
Using Productivity Measure and Function Points to Improve
the Software Development Process

Eduardo Alves de Oliveira and Ricardo Choren Noya

Computer Engineering Section, Military Engineering Institute, Rio de Janeiro, Brazil

Abstract - Usually, cost and time estimations are done at the
beginning of a software project for budget planning purposes.
Such estimations are used at the end of the project to verify if
the initial planning was followed or if there were any
deviations. In this sense, these estimations can only be used as
an input to improve the process for other projects. This paper
presents an iterative method, which uses productivity and
function points metrics, to identify possible deviations in the
amount of time and effort needed to carry out the process
tasks, thus continuously updating the estimations in order to
cope with the current project needs. It is presented a real case
study of how this process can be applied.

Keywords: Function Point Analysis, Indicator of Productivity,
Software Development Process, Project Management.

1 INTRODUCTION
Software development companies are getting more and

more competitive. To understand how competitive a company
is, it must measure the productivity and quality in their
Software Development Processes (SDP) [9]. Knowing the
productivity in the SDP, allows the company to improve the
prediction of several projects parameters such as effort, time
and cost. Both users and project managers want to know before
a project starts its estimated cost and time to enhance
performance with the best accuracy possible [14].

Currently, it is usual to calculate a productivity estimate at
the initial planning phase of a project and then to verify the
actual productivity yield at the end of the project. [11] The use
of a measure at these two moments is extremely important
because the estimates are based on historical productivity.
However, measuring the productivity only at these two
moments in a project is rather insufficient and may cause some
difficulties, e.g., knowing throughout the development cycle if
the time and cost estimates will be met; monitoring the
productivity of medium and large projects; detecting the factors
that impact the productivity of a SDP; providing ongoing
adjustments to the SDP, and; controlling whether the scope of
the project is being met or not.

There already are some techniques for monitoring the
productivity of a SDP [11]. Nevertheless such techniques do
not assess productivity through a functional measurement. This

makes it difficult for managers to compare the productivity of
the development of a given functionality to the productivity of
other functionalities and to the estimated productivity of project
as a whole.

A functional measurement standardizes the estimation of
the functional size of any project [8]. Thus it can be used as the
unit to be used to measure productivity. Moreover, by using
function units managers can assess the project productivity
throughout the project and not only at its end.

Changes in the scope of project requirements are a good
example of how the use of a functional measure can give
further information to managers. Such changes can present a
growth rate of 2% per month from the time the project moves
from specification to codification [4]. If some functionality had
its scope changed it is likely to have its functional size changed
thus impacting on productivity. If managers only measure
productivity at the end of the project they will probably find the
reason why it presented a downside in productivity: changes in
the scope. However they missed the opportunity to respond to
such changes in order to keep or even enhance productivity
during the project execution. The functional measurement
could show the productivity rate of function development
required for managers to cope with the difficulty to meet the
estimated productivity.

This paper presents a method for productivity monitoring
all along an iterative SDP execution. Each iteration should have
its size measured using a functional measurement of the project
use cases. The manager will give a percentage of size of the
iteration to each SDP phase. This will allow for effort and
productivity division and monitoring in every process iteration.
This work uses Function Point Analysis (FPA) [8] as functional
measurement.

This article is structured as follows. Section 2 presents how
project planning should be done using a productivity indicator.
Section 3 describes the method proposed in this paper, i.e. the
SDP productivity monitoring. Section 4 illustrates a simple
example and, finally, section 5 concludes this paper.

2 PLANNING PROJECTS USING

PRODUCTIVITY
The productivity indicator is an important information for

planning a project, since it improves the performance in the
production of software [12]. Productivity is measured to
monitor production, reduce costs and improve the quality of the
delivered product [7].

It is considered a complex project measure, which relies on
over a hundred known factors [3]. Productivity is a ratio of
production output to what is required to produce it. The
measure of productivity is defined as a total output per one unit
of a total input. [6]. A production output unit in software can be
represented by lines of code, components, artifacts or function
points. Inputs can be effort (time) or financial (this paper
consider inputs as effort measured in hours).

