
Agile Project-Based Teaching and Learning

Dagmar Monett
Computer Science Dept.

Faculty of Cooperative Studies
Berlin School of Economics and Law, Germany

Dagmar.Monett-Diaz@hwr-berlin.de

Abstract—Agile courses in university settings aim to prepare
students to face the ever increasing demands from the software
industry, where Agile has become mainstream. This proves the
teaching and understanding of Agile in such settings is of the
utmost importance. This is why Agile is no longer just a part
of the software engineering curriculum in Computer Science
but a standalone course in most cases, though with increasing
challenges for both faculty and students. This article presents
yet another example case of the design, planning, development
and evaluation of an agile project-based course. The reason for
addressing the Agile teaching is twofold: not only are the Agile
theory and practice taught and experienced in class, but also the
teaching itself, and consequently the learning, has been adapted
to changing requirements and priorities in each edition of the
course. Making it project-based allows students to work with
realistic projects through which they learn Agile more effectively,
in collaborative and self-organizing teams. These insights, as well
as settings and experiences over a total of 4 years, are addressed
in this article.

Keywords—Agile, eXtreme Programming, teaching, project-
based learning.

I. INTRODUCTION

There are lots of strong reasons for including Agile princi-
ples in CS education [1]. Positive experiences that go from
project-based Computer Science (CS) courses using Agile
[2, 3] over Agile teaching [4] to Agile instructional design [5]
have had a common denominator: the practices, the values and
the methods of the agile software development are essential;
Agile is a current mainstream in the software industry [6]
and educational environments are profiting from this, too.
Meanwhile, project-based learning has proven to be very
attractive in tertiary teaching: students learn the discipline via
a realistic project, they pursue questions and connect them to
activities that are part of the project, they construct knowledge
and autonomously work towards a final product, as well as
they master the curriculum standards with academic rigor [7].

The module Project Management is part of the CS ed-
ucation during the third semester at the Berlin School of
Economics and Law (BSEL). By successfully passing this
module, dual studies CS students can obtain 14 ECTS-credits,1
which are assigned by considering the following proportion:
a 20% of them goes to the sub-module Project and Quality
Management, a 30% goes to the sub-module Multidisciplinary
Lab using Agile techniques, and a 50% goes to the sub-module
Practice Transfer, where students are at their enterprises
and where they should apply gained knowledge in software

1European Credit Transfer and Accumulation System. One credit point is
equivalent to 30 hours of study.

engineering in general and in Agile and project management
in particular. Credit hours, however, were never intended to be
a measure of student learning, as Laitinen argues in [8]. She
brings forward the argument that there should be found “what
students are expected to –and actually do– learn”, as well as the
measurements to meaningfully assess what they have learned,
not only concerning time-based units. By introducing Agile
project-based techniques in CS assignments and by accurately
defining both the learning goals and their evaluation forms,
as it is further presented in this article, a positive step in this
direction is achieved.

Much of the Agile courses in university settings have a
common goal: to prepare students to face the ever increasing
challenges in the software industry. Jaccheri and Morasca
define in [9] five main roles that industry can play in software
engineering education from the point of view of the university
teacher: industry as students, as teachers, as researchers, as
customers, and as former students. Three of these roles are
well-identified in the mentioned module Project Management:

• Industry as teachers: the sub-module Project and
Quality Management runs parallel to the sub-module
Multidisciplinary Lab using Agile techniques. The first
sub-module is taught by an industry specialist in close
collaboration with the latter’s teacher.

• Industry as customers: a real customer, who presents
a problem to the students and who is available for
consulting, is simulated in the Lab, if it is not possible
to invite “a real” one. The concrete problem that
is selected and the algorithm for solving it are also
present in many industrial applications.

• Industry as former students: there are a Faculty Tech-
nical Commission and a Faculty Commission for
Cooperative Studies at the BSEL both integrated by
several industry partners, former dual studies students
some of them, that discuss and approve the curriculum
and other teaching and learning issues. Part of the
faculty is composed of former BSEL students as well.

