
Software Maintenance Risk Management Process – A

Case Study

Vinicius Miana
1
, Calebe Bianchini

1
, Selma Melnikoff

2
 and Marcelo Martins

2

1
FCI, Mackenzie University, São Paulo, SP, Brasil

2
POLI, Universidade de São Paulo, São Paulo, SP, Brasil

Abstract - Software Maintenance risk management differs in

many aspects from software development risk management.

Although it is the longest and the riskier phase on the software

life cycle, differently from software development where many

processes and models were established, very few processes

have been developed to deal with software maintenance.

Because it deals with systems that are already in production,

software maintenance presents much more sources of risks. In

this paper, we go through the software maintenance process

identifying the main sources of risks and defining a process

that can help mitigate those risks. Finally, we present a case

study where this process was applied and some of the results

are shown.

Keywords: software evolution, risk management

1 Introduction

 Software maintenance encompasses all activities enacted

after software deployment that aim to modify it [1]. Many

studies have shown that the costs associated with software

maintenance have grown as time goes by [2]. Since it is not as

attractive as new software development, software maintenance

was not studied and researched in the same depth as

development and therefore very few models were developed

to deal with it [3].

 In this work a software maintenance risk management

model is developed using the following work as reference:

Bennet [1], Polo [2] and Webster [3]. This paper is divided in

6 sections. The first one introduces the subject. On the second

section software maintenance and its state of the art is

presented. The third section presents software risk

management and its existing models. On the fourth section a

proposal for software maintenance risk management is

presented. The fifth section presents a case study and finally

the sixth section presents the conclusions of this work.

2 Software Maintenance

 Software maintenance is the modification of a software

product after its deployment with the objective of correcting

errors, enhancing performance and other attributes or adapting

the product to changes in the environment IEEE [4]. Pressman

[5] categorized software maintenance into four types:

 Adaptive: changes in software environment;

 Perfective: new user requirements;

 Corrective: error correction;

 Preventive: to prevent problems in the future.

 Pressman [5] also believes that software maintenance

should be viewed from 3 main perspectives:

 The activities involved in software maintenance and

software engineering impact on the efficacy these

activities;

 The costs related to software maintenance;

 Problems that usually happen during software

maintenance.

 Regarding software maintenance activities, Pressman [5]

distinguishes structured software maintenance and

unstructured software maintenance and highlights the

following activities on structured software maintenance:

 Design evaluation;

 Maintenance approach planning;

 Design change;

 Re-coding;

 Revision: which may imply on re-changing the design

and re-coding depending on whether the desired results are

met or not.

 Regarding software maintenance costs, there is a

concern with growing costs in various studies [2], however it

was observed that intangible costs are often not taken into

account. These are the main intangible costs in software

maintenance [5]:

 Customer dissatisfaction with unmet requirements or

on the delay on meeting them;

 Quality reduction as result of some changes

introducing latent errors;

 Problems caused in a development effort when

programmers are forced to stop what they were doing

to work on software maintenance activities.

 Regarding usually found problems in software

maintenance, the following arises [5]:

 Impossibility to trace software evolution: changes

not documented;

 Impossibility to trace the process in which the

software was created;

 Difficulty to understand code written by someone

else;

 Difficulty in finding the code’s author for clearing

doubts;

 Inexistent or bad quality documentation;

 Difficulty in changing the software: software design

does not take into account possible future changes.

 The considerations mentioned earlier are very important

when we are defining maintainability, which is the easiness

that software can be understood, corrected, adapted and/or

enhanced, and it is influenced by the following factors [5]:

 Skilled personnel availability;

 Capacity to understand system structure;

 Easiness to manipulate the system;

 Use of standard programming languages;

 Test case availability;

 Code debugging mechanisms availability;

 Availability of adequate environment for conducting

maintenance.

 Bennett [1] introduces a software maintenance life cycle

model, which allows distinguishing software regarding its age

and maintainability. This model is called a software-staged

model and it divides software product life cycle into 5

different stages counted from its deployment:

 Initial Development: in this stage software is exactly

as it was and it was deployed. Software will be in

this staged until its first maintenance is executed;

 Evolution: in this stage the application is adapted to

constant changes in user requirements and

operational environment;

 Service: as time goes by, changes in software

corrupts the initial architecture and members of the

original development team leave until you get to a

point where making changes becomes so hard, either

due to lack of knowledge in the current team or due

to the need of large architectural changes, that is no

longer possible to evolve the software. In this stage

only small tactical changes are undertaken;

 Phase-Out: in this stage no changes are made in the

software. Users must work around software

problems;

 Close-Down: in this stage, the software is

disconnected and users are directed to a substitute.

