation input must be a
value associated through a variableBinding. Thereunto, the
variableBinding has four attributes: variableName, global,
type, and expression. VariableName indicates the variable’s
name. The global tag is a boolean value used to distin-
guish global and local variables. If the value is true, the
global variable denoted in variableName will be selected.
Otherwise, a local variable is created with type denoted
through the attribute type. The attribute expression denotes
an XPATH expression. It defines the operationÕs parameter
the variableBinding refers to. It works for simple or complex
types and refers to the SOAP request message of this
operation.

The SOAP message includes the current value of the
referred global variable. However, when a local variable is
used, the user must provide the value for the SOAP message
when the referred activity is selected.

The dataOutputBinding is very similar to the dataIn-
putBinding since it has a list of variableBinding. How-
ever, dataOutputBinding represents a global variable update
through the operation response. When an operation is in-
voked, its return is caught by a variableBinding and some
global variables are updated. Hence, in an output binding, all
the variables are global and, because of this, the tags global
and type are not necessary. Besides that, the expression
attribute refers to an XPATH expression that will be used



to select a value from the SOAP response message. Then,
the referred global variable value will be updated to this
value.

This process definition is the user input to the system. The
user must also inform the set of business rules to the rule
engine. The template of business rules and their definition
depends on the type of business rule engine the system will
adopt.

4.2 Overview
A declarative web-service orchestrator interacts with the

web-services and a rule engine. Figure 1 shows an overview
of the interaction or the orchestrator and the rule engine,
web services, and users.

Flexible Orchestrator

Rule Engine

Services

Fig. 1: Overview of the proposed web-service orchestrator.

The main component is the Flexible Orchestrator since it
is responsible for interacting with all the others components.
Its internal behaviors and architecture are explained in next
subsection.

Through an user interface, the user can choose the next
activity to be executed by the declarative web-service or-
chestrator. The user interface shows the enabled activities,
the current states of the global data, and if the process
termination is enabled or not.

When an activity is selected, the Flexible Orchestrator
invokes the correct web service and then waits for the
response. It notifies the rule engine whenever an activity
is executed. The rule engine is responsible for checking
all the business rules and updates the process instance
status. Every time the process instance status changes, the
Flexible Orchestrator updates the user interface with the set
of activities enabled to execute.

An external system can plug its own implementation
of the rule engine or adopt a available one. This rule
engine must know all the rules and must listen and gen-
erate some events expected by our solution. Every time
an activity is executed, the Flexible Orchestrator gener-
ates the event DONE(activityName) and sends it to the
rule engine(s). In order to update the process instance
status, we expect some events: ENABLED(activityName),

DISABLED(activityName), ENABLED_END(), and DIS-
ABLED_END(). Hence, the rule engine must generate these
events for the correct interaction with our declarative web
service.

4.3 Architecture

Figure 2 presents the architecture of the proposed flexible
web-service orchestrator.

Process Instance Manager

XML
Parser

Data
Manager

Service
Manager

FLEXIBLE ORCHESTRATOR

Fig. 2: The architecture of the web-service orchestrator.

Our solution contains four main components:

• XML Parser: reads the user input (xml) and parses it
in order to make it readable by the Process Instance
Manager.

• Data Manager: stores the global variables and controls
their accesses and updates.

• Service Manager: invokes the service operations. This
component is responsible for creating the SOAP re-
quest message, invoking the service, reading the SOAP
response message, and giving the requested results to
the Process Instance Manager every time an activity is
chosen to be executed.

• Process Instance Manager: this is the component
that controls the whole flow of a process instance
execution. It is responsible for interacting with the other
components and the user interface. When the execution
starts, it interacts to the XML Parser in order to parse
the user input. After receiving the activities and global
variables, the execution can actually start. When the
user selects an activity to be executed, the Process
Instance Manager requests to the Data Manager the
necessary data to the variable bindings and then the
correct bindings are done. In the sequence, it forwards
this information to the Service Manager and waits for
its response. When the Service Manager returns the
requested data, the output bindings are then made.
Besides that, this component interacts with the rule
engine in order to update the group of enabled activities.



5. Case Study
In order to demonstrate the use of our declarative web-

service orchestrator, this section presents a case study. It
consists of an example of declarative process. We demon-
strate how to use our declarative orchestrator to control the
execution of two different instance of this process.

A business process of a travel agency is used in this
section to exemplify the usage of our orchestrator. This is a
declarative process expressed using activities and rules. The
travel agency can book flight tickets and/or hotels. When
the travel agency faces an international transaction, it can
convert currencies.