Two of the most important advantages of the program that
prepare CS students for their further professional life are:
firstly, students from the Faculty of Cooperative Studies are
dual studies students and work in German companies from
their first career’s semester on. This means, they gain practical
experience in real industry scenarios from the beginning of
their studies on. Second, the sub-module Multidisciplinary Lab
using Agile techniques (Lab using Agile, for short) provides
them with several hard skills like specifying, designing, im-
plementing and testing software, as well as communicating,



presenting, and working in a team, to name a few soft
skills. Furthermore, both advantages successfully minimize
new hires’ common frustrations, as addressed in [10].

The Lab using Agile uses an interdisciplinary approach
from the viewpoint of different cross-disciplinary topics ad-
dressed there. Perhaps these are reasons why the course has
been favorably received by both faculty and students. Its
careful design and planning, as well as its constant adaption
to changing teaching and learning requirements has proven
extremely effective in project-based courses. The remainder of
this paper describes aspects for the Lab using Agile in detail.

II. AGILE AND XP TECHNIQUES

One of Agile’s most used methodologies is eXtreme Pro-
gramming (XP), which has also been very popular in CS
teaching [11–15]. For example, Stapel and colleagues propose
in [15] a XP lab design property system for teaching a project-
based XP course to CS master students, emphasizing in XP
practices as part of a closed block course. Their work inspired
the study summarized in this paper, which recommends a
change from a weekly course to a blocked one. However,
not only the course design, its type and the students’ level,
but also the blocks’ duration, the XP iteration lengths, the
team sizes, and the project content, among others indicators,
differentiate their research from the one presented in this
paper. Valuable insights from other works evaluating Agile in
education environments also influence the findings presented
here.

Pair programming is no longer extrinsic to CS education. In
[16], for example, a case study concludes that pair program-
ming is an effective approach for mastering computer pro-
gramming together with cooperative learning principles. The
authors extensively review the literature about the advantages
and disadvantages of pair programming as a teaching-learning
strategy, too. In [17], the authors additionally comment about
the benefits of pair programming when practicing it in grad-
uate software engineering class projects. Furthermore, several
works have been published concerning both the strengths and
weaknesses of pair programming but from the perspective of
the Agile community.

The rest of the XP techniques are also introduced to
the students in the Lab using Agile, both theoretical and
practically. The students are, however, undergraduate students
with little programming experience. In fact, they have only
attended a few semesters at the university. Nevertheless, they
learn quickly how to develop software with the aid of Agile,
they solve a concrete real problem working in teams and they
gain experiences by simulating a working day at an enterprise
as part of the course project.

Differentiated supervision and guidance allow for better
reactions to problems that might arise when introducing Agile
or simply when working with others. In the Lab using Agile,
individual and general coaching is offered as well. The faculty
coaches individuals and teams in the course and is able to
monitor progress and development anytime. Thus, continuous
feedback can be provided to the students, to the teams and
to the entire group. In reciprocation, students should be capa-
ble of presenting different stages of working software, and
they should discuss with faculty in the role of (simulated)

TABLE I. COURSE SCHEDULE: TEACHING BLOCKS AND SEMESTER
CREDIT HOURS.

Block 1 Block 2 Block 3 Block 4
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

8 SCH 8 SCH 8 SCH 8 SCH
6 SCH (PC Lab) (PC Lab) (PC Lab) (PC Lab) 6 SCH

16 SCH 16 SCH

44 SCH

TABLE II. COURSE SCHEDULE: TEACHING BLOCKS AND AGILE
CYCLES.

Block 1 Block 2 Block 3 Block 4
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Intro II Release 1
Syllabus Planing game 1 Planing game 2 Release 2
Intro I Iteration 1 Iteration 2 Conclusion

(Incremental teamwork) (Incremental teamwork)

customers, acceptance criteria for their software products. In
the coaching sections, it is expected that students come with
concrete questions they have prepared in advance about any
topic they need advice on.

III. COURSE SCHEDULE

Table I shows the course schedule for the Lab using Agile
in teaching blocks and semester credit hours (SCH, 1 SCH
meaning what follows 45 minutes of teaching time). The
course is divided into four teaching blocks for a total of
44 SCH. Blocks 2 and 3 take place in a PC Lab. They are
mainly intended for teamwork. In the Fall 2009 and 2010
editions of the course, three XP iterations were programmed
for respective three product releases. However, in the Fall 2011
and 2012, only two XP iterations and their respective releases
were planned, in response to the course appraisals administered
at the end of the previous terms. More on this respect can be
found in Section VI-B.

