Using Productivity Measure an

d Function Pointsto Improve

the Softwar e Development Process

Eduardo Alves de Oliveira and Ricardo Choren Noya

Computer Engineering Section, Military Engineeringtitute, Rio de Janeiro, Brazil

Abstract - Usually, cost and time estimations are done at the
beginning of a software project for budget planning purposes.
Such estimations are used at the end of the project to verify if
the initial planning was followed or if there were any
deviations. In this sense, these estimations can only be used as
an input to improve the process for other projects. This paper
presents an iterative method, which uses productivity and
function points metrics, to identify possible deviations in the
amount of time and effort needed to carry out the process
tasks, thus continuously updating the estimations in order to
cope with the current project needs. It is presented a real case
study of how this process can be applied.

Keywords: Function Point Analysis, Indicator of Productivity,
Software Devel opment Process, Project Management.

1 INTRODUCTION

makes it difficult for managers to compare the picility of
the development of a given functionality to thedarctivity of
other functionalities and to the estimated proditgtiof project
as a whole.

A functional measurement standardizes the estimatio
the functional size of any project [8]. Thus it d@used as the
unit to be used to measure productivity. Moreovwsr,using
function units managers can assess the projectugtivity
throughout the project and not only at its end.

Changes in the scope of project requirements ageod
example of how the use of a functional measure gae
further information to managers. Such changes casept a
growth rate of 2% per month from the time the projmoves
from specification to codification [4]. If some fationality had
its scope changed it is likely to have its funcibsize changed
thus impacting on productivity. If managers only asere
productivity at the end of the project they wilbpably find the

Software development companies are getting more angason why it presented a downside in productidihanges in

more competitive. To understand how competitiveomgany
is, it must measure the productivity and quality timeir
Software Development Processes (SDP) [9]. Knowihg t
productivity in the SDP, allows the company to ioye the
prediction of several projects parameters suchffast,etime
and cost. Both users and project managers wamtdw kefore
a project starts its estimated cost and time toaecd
performance with the best accuracy possible [14].

Currently, it is usual to calculate a productividgstimate at
the initial planning phase of a project and thervéoify the
actual productivity yield at the end of the projdétl] The use
of a measure at these two moments is extremely riauo
because the estimates are based on historical qiratu
However, measuring the productivity only at theseo t
moments in a project is rather insufficient and rmayse some
difficulties, e.g., knowing throughout the develaggm cycle if
the time and cost estimates will be met; monitorithg
productivity of medium and large projects; detegtihe factors
that impact the productivity of a SDP; providing going
adjustments to the SDP, and; controlling whethergtope of
the project is being met or not.

There already are some techniques for monitoring th
productivity of a SDP [11]. Nevertheless such teéghes do
not assess productivity through a functional meament. This

the scope. However they missed the opportunityespond to
such changes in order to keep or even enhance giratu
during the project execution. The functional meamsent
could show the productivity rate of function deymitent
required for managers to cope with the difficultyrheet the
estimated productivity.

This paper presents a method for productivity nuoimty
all along an iterative SDP execution. Each iteratbould have
its size measured using a functional measuremeiegfroject
use cases. The manager will give a percentagezefddi the
iteration to each SDP phase. This will allow fofoef and
productivity division and monitoring in every praseiteration.
This work uses Function Point Analysis (FPA) [8fasctional
measurement.

This article is structured as follows. Section 8gemts how
project planning should be done using a produgtiviticator.
Section 3 describes the method proposed in thierpap. the
SDP productivity monitoring. Section 4 illustrates simple
example and, finally, section 5 concludes this pape

2 PLANNING PROJECTSUSING
PRODUCTIVITY

The productivity indicator is an important inforricet for
planning a project, since it improves the perforogaim the
production of software [12]. Productivity is measdr to
monitor production, reduce costs and improve thadityuof the
delivered product [7].

It is considered a complex project measure, whities on
over a hundred known factors [3]. Productivity igaio of
production output to what is required to produce Tihe
measure of productivity is defined as a total oufmr one unit
of a total input. [6]. A production output unit goftware can be
represented by lines of code, components, artifactanction
points. Inputs can be effort (time) or financiahigt paper
consider inputs as effort measured in hours).

Figure 1 shows a simplified diagram of productiVjiy. It
shows how resources are consumed by a particubaegs or
sub process for the generation of a particulamso# product.

