
Lessons Learned: Porting Java Applications to Android

G. Hsieh, D. Paruchuri, C. Steward, E. Nwafor and D. Gadam

Department of Computer Science, Norfolk State University, Norfolk, Virginia, USA

ghsieh@nsu.edu, [d.paruchuri, c.c.steward, e.c.nwafor, d.gadam]@spartans.nsu.edu

Abstract – Android has become the world’s most popular

mobile platform. It provides a very powerful Android

runtime and application framework that enable application

developers to efficiently create innovative and feature-rich

apps in Java. This attribute is very attractive to application

developers who are familiar with Java and who may wish to

port some existing Java applications to Android. However,

there are significant differences between Android’s Java and

the Java SE environments. In addition, Android apps need to

be designed and implemented with more care in order to

meet the more stringent resource and performance

constraints for mobile devices than those assumed for the

Java SE environment. As a result, porting non-trivial Java

applications from the SE to Android environments may not

be as easy and straightforward as one may assume. In this

paper, we discuss our experiences and lessons learned in

our efforts to port two Java-based applications/systems -

each utilizing an extensive set of open-source Java libraries

- to Android from the SE environment.

Keywords: Android, Java, application porting.

1 Introduction

Android has become the world’s most popular mobile

platform [1]. It has gained widespread acceptance since the

announcement of the Open Handset Alliance in late 2007

[2]. Seeing a tremendous growth of internet usage and

search in mobile devices, Google acquired Android, Inc. in

2005.

Android powers hundreds of millions of mobile

devices in more than 190 countries around the world. It's the

largest installed base and fastest growing of any mobile

platform [3]. There are more than one hundred different

makes of Android devices on the market currently,

including smartphones and tablets, from more than fifteen

manufacturers worldwide [1].

Android is also an open-source platform optimized for

mobile devices. It is made available through the Android

Open Source Project (AOSP) [4] which is led by Google,

Inc. Android builds on the open-source Linux kernel, and its

openness has made it very attractive for consumers and

developers alike.

In addition, Android truly is a complete stack, from

boot loader, device drivers, and libraries, to software APIs,

included applications, and SDK [5]. Figure 1 shows the

system architecture for the Android platform [6].

Figure 1. Android platform architecture

Android applications are typically written in Java. The

application framework provides a tightly integrated part of

the platform SDK and APIs that allow for high-level

interaction with the system from within applications (e.g.,

accessing network data) [5]. Beneath the application

framework is the middleware layer which contains the

Android runtime and system libraries.

Android’s runtime environment is similar to the Java

runtime environment (JRE) provided by Sun/Oracle. First, it

provides a core library which bundles all classes that are

part of the specific Java platform, including language

utilities, networking, concurrency, etc. Second, the runtime

environment provides a Java virtual machine (JVM), called

Dalvik, for running Java applications [5].

Android’s integrated support for Java application

development and deployment makes it very attractive to

application developers, especially those who are familiar

with Java and who may wish to port some existing Java

applications from the SE to Android environments.

However, it is important to note that Android’s Java is

not equal to Sun/Oracle’s Java SE. First, Android’s core

libraries do not bundle the same packages as in Java SE.

Second, Dalvik is a JVM optimized for mobile platforms

which accepts a different bytecode called Dalvik executable

(Dex). This requires that the regular Java bytecode produced

by a standard Java compiler needs to be translated into Dex

code in advance such that the latter can be executed by

Dalvik VM on Android.

These two major differences can have varying degrees

of impact when attempting to port existing Java applications

from Java SE to Android environments. Some may be able

to reuse many existing Java libraries with Android

applications while the bytecode translation is merely a

procedural issue that is automatically taken care of by

Android SDK.

On the other hand, porting of more complex and larger

scale applications may not be as easy and straightforward

due to these two major differences in the Java platforms.

There are also additional Java language/API-level

differences which require the modification of Java

application code. For example, the entry point to a Java

program on Java SE is its main() method, while an Android

app is not allowed to have a main() method. Another

example is that Android does not support the AWT or

Swing widget toolkits that are standard in Java SE for

developing graphical user interfaces in Java.