Table II shows the same course schedule but in teaching
blocks and Agile cycles. Both Syllabus and Intro I at Day 1
conform Block 1 and refer to an introductory section, which
states the purpose and goals of the course, as well as the theory
about the algorithms selected to solve the customer problem.
Intro II at Day 2 refers to an introduction to Agile and to XP.
Days 2 and 3 are two continuous calendar days from Block 2,
as well as days 4 and 5 are from Block 3. Iteration 1 starts
with Planing game 1 and takes between three and four weeks
until Release 1 is accomplished, with only the first two days
at the university. This similarly occurs for Iteration 2, whose
Release 2 takes place at the end of the course, at Day 6. The
Conclusions are mainly based on the presentations of the final
product releases and on the teacher’s feedback concerning the
projects as a whole. In [15], to name one crucial difference
to this work, the block course has no interruption at all: the
(very short) iterations are continuously located in the course
time frame.

Incremental teamwork in blocks 2 and 3 means students
become more independent while working in a team. Students
not only do work incrementally on different tasks without
interruption while planning and developing software: they also
apply Agile techniques that make them more independent.



They progressively need lesser coaching from faculty for mas-
tering activities that are more complex with time. In order to
cope with these challenges, the course schedule includes more
time for programming and less for other didactic exercises,
also in a progressive way.

IV. LEARNING AND TEACHING GOALS

Faculty should be aware of both the coarse and the fine-
grained learning goals for a course, in order to break down
those goals and to focus on the content to be taught. The
former, the coarse-grained learning goals, are often defined in
the curriculum in a general way. The latter ones help faculty
to plan and to draw up in detail what students need to master
and the ways of achieving and evaluating that. By defining
thoroughly the fine-grained learning goals of the Lab using
Agile, faculty creates the course syllabus without difficulty,
and individual blocks and days are planed easier. This does not
require a straightforward, additional effort for the conception
of all these teaching materials, but the time saved later pays
dearly the invested one.

The second block of the Lab using Agile is dedicated to
the first experiences with the XP practice, especially at Day 2.
The fine-grained learning goals of the second block (B2) for
the firsts double credit hours (2 SCH each, i.e., 1 1

2 hours) are:

After completion of the second block, the students will be
able. . .

B2.1 (2 SCH): . . . to identify and to describe software
requirements using story cards; to assess their priorities;
to coordinate and to discuss their inclusion in the current
iteration; and to plan and to schedule related activities for
the first XP iteration.

B2.2 (2 SCH): . . . to meet and to participate in “stand-
ups” or daily meetings; to develop software programming in
pairs.

B2.3 (2 SCH): . . . to discuss and to formulate rules for
working in a team; to discuss and to formulate rules for the
work of several teams in a room.

B2.4 (2 SCH): . . . to develop software working in teams.

Didactic exercises worked out in this block include organi-
zational aspects that allow for better collaborative work when
applying XP, since this is essential to Agile [18]. Rules for
working in a team are then to be discussed by the students,
for example, and each project group could present its set of
rules using a flip chart in one of the sessions.

Teaching screenplays were used to better schedule the
sequence of concrete teaching and learning activities to be
included into a class, as well as the time required to complete
them. They were planned using a sandwich structure, i.e.,
by combining passive and active learning units, and are like
lesson plans or teaching worksheets that describe the teaching
roadmap for a class or for part of a class in detail. For example,
the teaching screenplay for the first double credit hour from
block B2 is shown in Table III. It corresponds to the fine-
grained learning goals defined above for the first double credit
hour of that block, i.e., for B2.1.

TABLE III. EXAMPLE TEACHING SCREENPLAY FOR THE DOUBLE
CREDIT HOUR B2.1.

5 Start – passive unit
Entry min. Welcoming (oral)

Contents and time schedule (flip chart)
Content 1 – passive unit

20 Motivation (oral)
min. Learning goals (flip chart)

Planning game (flip chart, blackboard)
Story cards (blackboard)

3 Brainstorming – active unit
min. Collect examples (plenum)

Content 2 – passive unit
90 Working 20 Project description (hand outs)

min. phase min. Project goals (blackboard)
Project requirements (hand outs)
Requirements for 1st release (blackboard)

2 Introduce exercise – passive unit
min. Planning game: method, time management (oral)

Knowledge transfer – active unit
35 Planning game 1st iteration (teamwork, coaching)

min. Define story cards
Set priorities
Discuss realization

End – active and passive unit
Exit 5 Questions, feedback (oral)

min. Conclusions (oral)
Short about the next double SCH, i.e., B2.2 (oral)

TABLE IV. EXAMPLE TEACHING SCREENPLAY FOR A DOUBLE CREDIT
HOUR WITH TEAMWORK.