Figure 1 shows a simplified diagram of productivity [5]. It
shows how resources are consumed by a particular process or
sub process for the generation of a particular software product.

Figure 1: Simplified Model for Productivity [5]

The productivity indicator is calculated using a simple
mathematical equation (1).

 Productivity = Resource / Product (1)

This paper uses the measure of hours of effort (H). The
product is represented by the number of function points (FP)
produced. Thus productivity is calculated as:

 Productivity = H / FP (2)

There are other ways to measure the size of a project, such
as lines of code (LOC) [1, 10] and use case points. The function
point (FP) metric was chosen because it is currently the most
used measure for functional measurement software in the
market. Besides it is independent of the technology of the
format of the unit. This technique has emerged as a result of
studies at IBM in the 70s [2].

FP considers the functions that store data and the
transactions that manipulate such data. The FPA is described in
a manual that describes how to calculate the functional size of a
software project or improvement of software [8]. The technique
does not define, among other things, how to treat indicator of
productivity or costs (pricing).

This paper uses FP as a basic measure in the calculation of
productivity. FPA can be used to parameterize the functional
size of software systems and projects regardless of the
technology that will be used to build it [8]. It lets all functional
requirements, recognized and specified by the user, to be sized
as a number of function points. Thus it is possible for the
project manager measure all user functional requirements in a
standardized and objective way.

3 A METHOD FOR MONITORING

PRODUCTIVITY
This paper proposed a method to monitor the productivity

of a project in every iteration during its life cycle. The idea is to
allow for adjustments between iterations so that the project
does not suffer from delays, increased costs or loss of product
quality. It is important to mention that adjustment actions made
by managers will impact the project SDP. For these impacts to
enhance productivity, it is essential for the manager to know
which activities, sub processes or phases are presenting poor
(or downslope) productivity.

The method is presented as a set of steps. Each step
indicates an action that should be performed side by side with
the SDP activities. The main purpose is to allow the manager to
compare the actual current productivity with the previously
estimated project productivity, done at early project planning
phases.

Step1: Dividing the Development Cycle by Phase and Iteration

The development cycle corresponds to the total (i) effort
consumed, and (ii) software size (FP) produced in a project.
The project should divide the development in iterations (or
sprints for agile methods). Each iteration should correspond to
a sub cycle of the SDP. It is important to mention that the
management does not change the phases (add or drop) in an
iteration in order to increase or decrease the effort spent.

Each phase in an iteration is responsible for a share of the
total effort estimated for the iteration. The project manager
should establish such share to distribute the effort that will be
employed in each phase. Such distribution should be done by
using historical data or by experience. It is important that this
distribution be realistic.

Step 2: Estimating the size of an iteration in Function Points

After the preparation of the iteration, the project manager
will have the requirements approved by the client, and these are
described in a specification. The method proposed here was
used in projects that specified its requirements using use cases.
The method to estimate the FP count by use case is as follows:

1) Finding the Elementary Processes: the manager should
find the elementary processes in the use case flows. An
elementary process is the smallest unit of meaningful activity
for the user to specify the requirement [8]. For each elementary

process found in the use case, there should be a corresponding
transactional function. After finding the transactional functions,
the manager can identify the functions that manipulate data.

2) Finding the Data Functions: during the analysis of
transactional functions it is possible to identify the data that is
manipulated by these functions. The presence of a logical data
model is important for a more precise identification of the data,
but this model is not always present at the moment the project.
Each data function has a complexity that corresponds to an
amount of FPs. However a data function can be used by
transactional functions from different use cases. In this
scenario, the manager can follow two approaches:

 2.1) select an owner Use Case: an owner use case is
the use case that is the most important (from the client
prioritizing point of view) or that uses the data function more.
Then the data function should contribute to the FP size of the
owner use case.

 2.2) divide the contribution of Function Data: each
use cases that manipulate the data function should get a slice of
its size in FP. This slice is decided by the manager.