Furthermore, Android apps need to be designed and

implemented with more care in order to meet the more

stringent resource and performance constraints for mobile

devices than those assumed for the Java SE environment.

For example, the application may need to be restructured or

optimized in order to reduce the memory and storage

requirements, or to improve the response time by

performing tasks asynchronously.

Hence, porting of complex and larger scale Java

applications/libraries from Java SE to Android environments

can be very challenging. In some situations, it can be too

difficult or impossible without major redevelopment, and

thus it no longer qualifies as a “porting” effort.

In this paper, we present our experiences and lessons

learned in our efforts to port two non-trivial Java

applications (libraries) from Java SE to Android

environments, hoping to invite more systematic and

comprehensive discussion and information sharing among

software engineering professionals on this interesting topic

of “to port, or not to port”.

Both of our efforts are related to the self-protecting

security framework research program which began in 2005

at Norfolk State University [7] [8] [9] [10] [11] [12]. The

fundamental concept underlying this framework approach is

the use of a variety of XML-based open standards that are

commonly used for web services security [13], including

eXensible Access Control Markup Language (XACML)

[14] for expressing access control policies.

This self-protecting security framework approach can

be applied in a general-purpose fashion by using XACML

as the container for all related information. Or it can be

applied in a domain-specific fashion to use an open XML-

based standard, such as Clinical Document Architecture

(CDA) [15] for electronic health/healthcare information, as

the container for all related information.

For experimentation and demonstration purposes, we

have continued to develop prototype software for the self-

protecting security frameworks [7] [9] [16] [17]. Our

prototype software is written primarily in Java and it

involves extensive processing of XML documents.

One of our objectives is to provide similar self-

protecting security for apps and documents on Android. Our

first effort was centered on the open-source XACML Java

libraries, both Version 1.2 and 2.0, implemented by

Sun/Oracle [18]. We successfully ported, after some

difficulty, the Version 1.2 of Sun’s XACML Java library

which has been used for our prototype software on Java SE.

However, we abandoned porting the Version 2.0 after

running into so many problems.

Our second effort began with the open-source Model-

Driven Health Tools (MDHT) Runtime Jars for Java

(Release 1.0) [19], which has been used for developing our

initial prototype Personal Health Record (PHR) application

for the Java SE environment [16]. We successfully ported,

after a period of trial and error, a subset of the Jars to meet

the needs for our PHR application. Equipped with the ported

MDHT Runtime Jars, we next attempted to port our PHR

Java application code to Android. Due to the reasons

mentioned above, we ended up practically redeveloping the

PHR application as a native-architecture Android app

throughout [17].

 The remainder of the paper is organized as follows. In

Section 2 we provide an overview of Android’s Java

application architecture and runtime environment, focusing

on the implications for porting Java apps. In Section 3 we

discuss the activities, results, and experiences in our case

studies of porting efforts. In section 4 we conclude the paper

with a summary.

2 Android Java

 In this section, we discuss some of the most common

and important factors affecting the degree of reuse of

existing Java libraries or applications for Android. These

factors include the Android core libraries and Dalvik VM

which combine to form the Android Runtime, and the

structure and performance considerations for Android apps

which affect the scope of restructuring of Java application

code.

2.1 Android Core Libraries

Android’s Java core library implementation is based

on Apache Harmony [20] which is an open source Java SE

implementation by the Apache Software Foundation.

Although Harmony is the basis for Android’s core Java

library, they are not exactly the same.

The Android core library implementation includes only

those Harmony packages that are useful for Android mobile

devices. It also includes Android-specific implementation of

Java SE, replacing comparable packages in Harmony.

As a result, not all of Java SE runtime library is

implemented in Android. The degree of potential reuse of

existing Java apps or libraries is significantly determined by

what is supported, partially supported, or not supported at

all by Android’s core Java library.

One obvious example is the user interface toolkits.

Android provides its own user interface components that are

optimized for mobile devices, and does not support AWT or

Swing which are considered the standard user interface

components for desktops. Thus, an existing Java SE app

which uses AWT or Swing will need to have its user

interface re-developed to replace AWT or Swing with

Android’s own user interface components.