Cost Presource (Efort) Vilue
‘J .ﬂ.
| L |
Requiremsent
el ; : Process or _____ bk Producl
(fnput) o . R [Sofvare)
L Lubprocess Lt are)

Figure 1: Simplified Model for Productivity [5]

The productivity indicator is calculated using angie
mathematical equation (1).

Productivity = Resource/ Product (1)

This paper uses the measure of hours of effort THEe
product is represented by the number of functiomtpo(FP)
produced. Thus productivity is calculated as:

Productivity= H/ FP 2

There are other ways to measure the size of agbrgech
as lines of code (LOC) [1, 10] and use case pairts.function
point (FP) metric was chosen because it is cugrght most
used measure for functional measurement softwarehén
market. Besides it is independent of the technolofthe
format of the unit. This technique has emerged assalt of
studies at IBM in the 70s [2].

FP considers the functions that store data and
transactions that manipulate such data. The FR&ssribed in
a manual that describes how to calculate the fonatisize of a
software project or improvement of software [8]eTtechnique
does not define, among other things, how to tnedicator of
productivity or costs (pricing).

This paper uses FP as a basic measure in the ataoubf
productivity. FPA can be used to parameterize timetfonal
size of software systems and projects regardlessthef
technology that will be used to build it [8]. It$eall functional
requirements, recognized and specified by the tedre sized
as a number of function points. Thus it is possitde the
project manager measure all user functional remergs in a
standardized and objective way.

3 AMETHOD FOR MONITORING
PRODUCTIVITY

This paper proposed a method to monitor the prodtyct
of a project in every iteration during its life ¢gcThe idea is to
allow for adjustments between iterations so that pinoject
does not suffer from delays, increased costs ar ddgproduct
quality. It is important to mention that adjustmentions made
by managers will impact the project SDP. For theggacts to
enhance productivity, it is essential for the mamatp know
which activities, sub processes or phases are niegepoor
(or downslope) productivity.

The method is presented as a set of steps. Eaph ste

indicates an action that should be performed sidsidbe with
the SDP activities. The main purpose is to allog/rttenager to
compare the actual current productivity with thevously
estimated project productivity, done at early pecojplanning
phases.

Sepl: Dividing the Development Cycle by Phase and Iteration

The development cycle corresponds to the totakffgrt
consumed, and (ii) software size (FP) produced praject.
The project should divide the development in iierat (or
sprints for agile methods). Each iteration showdespond to
a sub cycle of the SDP. It is important to menttbat the
management does not change the phases (add oridrap)
iteration in order to increase or decrease thetesffient.

Each phase in an iteration is responsible for aesbfthe
total effort estimated for the iteration. The pobjenanager
should establish such share to distribute the teffat will be
employed in each phase. Such distribution shoulddree by
using historical data or by experience. It is intpot that this
distribution be realistic.

Sep 2: Estimating the size of an iteration in Function Points

After the preparation of the iteration, the projet@nager
will have the requirements approved by the cliant these are
described in a specification. The method proposee kvas
used in projects that specified its requiremeniisgugse cases.

thehe method to estimate the FP count by use casefalows:

1) Finding the Elementary Processes: the manager should
find the elementary processes in the use case .fldws
elementary process is the smallest unit of meanirativity
for the user to specify the requirement [8]. Fartealementary

process found in the use case, there should beresponding
transactional function. After finding the transaotl functions,
the manager can identify the functions that maaigutiata.

2) Finding the Data Functions: during the analysis of
transactional functions it is possible to identifie data that is
manipulated by these functions. The presence ofjiadl data
model is important for a more precise identificataf the data,
but this model is not always present at the morttenproject.
Each data function has a complexity that correspdiedan
amount of FPs. However a data function can be used
transactional functions from different use cases. this
scenario, the manager can follow two approaches:

2.1) select an owner Use Case: an owner use case is
the use case that is the most important (from thentc
prioritizing point of view) or that uses the datanétion more.
Then the data function should contribute to thesiEe of the
owner use case.

2.2) divide the contribution of Function Data: each
use cases that manipulate the data function shymild slice of
its size in FP. This slice is decided by the manage

3) Finding the estimated FP size of the Use Case: the sum
of transactional functions and data functions foumd use case
results in the estimated size FP of the use case.