The travel agency contains three services. Each operator of
a service is considered as a business process activity. Table 1
details the three services, their operations, and the input and
output parameters of each operation.

Table 1: Services details.

FLIGHT SERVICE

Operations Input Output

checkFlightPrice

- from - flightId
- to - price

- date
- airline

bookFlight - flightID - bookID

payFlightBooking
- bookID - paid
- value - paymentCode

- creditCard

HOTEL SERVICE

Operations Input Output

checkHotel
- hotelName - roomsAvailable

- checkInDate
- checkOutDate

bookHotel

- hotelName - bookID
- checkInDate - bookValue

- checkOutDate
- persons

payHotelBooking
- bookID - paid
- value - paymentCode

- creditCard

CURRENCY SERVICE

Operations Input Output

convertCurrency
- value - newCurrency

- fromCurrency
- toCurrency

The declarative business process for the travel agency is
a set of business rules, defining constraints to control the set
of activities is enabled to execute at each execution point.
The process has five rules:

1) It is not possible to book a flight without checking its
price before.

2) If a flight is booked, a payment for this booking must
be done after that.

3) If the customer wants to book a flight, its price must
be checked at least in two different airlines.

4) It is not possible to book a hotel without checking it
before.

5) If a hotel is booked, a payment for this booking must
be done after that.

One can notice that the currency service was not men-
tioned among the business rules. This means that the user can
choose currency operations at any time while executing the
business process, which characterize the flexibility provided
by declarative processes.

After modeling the declarative business process, one must
link each activity in the process to the corresponding web
service. The orchestrator uses this information to perform
the service bindings when an activity (service operation) is
executed. The code XML 2 presents the variables used in this
case study. The code only describes the XML definition for
the payFlightBooking activity. This activity has references
to local variables, whose values are provided by the user
during runtime.It also has references to global variables. For
example the input parameter bookValue, which is the return
value of the activity bookFlight.

<process>
<globalData>

<variable name="flightID" type="STRING"/>
<variable name="prices" type="DOUBLE_LIST"/>
<variable name="bookID" type="STRING"/>
<variable name="bookValue" type="DOUBLE"/>
<variable name="paid" type="BOOLEAN"/>
<variable name="paymentCode" type="INT"/>
<variable name="roomsAvailable" type="INT"/>
<variable name="newCurrency" type="DOUBLE"/>

</globalData>
<activities>
...
<activity name="payFlightBooking">

<serviceBinding operation="payFlightBooking"
wsdlUrl="http://...FlightService?wsdl"
portType="FlightServicePortType"
binding="FlightServiceSOAP11Binding"/>
<dataInputBinding>

<variableBinding variableName="bookID"
global="true"
expression="xpath:/payFB/bookID"/>
<variableBinding variableName="value"
global="false" type="DOUBLE"
expression="xpath:/payFB/value"/>
<variableBinding variableName="creditCard"
global="false" type="STRING"



expression="xpath:/payFB/creditCard"/>
</dataInputBinding>
<dataOutputBinding>

<variableBinding
variableName="paid"
expression="//payFB/result/paid"/>
<variableBinding
variableName="paymentCode"
expression="//payFB/result/pCode"/>

</dataOutputBinding>
</activity>
...

</activities>
</process>
XML 2: Process Definition of Case
Study

In order to exemplify how the proposed orchestrator
works, we will show two different executions of the travel
agency business process.

Before starting the process execution, the orchestrator
requests the engine the process initial state. The rule engines
notifies that the activities ckeckFlightPrice, checkHotel, and
convertCurrency are enabled. The other activities book-
Flight, payFlightBooking, bookHotel, convertCurrency are
disabled. The process termination is also enabled at this
execution point. This happens because the process does not
obligate the execution of any activity before the process
termination.

5.1 First execution
Let us assume that a customer wants to buy an interna-

tional flight ticket. The flight ticket is sold in dollar, but this
is not the local currency. Hence, the currency service will
be useful for this execution.

The checkFlightPrice activity is enabled at the process
initial state. The travel agency employee decides to execute
this service. He provides the origin and destination places,
the flight date, and the airline company as input parameters.
The service returns the flight identifier and add its price to
the list prices. After the service execution, the orchestrator
sends a DONE(checkFlightPrice) event to the rule engine.
According to the rules, the set of activities enabled is not
modified after executing the checkFlightPrice activity. Thus,
the engine does not send any event back.