As mentioned earlier, XML processing is fundamental

to our self-protecting security framework approach and

prototype implementation. Again, Android provides most,

but not all, of the many XML support classes in Java SE.

Android supports both Document Object Model

(DOM) and Simple API for XML (SAX) parsing of XML

documents, and includes all core Java classes that those

parsers require. On the other hand, the Java API for XML

Binding (JAXB) is missing from Android completely [5].

2.2 Dalvik VM

Dalvik VM [21] is in charge of executing Java

applications running on Android. It is developed through an

open-source project with support from Google. Dalvik is

optimized for mobile devices which have limited resources

and power comparing with the desktop environment.

For efficiency considerations, Dalvik does not interpret

Java bytecode directly. Instead, it uses the custom Dex

bytecode. The .class files produced by a Java compiler

needs to be converted to this Dex format. This conversion

can be easily done by the Android SDK took, dx. So it is not

necessary to have the source code for a Java library in order

to use it in an Android application.

The main difference between the Dalvik and

Oracle/Sun Java bytecodes is in the packing of code [22].

With Dex, all the classes of the application are packed into a

single Dex file, as shown in Figure 2 [21]. In addition, all

the classes in the same Dex file share the same constant

pools for strings, fields, methods, etc.

Figure 2. Dex file anatomy

The Dex approach helps reduce duplication of internal

data structures and cuts down on the file size. On the other

hand, classes from the same Dex file are loaded by the same

class loader instance. In other words, these classes cannot be

loaded using different class loader instances [22] as what

can be done with Java SE. This restriction can pose a

problem for porting those Java applications or libraries

which require the manipulation of multiple classloaders.

This also means that all the classes in the same Dex

file belong to the same namespace, and thus duplicated

names across multiple Java classes can be a problem for

Dex even when they are fine for the Java SE environment.

2.3 Android Applications

 As mentioned earlier, Android applications are

typically written in the Java programming language. Unlike

applications on most other systems, Android applications

don't have a single entry point (there's no main() function,

for example) [23].

Android applications are composed of one or more

application components. There are four types of application

components: activities, services, content providers, and

broadcast receivers. An activity is an application component

that provides a screen with which users can interact in order

to do something, such as dial the phone or view a map.

Thus, it is commonly used by Android apps which provide

user interfaces.

An activity is created as a subclass of the public class

android.app.Activity (or an existing subclass of it). The

lifecycle of an activity is managed by implementing

callback methods that the system calls when the activity

transitions between various states, such as when it is being

created, stopped, resumed, or destroyed [23].

In summary, the structure of Android Java applications

is quite different from that of Java SE. Thus, some

restructuring of the application code is required when

porting existing Java SE apps to Android.

 Furthermore, Android apps need to be designed and

implemented with more attention towards performance than

typical Java SE applications, in order to meet the more

stringent resource and energy requirements for mobile

devices.

 In Android, the system guards against applications that

are insufficiently responsive for a period of time by

displaying an “Application Not Responding (ANR)” alert

and may even force the non-responding application to close

[24]. It is critical to design responsiveness into the

application so the system never displays an ANR alert to the

user.

 Android applications normally run entirely on a single

thread (by default the "UI thread"). This means anything the

app is doing in the UI thread that takes a long time to

complete can trigger the ANR alert because the app is not

giving itself a chance to handle the input event or intent

broadcasts. Therefore, any method that runs in the UI thread

should do as little work as possible on that thread.

Potentially long running operations should be done in a

worker thread, which can be most effectively created with

the AsyncTask class [24].

Again, an existing Java app code may need to be

restructured for performance consideration, as we have done

for the Android version of our PHR prototype application.

2.4 Android SDK

The Android SDK [25] provides the API libraries and

developer tools necessary to build, test, and debug apps for

Android. The recommended IDE is Eclipse with the ADT

(Android Developer Tools) plugin.