2 Start – passive unit
Entry min. Welcoming (oral)

Goals and time schedule (flip chart)
Teamwork and coaching – active unit

90 Working 83 Incremental software development (by students)
min. phase min. Individual team coaching (by faculty)

Questions, feedback (team-oriented)
5 End – passive unit

Exit min. Conclusions (oral)
Short about the next double SCH (oral)

19 such teaching screenplays are needed for blocks 1 to 3,
i.e., one screenplay as in Table III for each double SCH. How-
ever, much of them are only an outline like the one presented in
Table IV. All teaching screenplays can be adjusted and adapted
depending on the concrete class’ rhythm when developing
the course projects, which is just an expression of the Agile
project-based teaching. An extra column could be added to
the screenplays, too, for comments on self reflection and on
self assessment after completing the scheduled exercises and
activities.

V. PROJECT REQUIREMENTS

The general project description was formulated as follows:
Solve the traveling salesman problem (TSP) using a meta-
heuristic algorithm in the context of an XP project. Wanted
is a software product with a graphical user interface (GUI)
that includes menus and controls to define settings and that
visualize results, as well as with a graphical window to show
both the cities and the optimization process in real time.

Students should use metaheuristics algorithms, like genetic



algorithms (GA) and ant colony systems (ACO), to solve
instances of the TSP. They should test their programs using 2-
dimensional, symmetric TSP instances of geographical prob-
lems from TSPLIB [19], as well as they should report both
their findings and the software development using Agile in a
research paper of at least five pages, following the guidelines
for two-column conference proceeding in IEEE style.

Software requirements are defined by the customer (real
or simulated) at the beginning of each XP iteration, depend-
ing on the focus the software development in that phase is
centered around. Only those requirements related to the GUI
development, for instance, are defined, specified, planned, and
prioritized in the same planning game. Those requirements
concerning the data and the algorithms to process them are
defined in another planning game. Whether to start with the
GUI or with the logic was discussed with the students. For
many of them it was more important and attractive to have a
working product with options and other components to present
to the customer in the different releases, into which other
functionalities could be added onto.

In Fall 2012, the first release, at the beginning of the third
block (see Table II), was an “individual” meeting of each
team with faculty playing the roles of customer and coach.
The second release, in the last course’s block, was a “public”
meeting (all teams, in plenum), where faculty played both
the customer and the evaluator roles. Each team presented
a software prototype in the former, as well as it addressed the
main aspects related to other Agile methods and techniques.
In the latter, the final release, a formal oral presentation of
about 35 minutes gave insights about the final product, about
the project development, and about the experiences and lessons
learned during the project completion.

Emphasis was also put on project management tools for
collaborative work. The students had the opportunity, at least
in the last two editions of the Lab using Agile, to test and to
use several new tools (for them), like Redmine2 and Trello3,
for instance.

VI. COURSE EVALUATION

The composition and the size of the class, together with
other information related to the last four editions of the course,
are presented in Table V. The number of students answering
a customized, anonymous questionnaire at the end of the
semester is given in parenthesis for each course edition.

In the Falls 2009 and 2010, the course was offered weekly
and there were a total of three XP iterations (and therefore,
a total of three releases). No special didactic methods were
applied at that time. In each of both editions, a different
algorithm was considered to solve the TSP problems, i.e.,
ACO in Fall 2009 and GA in 2010. Students had difficulties
especially when programming in the class, since the time
available each week was minimal. They also had problems
that prevented them completing their projects on time.

In the Falls 2011 and 2012, however, the course was
divided in four presence blocks, as it is presented in Table I.
Both editions of the course scheduled only two XP iterations,

2Redmine (at http://redmine.org) is a project management web application.
3Trello is a board-based collaboration tool. See more at http://trello.com/.

TABLE V. CHARACTERISTICS OF THE LAST FOUR COURSE EDITIONS.