Afterwards, according to rule 3, the travel agency em-
ployee checks the flight price in other airline. When the rule
engine receives the DONE(checkFlightPrice) event again, it
sends the ENABLED(bookFlight) event back to the orches-
trator, according to rules 1 and 3. One can notice that the
checkFlightPrice activity continues to be enabled. Thus, if
the travel agency employee wants to check flight price in
another airline, she can repeat the operation an unlimited
number of times.

The travel agency employee, along with the customer,
decides to book one of the flights checked. But, before that,
the customer wants to know the flight price in the local cur-
rency. For that, the employee executes the convertCurrency
service, which does not modify the activities state. When the
client authorizes, the employee books the flight. At this mo-
ment, when the rule engine receives the DONE(bookFlight)
event, it returns ENABLED(payFlightBooking) and DIS-
ABLED_END() events. This last event was received because,
according to rule 2, the activity payFlightBooking must
necessarily be executed before the end of the process.

When the customer decides to pay its flight booking, the
employee executes the payFlightBooking service. Only this
activity is mandatory at the current execution point. The
process termination activity cannot be enabled if this activity
is not executed.

5.2 Second execution
Let us now assume that a customer wants to book a hotel

in another city of the same country. For this execution, the
currency service will not be used.

At the beginning, the travel agency employee check hotels
in the desired city. For that, he executes checkHotel service
informing the hotel name, and check-in and check-out dates.
This service returns the number of rooms available in the
hotel. After the execution of this service, and according
to rule 4, the rule engine generates to the orchestrator the
ENABLED(bookHotel) event.

The customer decides to book certain hotel, and the
travel agency employee makes his booking. This action
makes the engine to enable the payHotelBooking service.
The engine also disables the process termination (through
the DISABLED_END() event) because the payHotelBooking
activity is now obliged to be executed before the end of the
process, according to rule 5.

In another occasion, but before paying its hotel booking,
the customer could decide to check other hotels. Hence,
the employee executes the checkHotel many times in order
to find a hotel that pleasure the customer. Executing the
checkHotel service many times does not violate any rule.
When he finds one, he books this hotel, and then the
customer can pay for his booking. From this moment, the
process execution for this customer can be finished since
there is no mandatory activity pending.

One can perceive that according to the business process
defined through business rules, the activities can be executed
in any order and/or how many times it is necessary if this
execution does not violate any rule.

6. Conclusions
This work proposes a web-service orchestrator for exe-

cuting declarative business processes. This kind of business
process models rely on business rules to describe the behav-
ior of the process and to control the execution of process



instances. When working with such a model, the users are
driven by the system to produce required results, while the
manner in which the results are produced depends on the
preferences of users.

Some of the already existent orchestrators provide a static
execution, such as the ones that use the BPEL standards.
Other orchestrators are more adaptive and allow dynamic
composition, but they only provide runtime binding with
some pre-modeled compositions. In turn, our proposed or-
chestrator makes service composition at runtime, binding the
output data of a service to the input data of another service.

Our orchestrator receives a declarative process as input.
The user also provide the service binding with the process
activities, and the data bindings. For this, we defined an
XML-based language to specify the business model and
services properties.

Our complete solution interacts with a business rule
engine. This engine receives and sends events to the orches-
trator in order to check the business rules and update the
process instance status.

To demonstrate our orchestrator, we showed two different
executions of a same business process. The business process
presented as example is declarative, and it is expressed by
activities and rules. Through the different executions, it is
possible to notice the flexibility to choose the order of
activities executions and how our orchestrator binds data
between services.

Acknowledgment
This work was partly supported by the Brazilian

Research Council(CNPq1), grants PQ 314539/2009-3,
GD 140512/2009-8, GD 142032/2010-7, and CESAR2.

References
[1] A. Poduval, D. Todd, and H. Gaur, Do More with SOA Integration:

Best of Packt. Livery Street Birmingham, UK: Packt Publishing,
2011.

[2] H. Kacem, W. Sellami, and A. Kacem, “A formal approach for the
validation of web service orchestrations,” in Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), 2012 IEEE
21st International Workshop on, june 2012, pp. 42 –47.

[3] F. Rosenberg and S. Dustdar, “Towards a distributed service-oriented
business rules system,” in Proceedings of the Third European
Conference on Web Services, ser. ECOWS ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 14–. [Online]. Available:
http://dx.doi.org/10.1109/ECOWS.2005.28

[4] X. Chen, H. Zeng, and T. Wu, “Decentralized orchestration with local
centralized orchestration for composite web services,” in Proceedings
of the 2010 International Conference on Parallel and Distributed
Computing, Applications and Technologies, ser. PDCAT ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 255–260.
[Online]. Available: http://dx.doi.org/10.1109/PDCAT.2010.16

[5] S. Nurcan, “A survey on the flexibility requirements related to business
processes and modeling artifacts,” in HICSS ’08: Proceedings of the
41st Annual Hawaii International Conference on System Sciences.
Washington, DC, USA: IEEE Computer Society, 2008, p. 378.