Since we have been using Eclipse IDE for Java

Developers for our prototype software development,

Android’s Eclipse+ADT IDE is very convenient for us. To

test our Android apps and libraries, we used a variety of

Android device emulators, smartphones, and tablets.

3 Case Studies

In this section, we discuss our efforts, results, and

experiences in two cases: 1) porting Sun’s XACML Java

libraries and a sample application; and 2) porting MDHT

Runtime Jars for Java and our prototype Personal Health

Record application.

3.1 Sun XACML Jars and Sample App

Oracle/Sun Lab released its Version 1.2 of XACML

Java Library in July 2004 and Version 2.0 in July 2010 [18].

We have been using the Version 1.2 of the sunxacml library

for our prototype software. As a matter of fact, we have

extended the library to add new features and conventions for

our self-protecting security framework approach.

As we were already planning to upgrade our prototype

software to leverage the Version 2.0 of sunxacml, we first

attempted to port this version to Android in late 2011. After

running into so many problems with this version, we went

back to the Version 1.2 of sunxacml with which we had

more knowledge and experiences.

In the end, we managed to port the Version 1.2 of

sunxacml library to Android. However, the process was not

easy, nor straightforward. The main challenges were due to

the fact that the sunxacml library requires a set of Java core

(java.* or javax.*) classes that were not supported by

Android runtime.

The sunxacml Version 1.2 release contains the source,

data files, documentation, and the produced libraries. The

main library, sunxacml.jar, for producing and reading

XACML documents is 191 KB in size. The source needed to

build sunxacml.jar is contained in a /src/sunxacml folder

which contains 243 files in 23 subfolders taking up a total

space of 1.14 MB. The distribution also contains a

samples.jar (7 KB in size) which includes a sample program

called simplePDP that can be run to demonstrate XACML

applications while using sunxacml.jar. The source and XML

data files needed to build samples.jar and run simplePDP are

contained in a /sample folder which contains 22 files in 4

folders taking up a total space of 104 KB.

To port Sun’s Version 1.2 XACML Java API library

(sunxacml.jar) and its sample application (simplePDP) to

Android, we undertook the following major activities:

(1) Set up a new Android application project also called

simplePDP, using the Eclipse-integrated Android SDK (r6

or newer). The project target was set for Android API Level

6 (Android 2.0.1 Release 1) which was released in

December 2009 and represented the Android platform that

was broadly supported by Android devices in 2010-2011

timeframe.

(2) Set up the source for the simplePDP application project.

This step was quite straightforward as sunxacml already

used the same Apache Ant build tool and a very similar

project structure as required by the Eclipse-integrated

Android SDK.

(3) Restructure the code for the simplePDP class. The

original class for Java SE contains a main() method which is

not allowed for an Android application. Thus, we created a

new simplePDPActivity class, which extends the Android

Activity class, to serve as the entry point and to provide a

user interface for the Android simplePDP app.

The relevant initialization code contained in the main()

method was implemented inside the onCreate() method for

simplePDPActivity, such that the necessary and equivalent

initialization functions can be performed when the activity is

created after the app is launched by the user. Also contained

in the onCreate() method is the code to start an instance of

the modified simplePDP class which no longer contains a

main() method. Note that the sample program contains six

other helper classes for the simplePDP class. Those classes

did not require any code modification for Android.

(4) Restructure the file I/O. The sample application for

sunxacml takes two XML files as input to produce another

XML file as output. On Java SE, the input files are stored

under the /sample/policy and /sample/request folders,

respectively, within the project’s file structure, and they can

be easily accessed by using java.io APIs on the same Java

SE host.

For Android, we prefer to have these input files

distributed with the app such that no separate file transfer or

configuration actions are required. To accomplish this goal,

we have not found a working solution other than including

these files as resources or assets for the app such that they

can be packaged and installed as part of the app.

Unfortunately, this solution requires a different set of

APIs, namely Resources or AssetManager classes, instead of

the java.io.File class, to access the contents. This posed a

problem for the sample application as it relies on File

operations extensively. Instead of modifying the app code to

use AssetManager operations everywhere and thus causing

more widespread changes, we chose to isolate the changes

within the onCreate() method by adding the code to read the

contents through the AssetManager and then store them into

files on internal storage. The references to the internal files

(e.g., fully-qualified file names) are then used in the rest of

the application in the same way as before.