Sep 3: Calculating Estimated Effort of an Iteration

The project manager must, through a history of laimi
projects or a historical company base, find thdmeged
productivity of the project. This estimated prodvity should
take into consideration the particular aspecthefgroject. The
iterations of the project refer to the estimateddpictivity of
the project. The productivity of the iteration cahbe far from
the productivity of the project, because it wiltinase the risk
of non-compliance (time and cost).

To reach the estimated effort, in hours, of amatten, the
manager should multiply the estimated size of s## nases of
iteration by iteration the estimated productivity.

Sep 4: Calculating the Real Productivity of an Iteration

At the end of the iteration the project managecwates the
total hours of actual effort (final), expended Ihe titeration
development. Besides calculating the actual eftbe, project
manager should make the final FP count of thetitaraThese
will allow the manager to calculate the actual pictivity of
the iteration (H / FP).

If there is a deviation in the productivity, theojgrct
manager should take actions to adjust the SDP #&gacu
Otherwise the project will be at the risk of delagmd/or
increase costs. These can impact the product gualit

Sep 5: Assessing Impacts on the Actual Productivity

At the end of each iteration, the project manageistm
answer a checklist of questions to evaluate factibast

impacted the actual productivity of the iteratidm.doing so,
the manager will be able to define the actions @¢atdken in
subsequent iterations, aiming to adjust in reatpetivity of
the next iterations.

The checklist should include questions that alldve t
evaluation of each SDP phase. The organizationgutie
proposed method can define its own set of questiBakw,
we present a set of aspects that can be used anéwoklist. All
of them are related to aspects found in produgtlitérature [7,
13

Project complexity;

Project type (e.g. real time, distributed);

Innovation support;

Development infrastructure ;

Work environment;

Application integration (to other applications);

Team experience (analysis, design and programming);

Team motivation, communication and cohesion;

© © N o gk~ wDdPE

Client communication issues;
. SDP maturity;

o =
(=)

. Reuse (design and code);

(=Y
N

. Requirements change frequency;

[N
w

. Non-functional requirements complexity;

'_\
o

. Programming language complexity;

(==Y
a1

. Verification (testing and defect removal);

(=Y
(o2

. Re-work (change management);

[
~

. Quiality standards and issues;

[
oo

. Client approval issues;

[
©

. Evolution (maintenance aspects, refactoring, etc.);
20.

The manager should verify if there were positive or
negative impacts of each aspect in the iterati@uystivity.
These will aid the manager to analyze possible gg®c
improvements.

Changes in the team (inclusion, drops, etc.).

4 CASE STUDY

This section presents a case study to show theopeop
productivity monitoring approach. The goal is t@wstthat the
method allows the project manager to monitor thaelpctivity
of the project and give indications of the reastimst are
leading to deviations of productivity in phases éethations.

The example portrayed here refers to a projectidped by
the energy organization and its development proceas

divided into three phases, namely: Requirementsstbaction

and Testing. The distribution of percentage of reffer phase
was: 21% for Requirements; 53% for Constructiord; &6%

for Testing. These percentages were reported byptbject

manager. The project was planned to be done inige)(n
iterations with a total of fifty five use cases amdeam of six
persons. At the time of this paper, six iteratiblase already
been performed.

The iteration analysis should include a set of tioes,
such as:

1. Was the productivity of each iteration better orse
than the initial productivity? Why was that?

2. Has the project manager defined actions to adjest t

SDP after each iteration (if necessary)?

3. Did the actions have any effects in the subsequent

iterations?

Table 1 presents the distribution, by iterationthaf number
of use cases, the FP size and the effort hoursacn of the six
iterations already carried out. For the sake ofpfinity, this
study did not present the FP count by use casesitkein FP
is presented by iteration. Table 2 shows the agit@uctivity
per iteration and phase. All phases of the devetoprprocess
of this project were estimated at 17.92 H / FP.

If at the end of an iteration, the phase of thecess had
productivity lower than the estimated productivitiiere is a
deviation that can cause higher costs and incretisesl to
deliver the project. If productivity has been betten planned,
it should be a review to see if there was ovenrextibn of
resources hours, or if all activities of the SDPravproperly
executed. This may result in product quality deseedeading
to user dissatisfaction.