3) Finding the estimated FP size of the Use Case: the sum
of transactional functions and data functions found in a use case
results in the estimated size FP of the use case.

Step 3: Calculating Estimated Effort of an Iteration

The project manager must, through a history of similar
projects or a historical company base, find the estimated
productivity of the project. This estimated productivity should
take into consideration the particular aspects of the project. The
iterations of the project refer to the estimated productivity of
the project. The productivity of the iteration cannot be far from
the productivity of the project, because it will increase the risk
of non-compliance (time and cost).

To reach the estimated effort, in hours, of an iteration, the
manager should multiply the estimated size of all use cases of
iteration by iteration the estimated productivity.

Step 4: Calculating the Real Productivity of an Iteration

At the end of the iteration the project manager calculates the
total hours of actual effort (final), expended by the iteration
development. Besides calculating the actual effort, the project
manager should make the final FP count of the iteration. These
will allow the manager to calculate the actual productivity of
the iteration (H / FP).

If there is a deviation in the productivity, the project
manager should take actions to adjust the SDP execution.
Otherwise the project will be at the risk of delays and/or
increase costs. These can impact the product quality.

Step 5: Assessing Impacts on the Actual Productivity

At the end of each iteration, the project manager must
answer a checklist of questions to evaluate factors that

impacted the actual productivity of the iteration. In doing so,
the manager will be able to define the actions to be taken in
subsequent iterations, aiming to adjust in real productivity of
the next iterations.

The checklist should include questions that allow the
evaluation of each SDP phase. The organization using the
proposed method can define its own set of questions. Below,
we present a set of aspects that can be used in the checklist. All
of them are related to aspects found in productivity literature [7,
13]:

1. Project complexity;

2. Project type (e.g. real time, distributed);

3. Innovation support;

4. Development infrastructure ;

5. Work environment;

6. Application integration (to other applications);

7. Team experience (analysis, design and programming);

8. Team motivation, communication and cohesion;

9. Client communication issues;

10. SDP maturity;

11. Reuse (design and code);

12. Requirements change frequency;

13. Non-functional requirements complexity;

14. Programming language complexity;

15. Verification (testing and defect removal);

16. Re-work (change management);

17. Quality standards and issues;

18. Client approval issues;

19. Evolution (maintenance aspects, refactoring, etc.);

20. Changes in the team (inclusion, drops, etc.).

The manager should verify if there were positive or
negative impacts of each aspect in the iteration productivity.
These will aid the manager to analyze possible process
improvements.

4 CASE STUDY
This section presents a case study to show the proposed

productivity monitoring approach. The goal is to show that the
method allows the project manager to monitor the productivity
of the project and give indications of the reasons that are
leading to deviations of productivity in phases and iterations.

The example portrayed here refers to a project developed by
the energy organization and its development process was

divided into three phases, namely: Requirements, Construction
and Testing. The distribution of percentage of effort per phase
was: 21% for Requirements; 53% for Construction, and; 26%
for Testing. These percentages were reported by the project
manager. The project was planned to be done in 9 (nine)
iterations with a total of fifty five use cases and a team of six
persons. At the time of this paper, six iterations have already
been performed.

The iteration analysis should include a set of questions,
such as:

1. Was the productivity of each iteration better or worse
than the initial productivity? Why was that?

2. Has the project manager defined actions to adjust the
SDP after each iteration (if necessary)?

3. Did the actions have any effects in the subsequent
iterations?

Table 1 presents the distribution, by iteration, of the number
of use cases, the FP size and the effort hours for each of the six
iterations already carried out. For the sake of simplicity, this
study did not present the FP count by use case. The size in FP
is presented by iteration. Table 2 shows the actual productivity
per iteration and phase. All phases of the development process
of this project were estimated at 17.92 H / FP.

If at the end of an iteration, the phase of the process had
productivity lower than the estimated productivity, there is a
deviation that can cause higher costs and increased time to
deliver the project. If productivity has been better than planned,
it should be a review to see if there was over estimation of
resources hours, or if all activities of the SDP were properly
executed. This may result in product quality decrease, leading
to user dissatisfaction.