Group Female Weekly/ Agile Algo- Special Special
Fall size prop. Blocks iter. rithm didactic coaching

2009 30(30) 1 w 3 ACO – –
2010 30(30) 2 w 3 GA – –
2011 24(24) – b 2 ACO ++ +
2012 28(19) 2 b 2 ACO ++ ++

as derived from students’ feedback in the former courses. The
algorithm used for solving TSP was the same in both cases
(i.e., ACO). Both editions included several special didactic
methods not applied before, as well as a close team coaching
by the professor, more intensive in Fall 2012. Additionally,
the faculty was coached in Fall 2012 by an external training
coach, expert in didactic in higher education.

A. Evaluating Learning

Each student can earn at most 100 points, which are then
converted to a grade-point system in the German grading scale,
as usual. A final student’s grade is the team grade to which they
belong. It is determined using a percentage system with 20%
for each of the following areas: first release, second release,
research paper, software program, and project management.

For assessing the releases and the team presentations, an
evaluation form was designed by the faculty. It considers key
components like presentation skills, content, timing, confi-
dence, quality, and so on. The research paper was evaluated
according to guidelines for scientific events. What to consider
for both its content and structure was previously discussed with
the students. Last but not least, the software program should
satisfy all requirements, the teams should submit an executable
version out of bugs, and the main software features and their
functioning should be shown in the final presentation, without
forgetting the project management aspects related to the project
as a whole.

B. Evaluating (not only) Teaching

By the term’s end, a questionnaire independent of formal
faculty evaluations was administered to students. The questions
catalogue with their descriptive scale values is shown in Table
VI. The questions are grouped in four major topics, these
corresponding to the course requirements in particular, to
teaching in general, to how students learned, and to Agile.

Students could also provide an overall evaluation of the
course, including what they liked the most, what they did not
like at all, as well as further suggestions and comments.

VII. RESULTS AND DISCUSSION

Figure 1 shows a polar line chart with an area layer divided
in four sectors that depend on the four general questionnaire
topics mentioned so far. The question P is not included since
it refers to different scenarios (two or three releases).

The plotted data are computed using the following formula,



TABLE VI. QUESTIONS CATALOGUE WITH DESCRIPTIVE SCALE VALUES.

Descriptive scale values and index
Id. Question 4 3 2 1a

A What do you think about the required time for the course too high normal too low abstention
B How were the requirements concerning the course assignments/tasks? too high realistic too low abstention
C How did you find the problem that was selected to be solved (i.e. TSP)? motivating neutral dissuasive abstention
D How did you find the algorithm that was selected to solve the user problem? motivating neutral dissuasive abstention

E How was the introduction on the course goals and topics? very good normal very bad abstention
F How did the teacher/on-site customer respond to the questions, how was her feedback? very good normal very bad abstention

G Do you feel as if you would have learned something during the course? very much normal very little abstention
H How did the course form your interest on the working field? motivating neutral dissuasive abstention

I Did you enjoy Agile practices, especially XP? very much normal very little abstention
J Do you think you have improved your programming skills when participating in the XP project? very much normal very little abstention
K And how about your social skills? Did you improve them? very much normal very little abstention
L Do you think that using XP improves the productivity of small teams? very much normal very little abstention
M Do you think that using XP improves the quality of the code? very much normal very little abstention
N Do you think that Pair Programming speeds up the developing process? very much normal very little abstention
O How did you find the planning game at the beginning of each iteration? very helpful normal irritating abstention

P How was the division in two (Fall 2011, Fall SS2012) / three (Fall 2009, Fall 2010) releases? excessive adequate insufficient abstention
a The scale index with value 1 is reserved for abstentions, for each question, so that students can leave questions unanswered.

Fig. 1. Questionnaire results averaged for the four editions of the course.

which represents a weighted average for each question i:

y =

4∑
j=1

(5− j) · vij

N

=
4 · vi1 + 3 · vi2 + 2 · vi3 + vi4

103

N being the total number of students responses over the four
years (N = 103) and vij being the sum of all responses
multiplied by a scaling of the descriptive scale value j, for each
question. For example, question A refers to the required time
for the course and it has the descriptive scale values too high,
normal, too low, and abstention (see Table VI). The number
of total responses were 13, 70, 18, and 2 for each descriptive
value, respectively. Thus, y = 2.9126 in the polar line chart
for question A, which means that a substantial number of all
students considered the required time as normal.

