
Applying Design Patterns in Game Programming

Junfeng Qu1, Yinglei Song2, Yong Wei3
1 Department of Computer Science & Information Technology, Clayton State University, Morrow, GA, 30260
2 Department of Computer Science, Jiangsu University of Science and Technology, Zhenjiang, China, 212001

3Department of Computer Science, North Georgia State University, Dahlonega, GA 30597

Abstract—This paper discussed an object-oriented design for
general game using C# and XNA using design pattern. We
presented application of structural patterns, creational pattern
and behavioral pattern to create game sprite, manage game state
and game sprites, different collision and rewards among sprites
or between sprites and map; we also discussed how to apply
design patterns to handle communications between sprites and
NPC by using observer pattern and mediator patterns. Although
lots of design patterns are discussed, other design patterns might
suitable as well because game programming are so complicated to
separate each pattern independently.

Keywords-Game, Programming, Design Patterns, UML, XNA,
C#

I. INTRODUCTION

A. Computer Game and Development

The video games industry has undergone a complete
transformation in recent years especially after mobile device
and casual game have impact people’s life greatly.

Computer programmers are writing game in the way, that
cow boys are riding on wild west, wild and innovative.
However, as the game is getting bigger, more complex, and
changing during development. A well designed overall game
program design and architecture that modulated and integrated
with software development procedure are very important.
Also, a well- designed game program should be able to extend
easily, portal to other platform easily without deep revision of
source code to minimize deliver time is also important.

A large size of program can be developed and organized
better with Object-oriented Programming(OOP) because of its
significant advances over procedure programming. A series of
new techniques and packages have been proposed to handle
the complexity and organization problems in game
programming, for example, XNA from Microsoft, AndEngine
for android mobile game, etc. These components are usually
context insensitive and can be used to work on most general
game related programming issues and programmers are able to
concentrate on the part of the code that often defines the
functionalities of game.

B. Design Patterns

Design patterns are proven solutions to well-established
software engineering problems. In game programming,
programmers are often tend to make sure the correctness of a
program by evaluating its behavior of character, and

overlooked the design aspect, such as open-close principle,
scalability, maintainability, flexibility, extensibility, and
robustness to changes, therefore, programmer has to rework or
dispose their work complete in order to accommodate changes
of algorithm, level, and game mechanics during the game
development process.

Due to their well-known importance and usefulness, we
proposed some example design pattern solutions to these
commonly problems encountered during game development
with Microsoft XNA such as handle sprite, communication,
control, and collision.

It’s not easy to find patterns that can be used as common
solutions for common problems in game programming. There
are two categories of design patterns in game development.
One category of design pattern was introduced by Bjork[1],
where a set of design pattern is used for describing(employing
a unified vocabulary) the game mechanics(gameplay and game
rules) during game development. It focuses on reoccurring
interaction schemes relevant to game’s story and core
mechanics of game. After interviewed with professional game
programmers, the authors analyzed the existing games and
game mechanics and then proposed those patterns involving
game design process. The authors said ‘The way to recognize
patterns is playing games, thinking games, dreaming games,
designing games and reading about games’. For example
Paper-Rock-Scissor pattern is commonly known in game as
triangularity, and this pattern was used in game when there are
three discrete states, or options as described in figure 1.

Figure 1. Triangularity design pattern in game

These patterns are not related to the software engineering ,
architecture or coding. So these are not discussed in this
paper. The second category of design pattern in game is use of

object-oriented design patterns in programming games, which
are discussed and analyzed in the following sections.

One of the unique characteristics of game development and
programming is rapidly evolutional modification and goal
changing during game design and development, therefore it’s
very common that game programmers have to dispose their
works that they have been working for months and to restart
again. Once the game has been completed, it is often
transformed into various game platform, such as PC, mobile
devices (Android, iOS, Windows 8 etc), game console (PS3,
Xbox 360 etc.). Therefore a well-designed game program
would spend minimal efforts and changes to migrate. A well
designed game programming that offer great flexibility, code
reusability, extensibility, and low maintenance costs is highly
desired.

 Daniel Toll etc.[2] found that it is difficult to perform unit
testing in computer game. Computer game often involves
poor defined mathematical models, therefore it’s difficult to
produce expected results of unit under testing. On the other
hand, computer game’s rules of play needs to validated based
on player’s inputs, and new functions are unlocked as player
makes progress, which in term makes it’s difficult to perform
testing in the complex interactions of varieties of game objects.
For example, as player is making progress in Angry Birds, new
challenges features are unlocked to entertain and challenge
player, and player is able to perform more options and actions
to overcome challenges presents. As these levels, new game
items, and new features are added into game, even a small
change of codes results a number of test and retest large part of
the game. The difficulties of testing of game are also because
the tight coupling of modules in game programming.

Most research works focus on teaching design patterns
using game programming as examples, and show how
effectively there are represented in case studies, such as
computer game[3], the Game of Life[4], the Game of Set[5]
and [6], which uses a family of games to introduce design
patterns. Some researchers[7] had evaluated the usage of
design patterns in game programming. It has proven that if
design patterns are used properly and in appropriate cases, the
programming maintainability, extensibility, flexibility and
comprehensibility can be extremely beneficial and improved.