The project manager created a checklist of questions based
on the aspects listed in section 3. The responses to these
questions were used as input to perform the analysis of the
factors impacting positively and negatively on the productivity
of each iteration. Thus it revealed the factors that impact the
productivity of iterations along the development cycle of the
project.

The description of the six iterations in this study is below.

• First iteration (productivity 10.55 H/FP)

o Strengths:

� Team: motivated to learn a new technology and a
new domain, and; trained before the iteration began;

� Functionality: CRUD use cases; reuse.

o Weaknesses:

� Team: only one member on testing team (unfamiliar
with testing tool); requirements team working on
different site.

o Actions taken for second iteration

� Weekly meetings with all members;

� Peer reviewing (done by senior analyst).

• Second iteration (productivity 5.56 H/FP)

o Strengths:

� Team: testing team increased to two members;

� Functionality: continued CRUD use cases; reuse.

o Weaknesses:

� Team: testing team still unfamiliar with testing tool;
weekly meetings did not include requirements
members (as they were in another site).

o Actions taken for third iteration

� Hire analyst familiar with testing tool;

� Space provision to move requirements members.

• Third iteration (productivity 15.26 H/FP)

o Strengths:

� Team: two new requirement analysts added; another
senior analyst added;

� Functionality: other core use cases (three of the
biggest (in size) use cases included).

o Weaknesses:

� Team: changes impacted on communications; part of
the team was idle;

� Workplace: not yet completed for all team members;

� Testing: not automated;

� Functionality: difficulties with the development of
specific functions.

o Actions taken for fourth iteration

� Improve workplace (mainly equipments) for team.

• Fourth iteration (productivity 29.99 H/FP)

o Strengths:

� None in special.

o Weaknesses:

� Team: (workplace impacts related) requirements,
development and testing teams worked on different
sites; project manager shared time with another
project;

� Testing: not automated;

� Functionality: intense internal reworking.

o Actions taken for fifth iteration

Table 1: Distribution of Use Cases, FP and Effort of each iteration.

Table 2: Productivity Calculation for Phase and Iteration

•

� None in special.

• Fifth iteration (productivity 24.93 H/FP)

o Strengths:

� None in special.

o Weaknesses:

� Team: new members were added (but were not
experienced); project manager still shared time with
another project;

� Testing: not automated; number of defects increased
(including the detection of defects related to
previous iterations).

o Actions taken for sixth iteration

� Team training.

• Sixth iteration (productivity 39.70 H/FP)

o Strengths:

� None in special.

o Weaknesses:

� Team: requirements, development and testing teams
still worked on different sites; project manager
shared time with another project;

� Testing: not automated; defect complexity increased.

Iterations 1 and 2 present a productivity rate above the
project estimation and they deliver the best productivity in the
whole project (iterations 1 through 6). This was mainly because
the functionality comprised CRUD use cases (with more
simple testing), there was a high rate of reuse and the team was
highly motivated.

On the other hand, iterations five and six presented the
worst productivity rate – way below the first estimate. This
increased the risk of deviations from the costs and scheduled
previously planned for the project. This was mainly motivated
due to the development of more complex use cases, higher fault
detection (including faults from previous iterations); higher

defect complexity; change in the team, and; a somewhat loose
of project management control (the project manager was also
assigned to another project).

Such information allows for the assessment of factors
impacting the project productivity. The checklist was used to
detect these factors. Indeed, the factors were used to devise
actions to improve the productivity. Nonetheless, it is important
to mention that, although the management tried to take actions
in-between the iterations, the productivity did not improve
along the project.

5 CONCLUSION
Knowing the actual (final) productivity is key to evaluate

the process of a development organization. It serves as input
for calibration of the estimated productivity indicator. But
measuring and analyzing the real productivity (final) is
insufficient to monitor a project.