The project manager created a checklist of questi@sed
on the aspects listed in section 3. The responsethdse
questions were used as input to perform the amalykithe
factors impacting positively and negatively on greductivity
of each iteration. Thus it revealed the factorg thepact the
productivity of iterations along the developmentleyof the
project.

The description of the six iterations in this stislelow.
» First iteration (productivity 10.55 H/FP)
o0 Strengths:

= Team: motivated to learn a new technology and a
new domain, and; trained before the iteration bpgan

= Functionality: CRUD use cases; reuse.

0 Weaknesses:

= Team: only one member on testing team (unfamiliar
with testing tool); requirements team working on
different site.

0 Actions taken for second iteration
= Weekly meetings with all members;
= Peer reviewing (done by senior analyst).
» Second iteration (productivity 5.56 H/FP)
o Strengths:
= Team: testing team increased to two members;
= Functionality: continued CRUD use cases; reuse.
0 Weaknesses:

= Team: testing team still unfamiliar with testinglo
weekly meetings did not include requirements
members (as they were in another site).

0 Actions taken for third iteration
= Hire analyst familiar with testing tool;
= Space provision to move requirements members.
» Third iteration (productivity 15.26 H/FP)
o Strengths:

= Team: two new requirement analysts added; another
senior analyst added;

= Functionality: other core use cases (three of the
biggest (in size) use cases included).

0 Weaknesses:

= Team: changes impacted on communications; part of
the team was idle;

= Workplace: not yet completed for all team members;
= Testing: not automated,;

= Functionality: difficulties with the development of
specific functions.

o0 Actions taken for fourth iteration
= Improve workplace (mainly equipments) for team.
» Fourth iteration (productivity 29.99 H/FP)
o0 Strengths:
= None in special.
0 Weaknesses:

= Team: (workplace impacts related) requirements,

development and testing teams worked on different
sites; project manager shared time with another
project;

= Testing: not automated,;
= Functionality: intense internal reworking.

o0 Actions taken for fifth iteration

Table 1: Distribution of Use Cases, FP and Efféaaxch iteration.

Iteration Number of UCs Size (FP) Effort (Hours)
1st 8 167 1.761.25
2nd 11 181.5 1.027.50
3rd 12 12595 1.976.35
4th 10 78.5 2,35450
5th 10 71.5 1.782.50
6th 4 36 1,429 25

Table 2: Productivity Calculation for Phase andaltien
Productivity (H/FP) — Initial Productivity = 17.92 H/FP
Iteration
Requirement Construction Test Iteration Difference
1st 9.69 1445 3,20 10.55 -7.38
2nd 712 5.23 536 566 -12.26
3rd 15.45 16.45 12.69 1526 2.66
4th 31.73 37.81 12.67 2599 +12.07
5th 1552 1923 43 83 2493 +7.01
fith 50.60 1559 79.99 39.70 +21.78

= None in special.
Fifth iteration (productivity 24.93 H/FP)

0 Strengths:

= None in special.

0 Weaknesses:

= Team: new members were added (but were not
experienced); project manager still shared timé wit

another project;

= None in special.
0 Weaknesses:

= Team: requirements, development and testing teams
still worked on different sites; project manager
shared time with another project;

= Testing: not automated; defect complexity increased

Iterations 1 and 2 present a productivity rate abthe
project estimation and they deliver the best praditg in the
whole project (iterations 1 through 6). This wadniyabecause

= Testing: not automated; number of defects increasethe functionality comprised CRUD use cases (withreno
(including the detection of defects

previous iterations).

0 Actions taken for sixth iteration

= Team training.
Sixth iteration (productivity 39.70 H/FP)

0 Strengths:

related tosimple testing), there was a high rate of reusetla@deam was
highly motivated.

On the other hand, iterations five and six preskrite
worst productivity rate — way below the first esditen This
increased the risk of deviations from the costs setteduled
previously planned for the project. This was maimigtivated
due to the development of more complex use caggseitfault
detection (including faults from previous iterayn higher

defect complexity; change in the team, and; a sdméoose
of project management control (the project managgs also
assigned to another project).

Such information allows for the assessment of facto
impacting the project productivity. The checklisasvused to
detect these factors. Indeed, the factors were tseatkvise
actions to improve the productivity. Nonethelesgs important
to mention that, although the management triedke tctions
in-between the iterations, the productivity did riotprove
along the project.