The rest of the plotted data can be read in a similar way:
most students found the requirements concerning the course
assignments (question B) to be realistic, the TSP and solving
it with the selected metaheuristic (questions C and D) were
motivating, and so on. All in all, the students’ feedback was
very positive in general, particularly regarding Agile.

Fig. 2. Questionnaire results comparing Fall 2011 and Fall 2012 in detail.

Figure 2 shows a polar line chart with a polar area layer and
a polar line layer comparing in detail some data for the Fall
2011 and for the Fall 2012, respectively. Only the questionnaire
topics “how students learned” and “Agile techniques” are
considered. In the figure, Learning refers to the question with
identifier G, Interest in the field to H, Enjoy Agile to I,
Programming skills to J, Social skills to K, Productivity small
teams to L, Code quality to M, Development to N, Planning
game to O, and Two releases to P, respectively, as specified
in Table VI. The corresponding values are listed in Table
VII, which includes the relative percentage of responses for
each descriptive scale value, for each question, not including
the abstentions for being irrelevant. Such details give more
information than the weighted average when comparing both
courses.

The main differences between the settings for Falls 2011
and 2012 concern the presence of female students (none in
2011) and the team coaching (more intensive in 2012), as it is
presented in Table V. The questionnaire results, however, differ
strongly in several aspects: almost all results for questions G to
P show remarkable changes from Fall 2011 to Fall 2012. In the



TABLE VII. FALL 2011 AND 2012 COMPARED FOR GENERAL
LEARNING AND AGILE DATA.

Question Fall 2011 Fall 2012
Id. rel. % glb. % rel. % glb. %

G 45,8 50 4,2 3,4 62,5 16,7 0 3,8
H 33,3 62,5 4,2 3,3 50 29,2 0 3,7
I 54,2 29,2 12,5 3,3 29,2 45,8 4,2 3,3
J 29,2 50 16,7 3,0 50 25 4,2 3,6
K 25 58,3 16,7 3,1 29,2 33,3 16,7 3,2
L 58,3 33,3 8,3 3,5 54,2 25 0 3,7
M 45,8 33,3 20,8 3,2 58,3 20,8 0 3,7
N 33,3 33,3 33,3 3,0 29,2 45,8 4,2 3,3
O 33,3 58,3 8,3 3,2 16,7 54,2 4,2 3,0
P 16,7 37,5 41,7 2,7 12,5 62,5 4,2 3,1

latter, for example, most students feel they learned very much
during the course (62.5%). One year before, more than half
(54.2%) of the students considered learning between normal
and very little. Similarly, for students in Fall 2012 the course
is much more motivating than for their peers in 2011, they
think their programming skills and the quality of the code are
improved very much with XP, and two thirds find adequate
the division in two releases (insufficient for 41.7% of the
students in 2011). However, students from Fall 2011 enjoy
Agile more (54.2%) despite more respondents selecting very
little to describe the following Agile characteristics: speeding
up the developing process with pair programming (33.3%),
improvement of code’s quality (20.8%), improvement of so-
cial skills (16.7%), as well as improvement of small teams’
productivity (8.3%). These values were much more smaller or
absent for responses from Fall 2012 and with descriptive scale
very little.

Figure 3 shows the ten most positive impressions from the
students, i.e., what they liked the most, from more to less
frequent and after considering all four courses. Much of them
refer to both Agile and XP. Pair programming was the most
mentioned with a total of 12 occurrences. Both its benefits
and practice were well accepted by the students. Working in
a team and applying XP to implement a motivating algorithm
was also very important for the students, as well as the chance
to improve their programming skills in such a course project.

The students also had the possibility to mention what they
did not like at all, as well as the opportunity to suggest changes
to be considered in new editions of the course. Some typical
responses were the following ones: it is too much work that
has to be done for too few credits (there should be assigned
more credits points for such a lab), the time pressure is too
high (more time should be allocated for both programming and
teamwork in the class), it is difficult to work in a room with
too many teams at the same time (fewer teams should work
in the same room).