(5) Bundle the missing core Java libraries. With all the

preparations done, we proceeded to build and run the app

using the Eclipse-integrated Android SDK. After fixing

application-level errors, a compilation or execution could

still fail due to “unresolved symbol” compilation errors or

“NoClassDefFoundError” runtime errors, both indicating

that some core Java classes were needed but missing from

the Android runtime.

To resolve these types of errors, we chose to bundle the

missing core Java classes with the app itself, instead of

extending the core runtime library for Android platform, to

facilitate our porting and experimentation efforts without

modifying Android platform releases. We also used an

iterative process to find appropriate solutions if possible. For

each missing core Java class or package, we first used online

resources, such as findJAR.com [26], to find available Jar(s)

that contain the missing element. After further investigation,

we next added such a Jar to the list of external libraries used

to build the simplePDP app. Then we proceeded to build and

run the app with the added external Jar which in turn might

need additional Jars that were missing from Android

runtime. This process was repeated until there was no core

Java class that was apparently missing. After a working set

was assembled, we next worked to reduce the memory and

storage requirements for the app by eliminating redundant or

extraneous classes from the working set.

For the sunxacml 1.2 Java API library and sample app,

we added three additional Jars: xml-apis.jar, jndi.jar, and

jndi-properties.jar, which combine to take 290 KB in size.

(6) Work around the “Conversion to Dalvik format failed

with error 1” problem. According to the error message, this

error indicates an “ill-advised or mistaken usage of a core

class (java.* or javax.*) when not building a core library.

This is often due to inadvertently including a core library file

in your application's project, when using an IDE (such as

Eclipse).” On the other hand, the Android app building tool

does provide a --core-library option which can be set to

suppress this error message and allow the build to proceed

even when core classes are present in the application project.

However, the ADT plugin for Eclipse does not allow this

option to be set through Eclipse. It is interesting to note that

the Android Maven Plugin does allow this option to be set

through Maven.

For our porting effort, we needed to include these

missing core library files (e.g., xml-apis.jar) in our

application’s project. However, we did not want to change

our build tool from Ant to Maven. Therefore, we modified

the default build.xml file to set this --core-library option

through a custom shell script that we developed. Using this

approach, we managed to work around the problem with a

relatively simple custom solution. However, it was not ideal

as it required modifying the default build file, and running

the final application packaging tool through the command

line interface outside of Eclipse.

In summary, we managed to port Sun’s XACML v1.2

Java Library and sample application to Android. The size of

the Android application package (.apk) file is about 187 KB.

Our efforts to port the Version 2.0 of Sun’s XACML

library and sample program did not succeed. One major

reason for our difficulties was due to the fact that the

Version 2.0 library was re-implemented using the JAXB

technology.

JAXB is very powerful as it provides a fast and

convenient way (using automation tools) to bind XML

schemas and Java representations, making it easy for Java

developers to map Java classes to XML representations [27].

On the other hand, it also adds a great deal of complexity to

the runtime environment. As an indication, the size of the

source-only release of Version 2.0 Sun XACML library is

already approximately 570 KB in size.

Since JAXB was not supported by Android’s runtime

core library, it was very challenging and time-consuming

trying to bundle all missing core classes (e.g., java.xml.bind)

and their dependencies in the application’s project. As a

result, we abandoned this approach after putting in a good

amount of effort without ever gaining enough confidence

that this approach could work from both functional and

performance viewpoints. For example, the size of the none-

functional .apk file had already reached a size of

approximately 500 KB for the same “application”.

3.2 MDHT Runtime Jars and PHR App

 Our interests in MDHT runtime Jars and personal

health record applications centered on our efforts in

developing the self-protecting security framework and

associated prototype software for securing electronic

medical records [8] [28] [16] [17].

As mentioned earlier, our approach leverages the CDA

which is an XML-based document markup standard that

specifies the structure and semantics of a clinical document.