3 Software Risk Management

 Before starting with software risk management, we shall

define software risk: Software Risk is a measure of the

probability of loss and its impact related to a software project,

process or product [6].

 Risk Management is a general procedure for resolving

risk and has two main components [7]:

 Risk Assessment defines risk by identifying hazards,

evaluating their potential effects and the likelihood

of their occurrence.

 Risk Control is the process of developing risk

resolution plans, monitoring risk status,

implementing risk resolution plan and correcting

deviations from the plan [6].

 The risk management process can be divided into 6

elements, three related to risk assessment: identification,

analysis and prioritization and three related to the control:

planning, monitoring and resolution of risks [6]. According to

Boehm [7], risk management can be classified in the

following way:

 Risk assessment

◦ Risk identification

◦ Risk analysis

◦ Risk prioritization

 Risk Control

◦ Risk Management Planning

◦ Risk resolution

◦ Risk monitoring

 The risk identification process encompasses activities

that lead to the identification of the hazards that may threat

the software product, process or project. Software Risk

Identification may use methods involving one or more of the

listed below [6]:

 Checklists – use of lists as a reminder of possible

risk areas;

 Interviews – use of group interview session where

people may talk about their concerns, doubts,

problems and uncertainties related to the software;

 Meetings – use of periodic meetings to discuss

project risks;

 Revision – use of plan, procedure and work products

review;

 Forms – use of standard risk management form to

input routinely found risks;

 Survey – use of questionnaires as a faster way than

interviewing people about their perceived risks;

 Working Group – use of brainstorming, meditation,

modeling, simulation and other group activities.

 The risk analysis process consists on quantify each

hazard identified on the Risk Identification Process by

calculating its occurrence probability and impact. By using a

probability/impact matrix, risks can be classified as critical,

high, moderate, low or negligible [3]. This process

encompasses the following activities: grouping similar and

related hazards, determining which may have an impact on

risk, determining sources of risk, using risk analysis

techniques and tools, estimating risk exposure, evaluating risk

against criteria, ranking risk according to its severity [6].

 The risk planning process consists of all activities and

methods used to develop risk resolution alternatives [8]. This

process encompasses the following activities: development of

risk scenarios for high-severity risks, development of risk

resolution alternatives, selection of risk resolution approach,

development of risk resolution action plan, and establishment

of variables to be monitored with threshold values for warning

[6].

 The risk monitoring process consists of activities of risk

measurement and indicator tracking, which may indicate that

a risk resolution plan must be executed. Tracking indicators

may anticipate the loss occurrence, giving more alternatives to

mitigation [6].

 The risk resolution process consists of activities that aim

to reduce risk to an acceptable level. The activities in this

process include: response to a notification of triggering event,

execution of a risk resolution plan, report of progress against

the plan, and correction of deviations from the plan [6].

4 Software Maintenance Risk

Management

 Using software maintenance and software risk

management concepts, we developed a software maintenance

risk management model. As stated in many references

([1],[2].[3], [7], [8], [9], [10]), most of software maintenance

environments present some factors that increase risks in

software maintenance. These factors were used as premises

when developing this model and are listed below:

 The deployment of risk management process will be

in a environment with no previous risk management

culture;

 The software to be maintained were developed by

other people;

 Documentation either does not exist or is outdated or

has bad quality;

 Languages and platforms used in many modules are

old.

 Given these premises, we used Hall [6] risk

management model and added activities proposed by

Charette [8] for cultural adjustment of personnel and good

software maintenance practices proposed by Weber [11]. The

use of the premises was important to create a process that can

be applied in an organization that already performs software

maintenance activities and needs to have its software

maintenance risk management process improved. The work

of Hall [6], Charette [8] and Weber [11] was integrated into

one single model after a careful review of their proposal.