The overall evaluation of the course in the four editions was
as follows: About 80% of all students evaluated the course
as very positive (18,45%) and positive (61,16%). A neutral
evaluation was given by 18,45% of the students, mainly from
the Fall 2011. Two students from the same year evaluated
the course as negative, for a 1,94%. No student evaluated the
course as very negative.

A subjective explanation of the negative results could be

Fig. 3. Most mentioned positive comments.

related to gender aspects, although no factual evidence is
available. For years, usual comments between faculty staff,
not only from Computer Science but also from the other three
technical carriers at the BSEL, connect students’ attention,
participation and discipline in class to the presence or lack of
female students. They argue that courses with female students
have a better balanced classroom dynamic. The group attend-
ing Fall 2011 had no female students. A direct intervention
was necessary several times to control both teamwork in the
classroom and the discipline of few students. For that group,
these aspects were the worst of all four editions of the course.
It should be mentioned, in addition to this, that the teaching
professor is female which is also infrequent in CS, at least
in Germany. Furthermore, all female students from the other
three years got the better grades, and this was also the case in
other courses taught by the same female faculty. It is also
worth pointing out that all females chose to do their two
student research projects with this female teacher and their
final grades were the highest possible scores. This supports
Shaikh’s conclusion in [20]: “the presence of female faculty
in CS is also an important source of mentoring”.

Another possible reason is the observed students’ behavior
during the course assignments and exercises. Most students
were somehow resistant to participate in didactic exercises
involving traditional methods other than the ones they use
to work with while frontal teaching. Open feedback asked at
the end of some blocks confirmed the argument that, when
exercises were not directly related to programming activities
for their projects, students were wasting their time. They
could not see the potential advantages class games or student
debates or think-pair-share might have on long-term learning.
In Fall 2012, already knowing the difficult situations that
arose in Fall 2011, students were instructed in advance about
the goals and benefits of such kind of supporting exercises.
Appropriate advise was also given by an expert coach. The
working environment and the relations student–faculty were
more relaxing and productive in 2012, in general.

The final grade in the module considers 30 points (from
100) for the Lab using Agile. The averaged final grades from
all four editions of the course were:4 Fall 2009, 27.82 (6);
Fall 2010, 26.79 (7); Fall 2011, 28.92 (5); and Fall 2012,

4The number of teams is given in parenthesis. Each team is composed of
4 to 5 students, as a rule.



29.43 (7) points from 30. All in all, the grades were more
than satisfactory: all students earned the required credits and
the final grades were good despite the students’ lack of
participation and the difficult situations from the Fall of 2011.
Most of the lost points were on scientific writing and not on the
programs. The developed software programs were successful
working products that satisfied the defined requirements and
they were finished on time. Furthermore, the most XP values
and practices were well understood by the students and were
consequent applied during the project realization.

VIII. CONCLUSIONS

In this paper, the most significant differences between
Agile weekly and block courses at the BSEL were presented.
The combined use of all XP practices is very effective when
developing Agile based-projects in these courses. Pair pro-
gramming and whole team proved the most enjoyed by the
students. However, students’ engagement is higher in block
courses because they have more time to concentrate and to
participate in active learning tasks that need more time to
complete. Students exploit the XP practices better when they
work without interruption and when the teaching process is
adapted accordingly. They are more able to improve their skills
in planning and discussing, in analyzing and creating software,
in evaluating and presenting results, as well as in working in
teams in block courses than in weekly ones.

Since Agile’s success in the software industry, it has been
a constant in the CS curriculum at educational environments.
Yet it is of utter importance not only how students learn
Agile, but also how to teach it effectively. Teaching screenplays
could help faculty in alleviating the conception and use of
teaching materials. These roadmaps could describe the fine-
grained learning goals of Agile teaching in detail. They proved
to be very useful when used in Agile block courses.

Future work will be related to the introduction of other
practices and techniques, for example from Scrum. The use of
more tools to support the Agile development in the classroom
is planned too. They should value individuals and interactions,
working software, customer collaboration, and response to
change, as Agile software development encourages.

REFERENCES

[1] O. Hazzan and Y. Dubinsky, “Why software engineering
programs should teach agile software development,” SIG-
SOFT Softw. Eng. Notes, vol. 32, no. 2, pp. 1–3, March
2007.