1http://www.cnpq.br
2http://www.cesar.org.br

[6] M. Pesic, “Constraint-based workflow management systems: Shifting
control to users,” Ph.D. dissertation, Technische Universiteit Eind-
hoven, Eindhoven, The Netherlands, 2008.

[7] W. M. P. van der Aalst and M. Pesic, “Decserflow: Towards a truly
declarative service flow language,” in The Role of Business Processes
in Service Oriented Architectures, 16.07. - 21.07.2006, ser. Dagstuhl
Seminar Proceedings, F. Leymann, W. Reisig, S. R. Thatte, and
W. M. P. van der Aalst, Eds., vol. 06291. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2006.

[8] M. Pesic and W. M. P. van der Aalst, “A declarative approach
for flexible business processes management,” in Business Process
Management Workshops, ser. Lecture Notes in Computer Science,
J. Eder and S. Dustdar, Eds., vol. 4103. Springer, 2006, pp. 169–180.

[9] P. Browne, JBoss Drools Business Rules. Packt Publishing, 2009.
[10] E. F. Hill, Jess in Action: Java Rule-Based Systems. Greenwich, CT,

USA: Manning Publications Co., 2003.
[11] S. Bhansali and B. N. Grosof, “Extending the sweetdeal approach

for e-procurement using sweetrules and ruleml,” in Proceedings
of the First international conference on Rules and Rule Markup
Languages for the Semantic Web, ser. RuleML’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 113–129. [Online]. Available:
http://dx.doi.org/10.1007/11580072_10

[12] M. Pesic, H. Schonenberg, and W. van der Aalst, “Declare: Full
support for loosely-structured processes,” in Enterprise Distributed
Object Computing Conference, 2007. EDOC 2007. 11th IEEE Inter-
national, oct. 2007, p. 287.

[13] B. Orriens, J. Yang, and M. Papazoglou, “A rule driven approach for
developing adaptive service oriented business collaboration,” in In:
ICSOC, 2005, pp. 61–72.

[14] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, et al., “Business process
execution language for web services,” 2003.

[15] H. Weigand, W.-J. van den Heuvel, and M. Hiel, “Business
policy compliance in service-oriented systems,” Information Systems,
vol. 36, no. 4, pp. 791 – 807, 2011, <ce:title>Selected Papers
from the 2nd International Workshop on Similarity Search and
Applications SISAP 2009</ce:title>. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0306437910001377

[16] A. Strunk, R. Reichert, and E. Schill, “An infrastructure for supporting
rebinding in bpel processes,” 2009.

[17] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “A
framework for qos-aware binding and re-binding of composite web
services,” J. Syst. Softw., vol. 81, no. 10, pp. 1754–1769, Oct. 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2007.12.792

[18] M. Koning, C.-a. Sun, M. Sinnema, and P. Avgeriou, “Vxbpel:
Supporting variability for web services in bpel,” Inf. Softw. Technol.,
vol. 51, no. 2, pp. 258–269, Feb. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2007.12.002

[19] A. Charfi and M. Mezini, “Ao4bpel: An aspect-oriented extension
to bpel,” World Wide Web, vol. 10, no. 3, pp. 309–344, Sept. 2007.
[Online]. Available: http://dx.doi.org/10.1007/s11280-006-0016-3

[20] G. Hermosillo, L. Seinturier, and L. Duchien, “Using complex event
processing for dynamic business process adaptation,” in Services
Computing (SCC), 2010 IEEE International Conference on, july 2010,
pp. 466 –473.

[21] Z. Xiao, D. Cao, C. You, and H. Mei, “Towards a constraint-
based framework for dynamic business process adaptation,” in
Proceedings of the 2011 IEEE International Conference on
Services Computing, ser. SCC ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 685–692. [Online]. Available:
http://dx.doi.org/10.1109/SCC.2011.95

[22] M. Colombo, E. Di Nitto, and M. Mauri, “Scene: a service
composition execution environment supporting dynamic changes
disciplined through rules,” in Proceedings of the 4th international
conference on Service-Oriented Computing, ser. ICSOC’06. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 191–202. [Online]. Available:
http://dx.doi.org/10.1007/11948148_16