Additional elements were added based on author’s experience

and redundancies eliminated. Finally, the proposed model

was checked against the IEEE Std 1219-1998 Standard [4]

which defines software maintenance, to make sure that

correct naming was used and that the process would conform

to the standard.

 Software Maintenance Risk Management should fit into

the Software Maintenance Process [4], with the following

changes:

 Team preparation: through training and mentoring,

the team will be better prepared to find and

communicate risk found in their activities;

 Communication: risk communication strategies

should be established and periodic meetings should

take place to evaluate those risks;

 Problem Classification: the process of receiving new

functionality and bug fixing requests should be

redesigned to take into consideration that the risk

involved in these activities when prioritizing them;

 Documentation: a task-force should be defined to

produce, enhance and update all maintained software

documentation. The documentation activities should

be prioritized according to the degree of changes

made in each software and/or module. Also, when

modifying any part of the code, the maintenance

team should enhance and correct/update its existing

documentation;

 Tests: an automated test policy should be

established, this tests would expedite the

maintenance process and ensure that any corrections

and changes made on the software did not cause an

error somewhere else.

 The changes mentioned earlier were implemented first,

by adding extra activities in the following IEEE Std 1219-

1998 [4] Process:

4.1 Problem/modification identification,

classification, and prioritization

 For every problem/modification identified, the risks

associated to them should be evaluated. It should be

considered the risk of doing the change against the

risk of not doing it. When not performing a

modification or fixing a problem, we have a risk of

loosing customer base by not attending some

desired/expected requirements. On the other hand,

some modifications may bring distortions to the

system architecture making it more difficult to

perform future maintenance and reducing system life.

Another risk that must be taken into consideration is

an excessive maintenance cost that must be

compared with the cost of replacing the solution.

When prioritizing modifications, the risk involved in

each one of them must be used as reference when

defining what must be done immediately, what will

be postponed and what will not be done;

 A mitigation plan must be established and the team

should be prepared to act if a loss occurs;

 To identify risks, we suggest using the taxonomy

proposed by Webster [3].

4.2 Analysis, Design, Implementation

 When performing analysis, design and

implementation activities, the team must pay

attention to the risks already listed in previous

activities and also to new ones not previously

identified. All identified risks should be entered in

the risk matrix and monitored by the team that is

performing the maintenance;

 During these activities, updating and enhancing

documentation should be done as a measure to

reduce future maintenance risk.

 System Test and Acceptance Test:

 Tests should be automated for faster and more

reliable execution.

 Then there were few activities that would not fit into the

IEEE Std 1219-1998 [4] proposed phases and they should be

executed as specified below:

4.3 Team Preparation

 This phase prepares the team to changes in their

daily activities, introducing them to risk management

paradigms;

 In this phase, training in risk and in the proposed

process should be given to the whole team.

4.4 Documentation

 Documentation can be the most important ally or enemy

when maintaining a legacy system. Due to that, the proposed

process has documentation activities in the analysis, design

and implementation, but also a documentation taskforce. This

taskforce should perform search, organization, consolidation,

complementation and correction activities on the existing

documentation. These activities even though not directly

related to risk management they are verify important for

providing resources that will allow a more precise assessment

of maintenance risks.

5 Case Study

 In order to test the proposed model, a case study was

developed. It was chosen to apply it in an legacy university

crm system that has a web interface and as it was complex

enough to have maintenance issues and simple enough to

have results easily monitored.

 The application was developed using the JAVA

language and was very recent. As it had tough deadlines and

integration requirements with other systems, some developed

in Natural/Adabas which are old and have many

documentation issues, the project was deployed very fast and

faced constantly changing requirements moving it fast to the

Evolution stage. Complying with the activities proposed in

the process was very time consuming and we face challenges

both from user expectations and developer hastiness. With

weekly deployments, sometimes more problems emerged

when a simple change was performed. It was hard convincing

developers to apply the process and we decided to count new

bugs per week and use it as metric to show progress. Since

the system was recently developed, we did not face any

challenges with use of old technologies or corruption of

architecture coherence. With bug tracking system in place

and version control using cvs, we could easily recover the

statistics before the process was implemented and be able to

show a reduction in new bugs per week with few weeks of

implementation.