For our prototyping effort, we chose to leverage the runtime

Jars provided by the open-source MDHT project which was

initiated, by the Veterans Health Administration in April

2008 in collaboration with IBM as the co-lead of the project,

to promote interoperability in healthcare infrastructure.

The MDHT runtime distribution contains JAR files

with generated Java code from template models, plus all

necessary dependencies for Eclipse-based modeling

framework and code generation facility. It is intended for

application developers who are using MDHT Java libraries

created from models (e.g., CDA), not for creating or editing

model specifications.

We first implemented a prototype PHR application for

the Java SE environment [16]. This application used the

MDHT runtime distribution Release 1.0, which became

available in September 2011 timeframe, for processing CDA

documents. Although the MDHT runtime release contained

24 Jar files with a total size of 9.68 MB, it was not an issue

for the prototype PHR application running on Java SE.

With our interest in providing self-protecting security

capability for Android, we undertook an effort to port the

MDHT runtime Jars to Android. The first major roadblock

we encountered was due to the duplicated file names. Each

of the Jar files contained a text file named plugin.xml and/or

another text file named plugin.properties. Given the

duplicated file names, the Eclipse-integrated Android SDK

would fail to build an Android application with these Jars in

the application’s project.

To work around this problem, we chose to delete these

files from all of MDHT runtime Jars, as they were

descriptor files used for describing how the plugin (Jar)

extends the Eclipse platform, etc. [29]. After the files with

duplicated names were removed from the Jars, the Android

application could be built successfully. Note that the file

removal could be easily accomplished by using the Java jar

command without modifying or recompiling any source

files.

Since our focus was on using the MDHT Java libraries

that were already created from models (and not on creating

or editing the models themselves), we believed that the

impact of removing these types of descriptor files would not

be significant for our purposes. Our experiences in running

the Android application with the modified Jars seemed to

confirm this assumption, as we have not observed any side

effect due to the removal of these descriptor files.

After resolving the major roadblock caused by

duplicated file names, we undertook optimization effort to

reduce the number and total size of the Jars required for our

application which did not need all the capabilities provided

by all the Jars collectively. We used an iterative and (more

or less) a trial-and-error approach to select the minimal

subset of Jars that we needed for our Android application. It

turned out that the final subset contained 11 (vs. 24

originally) Jars with a combined size of 4.35 MB (vs. 9.68

MB originally). This optimization effort and results were

very beneficial to our prototyping program as they helped to

reduce the application’s runtime memory and persistent

storage consumption on Android devices.

Our Java SE personal health record prototype

application had GUI-based user interfaces that allow users

to enter, view, modify, encrypt, and digitally sign their

records maintained in CDA documents. These user

interfaces were implemented using Swing.

To develop a similar PHR application for Android

[17], we used the final subset of modified MDHT Jars to

provide the same CDA processing functions. However, we

did major restructuring of our application level code for

both functional and performance considerations.

First, we restructured the code based on Android’s

application architecture. The Android PHR application now

consisted of five Android activities plus additional helper

classes. These activities allowed us to organize the code in a

very modular fashion, and they provided the main and

submenu user interfaces for starting the app, entering data,

viewing data, editing data, and emailing data, respectively.

Second, we developed the user interfaces for our

Android PHR application using the View-based components

for Android.

Third, we implemented the Android PHR application

with multi-threading capabilities in order to improve user

responsiveness and avoid the much dreaded ANR problem.

We used the AsyncTask construct to execute potentially

long-running operations (e.g., encrypting or saving a CDA

document which could be large) in separate threads away

from the UI threads.

 Fourth, we used the SAX-based XML parser for the

Android PHR application, in contrast with our using the

DOM-based XML parser for the Java SE based PHR

application. This approach allowed us to conserve memory

usage when parsing large CDA documents. However, it did

add a great deal more complexity in our application code in

order to handle the SAX events asynchronously. In addition,

the CDA structure is very flexible and hence complex, and it

is difficult to use SAX-based parser to extract information

from CDA documents [30].