In this paper, we discuss some design patterns in the
category of creational patterns, structural patterns and
behavioral patterns, such as builder pattern, strategy pattern,
mediator pattern, and state pattern, and how these are adapted
into game programming info-structure such as C# and XNA.

II. GAME ARCHITECTURE AND LOOP

A. Game Architecture

Most computer games shares a similar architecture in
regardless of languages used in game development. Bishop[8]

etc. described a general software architecture of game as shown
in Figure 2.

The slid-line ovals represent essential component of game
architecture and the dashed-line ovals are modules that can be
found in more complex games. The Even handler and the input
provides player’s action to game. The game logic renders
game’s core mechanics and story if any. The audio and
graphics supplies sounds, images, game objects etc. in the
game world to the player based on the level data module,
where the details about static behaviors are stored. The
dynamic module configures the dynamic behavior of game’s
character and objects. Most official games have all or partial
components of above architecture, such as UnReal, Unity 3D,
RPG Maker etc.

Figure 2. Common Game Architecture[8]

B. Game Loop in Game Programming

In general, most game programming can be viewed as an
game loop. The player’s inputs are process in each iteration,
and the game states and the game world change based on
internal game logics until the game is over. Of course the
rendering and game logic processing can be coded with event
thread, which leads to a simpler code. In small scale or turned-
based game with little or no animation, this approach works
perfectly. Visual C Sharp XNA provides a game loop that is
driven by a control loop that similar to the event-processing
loop described above. The game loop uses active rendering as
shown in figure 3.

Figure 3. Game Loop Template in XNA

Game initialization() include nongraphics initialization.
LoadContent() include graphics initialization, such as reading
game object, sprite, texture etc. After that Run() is called to
initiate game loop, which includes Update() and Draw()
methods.

Update() method updates game objects, checking for
collisions, game AI, game object movement, updating scores,
checking for end-game logic etc. Draw() method is used to
draw game objects on game scene. All logics that effects the
gameplay will be done in the loop of Update() and Draw(). If
game ending logic is satisfied, UnloadContent() is call to
unload resources and memory allocated to game scene. In
Update() and Draw() of the game loop following game related
objects are handled:

� Player’s inputs: The player’s inputs from keyboard,
mouse, game console are process and saved into
system

� Game internal logic: This is a key component of game.
Game rule is implemented in this loop as well. The
new game state is decided once upon player’s inputs
are received and processed based on rule the game
designer’s plan.

� All game objects in the game scene is update at certain
predefined frame-rate based on player’s inputs as well.

In this paper, we have proposed a couple of design patterns
that we have experienced during game development and design
since it’s very apparent in game development the common
elements and mechanics that the games share are often handled
with class abstraction, inheritance, polymorphism in code
refactoring.

 We use Microsoft XNA as a game development platform
and try to integrated creational patterns, structural patterns and
behaviors patterns into XNA game loop described above.
Design patterns can be applied in design and coding of any
game module, what we have illustrated here does not imply
that these patterns are more suitable and applicable than other
patterns or fields since game programming is so complicated to
be included in all scenarios in the discussion, and it also does
not mean no other design patterns can be used.

III. APPLYING DESIGN PATTERNS IN GAME PROGRAMMING

A. Game State Management: State Pattern

Almost every game starts with a state of an introduction,
then move to some kinds of menu such as setting of game
or a learning mode, and then player can start play and
game enters into playing state. During the playing of the
game, the player will be able to jump back to main menu,
set parameters, or pause the game until the player is finally
defeated and the game moves to a game-over state, the

player then may start from main menu again. In general,
each state handles different events differently, from, and
draw something different on the screen. Each state might
handle its own events, update the game world, and draw
the next frame on the screen differently from other game
states. Figure 4 illustrated an example game state change
from main entry to Play State, Pause state and End State
respected to different button that pressed by the player.

Traditionally, the multiple states of game are handled
with a serious of if..else if.. statement, switch..case
statement. Every time through the game loop, the game
program must check current state of the game and display
and draw game objects correspondingly, also, events are
handled and checked to see player’s input will trigger the
change of game state. This programming approach results
a highly coupled codes, therefore it’s difficult to debug,
testing and code maintain.

Figure 4. An Example of Game State Changes

State pattern is a natural solution to above problems as
illustrated in Figure 5. The state pattern allows an object to
alter its behavior when its internal state changes[9].

Figure 5. State Pattern for Game State Management

GameStateManager maintains a concrete state at any given
time. The abstract GameState class encapsulates the behavior
associated with a particular state of game. The concrete states
of game such as LoadState, MenuState, Pause, EndState, and
Main implement the behaviors associated with each state in
regarding Draw(), Update() respectively.