 Regarding the implementation of the proposed activities,

we made the following findings:

5.1 Problem/modification identification,

classification, and prioritization

 Associating risk for every problem/modification

identified was easy in most cases. At the end of the week, all

problems and changes requests were discussed and

maintenance team evaluated the risk. Webster’s taxonomy

was used and helped raising the right issues and making the

meeting more productive [3]. This extra task didn’t make the

meeting much longer than usual and helped bringing

consciousness of the impact of changes to the development

team, making them more careful. In general terms, we could

also say that better decision were made in the

Problem/modification identification, classification, and

prioritization activities.

 Before, starting working on a new release, the code was

tagged in the source control software, allowing going back as

a mitigation step. Also, to prevent problems when larger

architecture changes were made, the whole cvs tree was

backed up. During this study, sometimes it was necessary to

move back to the previous compiled version; however we

didn’t face situations where we had to roll back source code.

5.2 Analysis, Design, Implementation

 Finding risks during analysis, design and

implementation activities was not very successful in the

beginning, as the team was not used to do that and differently

than in a meeting there is no driver of the discussion,

developers are working on the own. We perceived that they

were afraid to present the risks as they felt as showing

weakness on their work. It took strong persuasion to improve

that and we still feel it is not working as well as it should.

 Documentation activities also were hard to implement,

developers didn’t like doing that and were always in a hurry,

not having time to document. Regular documentation

activities during Analysis, Design and Implementation were

only made after few weeks of micro-managing this topic.

 Choosing correct tools and environments could help the

team not only writing down analysis, design and

implementation documents, but also could generate

automatically some architecture design and source-code [12].

Furthermore, these tools could help finding and reusing

components already developed and available in a common

repository [13].

5.3 System Test and Acceptance Test

 Slowly, Junit tests were developed and helped a lot

during System tests.

5.4 Team Preparation

 A PowerPoint presenting this process and some

literature regarding risk was presented to the maintenance

team to prepare them to the changes in the process. After that,

these changes were discussed individually with each member

of the maintenance team to make sure they really understood

how the team would perform from that point.

5.5 Documentation

 Due to lack of resources, we were not able to implement

the documentation taskforce.

 After analysing the data, we found that the quantitative

results were inconclusive. Many variables may have had an

effect on bug reduction, including that as time passed,

requirements became better known and more stable.

Nevertheless, the experience of implementing this process

gave to the developer team a greater level of conciousness

regarding maintainance risks. That led to more carefully

designed, documented and coded software. The weekly

release meetings after risk was brought to the table made

developers more careful before making bold movements of,

for instance, changing a database structure.

 From that experience, we perceive the following

challenges, when implementing the proposed process:

 Change resistance:

 In many cases, the additional activities proposed by

the process may be seen as bureaucratic and

pointless, making necessary a strong convincing

work to make people adopt this new way of working;

 Aiming to make this argument stronger, metrics that

allow monitoring the progress and seeing the benefits

to clients, team and company when adopting the

process should be implemented;

 Management must be convinced before anyone else

to adopt risk management as a priority. An

implementation of risk management process should

not be started without total support from

management.

 Lack of skills in the team:

 The adoption of risk management demands higher

skills than what is usually found in maintenance

teams. In most cases, this problem can be reduced by

the proposed training, however many times it

involves more basic education in software

engineering matters;

 The adoption of a process implies in discipline and

skills. When there are no previous processes in place,

this may mean a big leap in skills needed;

 As it is not as attractive as new software

development, maintenance most often has less

experienced professionals.

Difficulties to access information:

 Documentation activities present a enormous
challenge, since, in many cases, there is no
documentation or it is outdated and the team that
developed the system is no long available;

 To gather this information it is often necessary to
read source-code which is often obscured by many
patches brought by the changes in the software;

 Users themselves could be a great source of
information, since they supposedly know well the
business rules that were automated by the system.

To face to those challenges, many measures must be adopted,

the study of those measures is the objective of future work in

this area. One approach to deal with this problem with lower

overhead might be documenting directly in the source-code

using annotations [14].

6 Conclusions

 During the development of this work we came across

significant differences between software maintenance and

software development. These differences make risk

management also very distinct when dealing with software

maintenance versus software development. Even though

maintenance is responsible for 90% of software costs in its

life cycle, very few studies were developed on software

maintenance risk management. Maintenance process and

practices were studied as way of analyzing its risk factors,

which helped adding risk management practices in the

process. Similarly current software development risk

management work and software maintenance work were

studied. All this information was compiled and helped

generating the proposed software maintenance risk

management process.