The MDHT runtime Jars were implemented using the

in-memory, DOM-based programming model, and it did a

very good job of hiding the low-level details and complexity

from the application developers. Using the SAX-based

parser, the application developers had to handle the low-

level details themselves and this increased the application

programming complexity significantly. To save time, we

implemented only a subset of the data fields for the Android

based PHR application.

In summary, we managed to migrate our PHR app

from Java SE to Android. For performance consideration,

we used multi-threading and memory-efficient parsing of

XML documents. In the end, we practically redeveloped it

as a native-architecture Android app which bears little

resemblance with the Java SE based PHR app, while reusing

the MDHT runtime Jars.

4 Summary

In this paper, we presented our efforts, results, and

experiences in porting two Java applications/libraries from

Java SE to Android environments. These software packages

involved open-source Java libraries for processing XML-

based documents.

Overall, we found these experiences very educational,

as we encountered numerous problems along the way,

including those caused by the differences in the core Java

runtime library and virtual machine, IDE restrictions, etc.

We were able to overcome those problems in all cases

except the one involving the sunxacml v2.0 library. In

addition, we learned important lessons in dealing with the

more stringent resource and performance constraints for

mobile devices which are not the same as desktops. Using

techniques such as multi-threading and event-driven XML

parsing helped to improve the resource and performance

aspects; on the other hand, they added more complexity and

required more effort in developing the applications.

We like to close the paper with the following

observations:

(1) Migrating Java applications from Java SE to Android

is more complicated than what might be assumed, except for

small and trivial programs perhaps. Minimally, the app

needs to be restructured to conform to Android’s application

model (e.g., activity versus main() method).

(2) The complexity increases if the application has

extensive user interfaces implemented with AWT or Swing.

These user interfaces need to be practically rewritten using

Android’s View components.

(3) Third-party Java libraries could be a problem,

especially if they use many of the core Java libraries (java.*

or javax.*) that are not supported by Android.

(4) Files for initialization, configuration, or information

could present a problem. Android has different classes and

APIs to handle “resource” type of content which are treated

differently from “files”. Duplicated file names could cause

additional problems.

(5) For performance and resource usage considerations,

Android implementations may require more efficient or

user-responsive techniques such as multi-threading and

asynchronous/event-driven processing.

(6) Do not ignore the fact that Android-powered mobile

devices are not the same as desktops, let alone servers. Be

careful not to overload Android devices with apps requiring

heavy-weight processing or storage.

5 Acknowledgement

 This research was supported in part by U.S. Army

Research Office, under contract no. W911NF-12-1-0081,

and U.S. Department of Energy, under grant no. DE-FG52-

09NA29516/A000.

6 References

[1] "Android," android.com, [Online]. Available:

http://www.android.com/. [Accessed 27 May 2013].

[2] "Open Handset Alliance," [Online]. Available:

http://www.openhandsetalliance.com/. [Accessed 27 May 2013].

[3] "Android, the world's most popular mobile platform," [Online].

Available: http://developer.android.com/about/index.html. [Accessed

27 May 2013].

[4] "Android Open Source Project," [Online]. Available:

http://source.android.com/. [Accessed 27 May 2013].

[5] C. Collins, M. G. Galpin and M. Kaeppler, Android in Practice,

Manning Publications Co., 2011.

[6] "Android Architectural Diagram," [Online]. Available:

http://developer.android.com/images/system-architecture.jpg.

[Accessed 27 May 2013].

[7] G. Hsieh and E. Nwafor, "A Self-Protecting Security Framework

for CDA Documents," in Intl' Conf. on Security and Management

(SAM'13), Las Vegas, NV, 2013.

[8] G. Hsieh, "Towards Self-Protecting Security for e-Health CDA

Documents," in Proc. Int'l Conf. on Security and Management 2011

(SAM'11), Las Vegas, NV, 2011.

[9] G. Hsieh and M. Masiane, "Towards an Integrated Embedded

Fine-Grained Information Protection Framework," in Proc. 2011 Int'l

Conf. on Information Science and Applications (ICISA'11), Jeju

Island, Korea, 2011.