[2] G. Perera, “Impact of using agile practice for student
software projects in computer science education,” Inter-
national Journal of Education and Development using
ICT, vol. 5, no. 3, pp. 85–100, 2009.

[3] A. Schroeder, A. Klarl, P. Mayer, and C. Kroiß, “Teaching
Agile Software Development through Lab Courses,” in
Proceedings of the IEEE Global Engineering Education
Conference, EDUCON’2012, Marrakesh, Morocco, April
2012, pp. 1–10.

[4] V. Razmov and R. J. Anderson, “Experiences with Agile
Teaching in Project-Based Courses,” in Proceedings of
the American Society for Engineering Education, ASEE
Annual Conference & Exposition, Chicago, Illinois, USA,
2006.

[5] D. Lembo and M. Vacca, “Project Based Learning +
Agile Instructional Design = EXtreme Programming
based Instructional Design Methodology for Collabo-
rative Teaching,” Dipartimento di Informatica e Sis-
temistica Antonio Ruberti, Sapienza Università di Roma,
Italy, Tech. Rep. 8, 2012.

[6] , “7th Annual State of Agile Development Survey,”
VersionOne, Inc., Atlanta, GA, USA, Tech. Rep., 2013.

[7] J. Thomas, “A Review of Project Based Learning,” Pre-
pared for The Autodesk Foundation, San Rafael, CA,
USA, Tech. Rep., 2000.

[8] A. Laitinen, “The Curious Birth and Harmful Legacy
of the Credit Hour,” The Chronicle of Higher
Education, January 21 2013, available online at
http://www.scoop.it/t/higher-education-and-more/curate.

[9] L. Jaccheri and S. Morasca, “On the Importance of Dia-
logue with Industry about Software Engineering Educa-
tion,” in Proceedings of the 3rd Intl. Summit on Software
Engineering Education, SSEE’2006. New York, NY,
USA: ACM, 2006, pp. 5–8.

[10] R. Conn, “Developing Software Engineers at the C-130J
Software Factory,” IEEE Software, vol. 19, no. 5, pp. 25–
29, September/October 2002.

[11] A. Goldman et al., “Being Extreme in the Classroom:
Experiences Teaching XP,” Journal of the Brazilian Com-
puter Society, vol. 10, no. 2, pp. 4–20, 2004.

[12] K. Keefe and M. Dick, “Using Extreme Programming in
a capstone project,” in Proceedings of the 6th Confer-
ence on Australasian Computing Education, ACE’2004.
Australian Computer Society, Inc., 2004, pp. 151–160.

[13] M. Müller and W. Tichy, “Case Study: Extreme Program-
ming in a University Environment,” in Proceedings of the
23rd International Conference on Software Engineering,
ICSE’2001. IEEE Computer Society, 2001, pp. 537–544.

[14] A. Shukla and L. Williams, “Adapting extreme program-
ming for a core software engineering course,” in Pro-
ceedings of the 15th Conference on Software Engineering
Education and Training, CSEE&T’2002. Covington,
Kentucky, USA: IEEE Computer Society, 2002, pp. 184–
191.

[15] K. Stapel, D. Lübke, and E. Knauss, “Best practices in
extreme programming course design,” in Proceedings of
the 30th International Conference on Software Engineer-
ing, ICSE’2008. New York, NY, USA: ACM, 2008, pp.
769–776.

[16] E. Mentz, J. van der Walt, and L. Goosen, “The effect
of incorporating cooperative learning principles in pair
programming for student teachers,” Computer Science
Education, vol. 18, no. 4, pp. 247–260, December 2008.

[17] S. Xu and V. Rajlich, “Pair Programming in Graduate
Software Engineering Course Projects,” in Proceedings of
the 35th ASEE/IEEE Frontiers in Education Conference,
ICSE’2008. IEEE, October 2005, pp. 7–12.

[18] K. Beck et al., “The Agile Manifesto,” The Agile Al-
liance, Tech. Rep., 2001.

[19] G. Reinelt, “TSPLIB - A Traveling Salesman Problem
Library,” RSA Journal on Computing, vol. 3, pp. 376–
384, 1991.

[20] S. A. Shaikh, “Participation of Female Students in Com-
puter Science Education,” Learning and Teaching in
Higher Education (LATHE): Scholarship of Inclusive
Curricula, vol. 3, pp. 93–96, 2008.