 During the development of this process and on its trial

in the case study, many challenges were found and they were

highlighted in this paper. It was verified that the most

impacting risk factors in software maintenance are the lack of

skills in maintenance personnel and the lack of

documentation. The proposed process aims to mitigate, at

least partially, these risks. Specific risk mitigating measures

that should be taken still rely on management experiences and

can not be defined in a generic risk management process, as

the one we proposed.

 As we verified in our case study and on the literature,

the implementation of risk management process as this has a

great impact on diminishing problems related to schedule,

costs and meeting customer needs in software maintenance

activities. However, for better results, it is required to start

taking maintenance in consideration from the first conceptual

sketch of a new system and during the software entire life-

cycle.

 As future work, we hope to enhance the software risk

management process, identify most common risks, metrics to

help identifying them as soon as possible and include in the

maintenance process activities that help mitigating those risks.

On another research line, a very interesting research subject

would be the definition of characteristics and metrics that

could be used to evaluate software regarding its

maintainability and its maintenance risk.

7 References

[1] BENNETT , K; RAJLICH, V. Software maintenance

and evolution: a roadmap. Proceedings of the Conference on

The Future of Software Engineering table of contents.

Limerick, Ireland. p. 73 – 87. ISBN:1-58113-253-0. Publisher

ACM Press New York, NY, USA, 2000.

[2] POLO, M. Advances in Software Maintenance

Management: Technologies and Solutions. Idea Group

Publishing. Loughborough, UK. 2002.

[3] WEBSTER, K. et al. A Risk Taxonomy Proposal for

Software Maintenance. 21st IEEE International Conference

on Software Maintenance (ICSM'05). p. 453-461, Budapest,

2005.

[4] IEEE. IEEE Std 1219-1998: Standard for Software

Maintenance. Los Alamitos, CA USA. IEEE Computer

Society Press, 1998.

[5] PRESSMAN, Roger. Software Engineering – A

Practicioner’s Approach. London, England. Mc-Graw Hill

Book Company, 6th Edition. 2004.

[6] HALL, E. M. Managing risk : methods for software

systems development. Addison-Wesley , 5th Edition, ISBN

0201255928. Boston, 2002.

[7] BOEHM, B. IEEE Tutorial on Software Risk

Management. New York, NY USA. IEEE Computer Society

Press, 1989

[8] CHARETTE, R.N; ADAMS, K.M; WHITE, M.B.

Managing risk in software maintenance. IEEE – Software. V.

14 N. 3, p. 43-50. May/June, 1997.

[9] BUCLEY, J. et al. Towards a taxonomy of software

change. Journal of Software Maintenance: Research and

Practice. V. 1 – 389. John Wiley & Sons, Ltd., 2003.

[10] RUIZ, F. et al. Utilización de Investigación-Acción en la

Definición de un Entorno para la Gestión del Proceso de

Mantenimiento del Software. In: 1er. Workshop en: Métodos

de Investigación y Fundamentos Filosóficos en Ingeniería del

Software y Sistemas de Información. (MIFISIS'2002).

Madrid, 2002.

[11] WEBER, R. et al. Fit for Change: Steps towards

Effective Software Maintenance. 21st IEEE International

Conference on Software Maintenance (ICSM'05). p. 26-33,

Budapest, 2005.

[12] BEZERRA, V. et al. Designing object oriented systems

using stereotypes and patterns. Proceeding of IADIS

WWW/Internet 2006. 1ed.Murcia: IADIS, 2006, v. 1, p. 162-

166. 2006.

[13] LUCRÉDIO, D. et al. ORION – A Component-Based

Software Engineering Environment. The Journal of Object

Technology (JOT), v. 3, n.4, p. 51, 2004. URL :

http://dx.doi.org/10.5381/jot.2004.3.4.a4

[14] BEZERRA, V. et al. Requirements oriented

programming in a web- service architecture. IADIS

www/Internet Proceedings. Lisboa: IADIS, 2010. v. 1. p. 287-

292.

http://dx.doi.org/10.5381/jot.2004.3.4.a4