[10] G. Hsieh, R. Meeks and L. Marvel, "Supporting Secure

Embedded Access Control Policy with XACML+XML Security," in

Proc. 5th int'l Conf. on Future Information Technology

(FutureTech'10), Busan, Korea, 2010.

[11] G. Hsieh, K. Foster, G. Emamali, G. Patrick and L. Marvel,

"Using XACML for Embedded and Fine-Grained Access Control

Policy," in Proc. 4th Int'l Conf. on Availability, Reliability and

Security (ARES'09), 2009.

[12] G. Hsieh, G. Patrick, K. Foster, G. Emamali and L. Marvel,

"Integrated mandatory access control for digital data," in Proc. SPIE

2008 Defense + Security Conf., Orlando, FL, 2008.

[13] E. Bertino, I. D. Martino, F. Paci and A. C. Squicciarini,

Security for Web Services and Service-Oriented Architectures,

Springer-Verlag, 2010.

[14] "eXtensible Access Control Markup Language (XACML)

Version 2.0," OASIS, 2005. [Online]. Available: https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml. [Accessed 31

May 2013].

[15] R. H. Dolin, L. Alschuler, C. Beebe, P. V. Boyer, D. Essin and

E. Kimber, "The HL7 Clinical Document Architecture, Release 2," J.

Am Med Inform Assoc., vol. 13, no. 1, pp. 30-39, Jan-Feb 2006.

[16] D. Gadam, "Generating CDA Documents and Embedding XML

Security," M.S. Thesis, Department of Computer Science, Norfolk

State University, Norfolk, VA, March 2012.

[17] D. Paruchuri, "Developing a Personal Health Record

Application for Android Platform," M.S. Thesis, Department of

Computer Science, Norfolk State University, Norfolk, VA, April

2013.

[18] "Sun's XACML Implementation," [Online]. Available:

http://sourceforge.net/projects/sunxacml/. [Accessed 27 May 2013].

[19] "Model-Driven Health Tools (MDHT)," [Online]. Available:

https://www.projects.openhealthtools.org/sf/projects/mdht/.

[Accessed 27 May 2013].

[20] "Apache Harmony," [Online]. Available:

http://harmony.apache.org/. [Accessed 29 May 2013].

[21] D. Bornstein, "Dalvik VM Internals," Google, 29 May 2008.

[Online]. Available: https://sites.google.com/site/io/dalvik-vm-

internals/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf.

[Accessed 29 May 2013].

[22] G. Paller, "Understanding the Dalvik bytecode with the Dedexer

tool," 2 Dec 2009. [Online]. Available:

http://www.slideshare.net/paller/understanding-the-dalvik-bytecode-

with-the-dedexer-tool. [Accessed 29 May 2013].

[23] "Application Fundamentals," [Online]. Available:

http://developer.android.com/guide/components/fundamentals.html.

[Accessed 30 May 2013].

[24] "Keeping Your App Responsive," [Online]. Available:

http://developer.android.com/training/articles/perf-anr.html.

[Accessed 30 May 2013].

[25] "Get the Android SDK," Android Developers, [Online].

Available: http://developer.android.com/sdk/index.html. [Accessed

31 May 2013].

[26] "findJAR.com," [Online]. Available:

http://www.findjar.com/index.x. [Accessed 31 May 2013].

[27] "Lesson: Introduction to JAXB," [Online]. Available:

http://docs.oracle.com/javase/tutorial/jaxb/intro/. [Accessed 31 May

2013].

[28] G. Hsieh and R.-J. Chen, "Design for a secure interoperable

cloud-based Personal Health Record service," in IEEE 4th Int'l Conf.

on Cloud Computing Technology and Science (CloudCom'12) ,

Taipei, Taiwan, 2012.

[29] "FAQ What is the plug-in manifest file (plugin.xml)?,"

eclipse.org, [Online]. Available:

http://wiki.eclipse.org/FAQ_What_is_the_plug-

in_manifest_file_(plugin.xml)%3F. [Accessed 31 May 2013].

[30] Keith Boone, The CDA Book, Springer, 2011.