The use of Function Points to calculate the productivity of a
particular project allows it to be compared to other projects. It
parameterizes the size of the functionalities and enables the use
of historical productivity information to better estimate the
schedule and the budget of new projects.

Failure to follow a project can cause serious problems to a
software project. Regarding productivity, problems may occur
to the time and the cost initially established for the project. It
also impacts in the quality of the delivered product. Usually,
the project manager only estimates the productivity at the
beginning of the project and then calculates actual delivered
productivity at the end of the project. If the project manager
awaits the completion of the project to evaluate the actual
productivity, only the next project may benefit from measures
to improve the development process.

When the project manager monitors the productivity of the
project, by iteration, it is possible to detect which process
phases present lower productivity. With such information, the
manager can attempt to take actions to improve the process on-
the-fly in order to increase the project productivity. Even if it is
not possible to take such actions, the management will have
more accurate information about the possible causes of
productivity decrease. This information will have an important
role in estimating and negotiating new projects.

This paper presented a proposal for defining a process for
monitoring the productivity of software projects through the
use of productivity indicator monitoring. This indicator is used
to assess whether the estimated productivity is being fulfilled
during the iterations of the development cycle of the project.
The calculation of this indicator is done using the size of the
use cases performed in function points, and effort in hours for
its completion. This calculation is dismembered by phases,
allowing a detailed analysis of what steps need to be improved.

With the implementation of this monitoring process the
project manager will able to take actions in the process of

adjustment of project development in order to adjust it before it
ends. Analyzing the indicator by use case and phase can be
used to try to identify the pitfalls of a development process
with more accuracy.

6 REFERENCES
[1] A. Albrecht, J. Gaffney. “Software Function, Source

Lines of Code, and Development Effort Prediction: A
Software Science Validation” – IEEE Transactions on
Software Engineering, SE-9, 6, 1983.

[2] A. Abran, P. N. Robillard, “Function Point Analysis: An
Empirical Study of Its Measurement Processes”, IEEE
Transaction on Software Engineering, Vol. 22, Nº. 12,
December 1996.

[3] C. Jones, “Positive and Negative Factors that Influence
Software Productivity”, versão 2.0. Software Productivity
Research, Inc, 1998.

[4] C. Jones, “Software Estimating Rules of Thumb”, version
3, 2007.

[5] D. N. Card, “The Challenge of Productivity
Measurement”. Pacific Northwest Software Quality
Conference, 2006.

[6] G. Karner, “Resource Estimation for Objectory Projects”,
Objective Systems SF AB, 1993.

[7] G. P. Sudhakar, A. Farooq, S. Patnaik, “Measuring
Productivity of Software Development Teams”. Serbian
Journal of Management, 2012.

[8] International Function Point Users Group (IFPUG),
“Counting Practices Manual (CPM)”, versão 4.3.1,
publicado em Janeiro de 2010.

[9] J. T. Joseph, “Role of Function Point as a Reuse Metric in
a Software Asset Reuse Program”, International
Conference on Software Engineering Research and
Practice (SERP) – Las Vegas – Nevada - USA, 2011.

[10] J. Schofield, “The Statistically Unreliable Nature of Lines
of Code”. Sandia National Laboratorie, Albuquerque –
USA, 2005.

[11] PMI - Project Management Institute, “PMBOK – Guia do
Conjunto de Conhecimentos em Gerenciamento de
Projetos – Official Portuguese”. 4ª Edição”. São Paulo:
Project Management, 2008.

[12] S. Han, S. Lee, “Quantified Comparison and Analysis of
Different Productivity Measurements”. Journal of Asian
Architecture and Building Engineering, November 2008.

[13] S. Walt, “Understanding Software Productivity”, Software
Engineering and Knowledge Engineering: Trends for the
Next Decade, D. Hurley (ed.), Vol. 4, World Scientific
Press, 1995.

[14] W. W. Agresti, W. M. Evanco, W. M. Thomas, “Models
for Improving Software System Size Estimates during
Development”. J. Software Engineering & Applications,
2010.