5 CONCLUSION

Knowing the actual (final) productivity is key tovauate
the process of a development organization. It Seaginput
for calibration of the estimated productivity indior. But
measuring and analyzing the real productivity (fings
insufficient to monitor a project.

The use of Function Points to calculate the praditgof a
particular project allows it to be compared to othmjects. It
parameterizes the size of the functionalities arabkes the use
of historical productivity information to better tesate the
schedule and the budget of new projects.

Failure to follow a project can cause serious ol to a
software project. Regarding productivity, problemay occur
to the time and the cost initially established tloe project. It
also impacts in the quality of the delivered prddidsually,
the project manager only estimates the productigtythe
beginning of the project and then calculates actigdivered
productivity at the end of the project. If the maj manager
awaits the completion of the project to evaluate #ttual
productivity, only the next project may benefitfianeasures
to improve the development process.

When the project manager monitors the productieftyhe
project, by iteration, it is possible to detect gfhiprocess
phases present lower productivity. With such infation, the
manager can attempt to take actions to improv@theess on-
the-fly in order to increase the project produtyivEven if it is
not possible to take such actions, the manageménhave
more accurate information about the possible causkes
productivity decrease. This information will have important
role in estimating and negotiating new projects.

This paper presented a proposal for defining aga®dor
monitoring the productivity of software projectsrabgh the
use of productivity indicator monitoring. This idior is used
to assess whether the estimated productivity isgoéilfilled
during the iterations of the development cycle i project.
The calculation of this indicator is done using #iee of the
use cases performed in function points, and efifiohours for
its completion. This calculation is dismembered ghases,
allowing a detailed analysis of what steps nedaktonproved.

With the implementation of this monitoring procetbe
project manager will able to take actions in thecpss of

adjustment of project development in order to adjusefore it
ends. Analyzing the indicator by use case and pbasebe
used to try to identify the pitfalls of a developmerocess
with more accuracy.

6 REFERENCES

[11 A. Albrecht, J. Gaffney. “Software Function, Source
Lines of Code, and Development Effort Prediction: A
Software Science Validation” — IEEE Transactions on

Software Engineering, SE-9, 6, 1983.

A. Abran, P. N. Robillard, “Function Point Analysi&n
Empirical Study of Its Measurement Processes”, IEEE
Transaction on Software Engineering, Vol. 22, N2, 1
December 1996.

C. Jones, “Positive and Negative Factors that émfte
Software Productivity”, versao 2.0. Software Prdaliiy
Research, Inc, 1998.

C. Jones, “Software Estimating Rules of Thumb” si@mn
3, 2007.

D. N. Card, “The Challenge of Productivity
Measurement”. Pacific Northwest Software Quality
Conference, 2006.

G. Karner, “Resource Estimation for Objectory Pctgg
Objective Systems SF AB, 1993.

G. P. Sudhakar, A. Farooq, S. Patnaik, “Measuring
Productivity of Software Development Teams”. Sembia
Journal of Management, 2012.

International Function Point Users Group (IFPUG),
“Counting Practices Manual (CPM)”, versdao 4.3.1,
publicado em Janeiro de 2010.

J. T. Joseph, “Role of Function Point as a Reuse ®@tri
a Software Asset Reuse Program”, International
Conference on Software Engineering Research and
Practice (SERP) — Las Vegas — Nevada - USA, 2011.

[10] J. Schofield, “The Statistically Unreliable NatwkLines
of Code”. Sandia National Laboratorie, Albuquergue
USA, 2005.

[11] PMI - Project Management Institute, “PMBOK — Guia d
Conjunto de Conhecimentos em Gerenciamento de
Projetos — Official Portuguese4® Edicdo”. Sdo Paulo:
Project Management, 2008.

[12] S. Han, S. Lee, “Quantified Comparison and Analydis
Different Productivity Measurements”. Journal ofias
Architecture and Building Engineering, November 00

[13] S. Walt, “Understanding Software Productivity”, &adire
Engineering and Knowledge Engineering: Trends lar t
Next Decade, D. Hurley (ed.), Vol. 4, World Scidinti
Press, 1995.

[14] W. W. Agresti, W. M. Evanco, W. M. Thomas, “Models
for Improving Software System Size Estimates during

Development”. J. Software Engineering & Applicagpn
2010.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