With the use of state pattern, first, we avoided excessively

and repetitively using of switch .. case or if .. else, therefore
the complexity of the programming is reduced, secondly, the
application of state pattern explained software engineering
principles such as Open-Closed principle and single
responsibility principle. Each game state is a subclass, in case
more states are required during game development, the
programmer simply adds a subclass, e.g. programmer will be
able to create a subclass to manipulate background of game.
In case the state requirements are changed, the programmer
just modifies the corresponding class. Thirdly, the benefit of
use state pattern is that the classes are well encapsulated, the
change of state is implemented within each class, caller does
not to need to know how changes of state and behavior are
implemented internally. Lastly, the state objects can be shared
if they have no instance variables. State objects protect the
context from inconsistent internal states, because state
transitions are atomic (the transition between states happen by
changing only one variable’s value, not several)[9]. Although
state pattern brings so many benefits, the complicated game
might produce too many subclasses quickly to be out of the
control of the programmer and it might be so difficulty to
manage these classes.

B. Creation and Behavior of Game Objects: Factory,
Command , and State Patterns

In Microsoft XNA game programming, all graphics,
sounds, effects, and other items are loaded in XNA thought
content pipeline. A sprite in XNA is a flat, preloaded image
that is used as part of a computer game, such as players,
enemies, and projectiles. To draw a sprite on game world,
programmer needs to specify location information that tells
XNA where to draw the image as well as where the resource is
located in the OS. In XNA, Texture2D is one of most
commonly used sprite to render images in game world. The
Sprite itself lend to object-oriented design: it has states and
exhibits behaviors as well.

Sprites have state and they exhibit behaviors. The state of

a sprite includes information of location, velocity, size and
image. The behavior of sprites usually is based on external or
internal game information and modified itself input for player
sprites, or gameplay.

The program used nested loop with if or switch statements
to explicitly detect the current state and take the appropriate
behavior. This procedural approach carries with it all the
usual baggage: State-dependent logic is distributed throughout
the code and adding new state is error-prone.

Figure 6. Factory, State and Command Patterns in RPG

In RPG game, a character, player or enemy is often

represented by a sprite has to face difference challenges and
act correspondingly with different behaviors, for example
player may work on training to use sword, complete an
mission or submission of a battle, or even adventure to hunt
for treasure. Of course it’s possible to implement above
behaviors within sprite with loop and/or switch, the open-
closed principles is not quite followed in above approach.
Base on GoF, Command design pattern encapsulate a request
as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable
operations. A command object can have a lifetime
independent of the original request, and can specify, queue,
and execute request at different times[9]. The command
pattern encapsulates the player’s behavior as an object to
facilitate extends of player’s behavior. By specifically creating
a behavior class to solve a variety of behaviors a player may
have. We can deal with evaluation of game design easily. If a
now behavior is needed for game development and story, a
new class that inherits from behavior class can be added to
implement concrete actions that player need to work on.

In RPG game, player also often equipped with different

equipment based on game development and player’s
progression. It’s natural to create and equipment superclass
that can be concretely implemented with different equipment
such as sword, armor etc. Factory pattern can have an object
return an instance from a family of related classes[9]. The
player behaves differently based on game development and
game progression, for example, the sword and armor are used
in training, arches is used during adventure, therefore, an
EquipmentFactory class is introduced to determine what
equipment are required according to different scenario, which
is strategy pattern. The strategy patterns defines a family of
algorithms, encapsulates each one, and make them
interchangeable[9]. By employing these patterns, the program
code can be maintained easily and it’s more flexible to

accommodate changes in game development such as behavior
change, equipment adding and removal based on scenarios.

Of course, the state pattern can be deployed as well as

illustrated in UML of figure 6, where player may experience
walking state, death state, exploring state etc. that can be
extended easily after inherits is superclass State.

C. Game Object Collision and Communication: Visitor,
Observer Pattern and Mediator Pattern

A variety of game objects often collide with each other.
Depends on types of game object, it can be collision between a
sprite to other sprite, or sprite collides with background map.
For example, in games, it’s quite common that player’s object
collides with other different object to receive different credits
based on game rule. To entertain the players better, game
designers often add a variety of game objects to increase play
of fun in game to reward players unexpectedly. The NPC is
often introduced as well to work with player or fight against
player, either case, the state of player is necessary to broadcast
to the teammates or interest game objects based on game
mechanics.

Figure 7. Visitor, Observer and Mediator for
Collision and Communication

Visitor design pattern represents an operation to be

performed on the elements of an object structure. Visitor lets
programmer define a new operation without changing the
classes of the elements on which it operates[9]. Visitor pattern
is suitable when you want to be able to do a variety of
different things to objects that have a stable class structure.
Adding a new kind of visitor requires no change to that class
structure, which is especially important when the class
structure is large. By using of visitor pattern, different
collision algorithms can be implemented and different

rewarding rules of a variety of objects collision can be
implemented while following open-closed principle of
software design. The UML illustrated in figure 7 shows that
CollisonVisitor interface handles different collision among
different sprite in game world.

In RPG game, the character sprite changes states, for

example, ‘Live’ and ‘Dead’, the domain must notify the
graphical user interface to allow it to update itself. Likewise,
when the user clicks on, or collides with other objects, the UI
must notify the domain so that it can record the appropriate
changes to its model.

To communicate among sprites of interests, observer

pattern or mediator patter are illustrated in figure 7. Depends
on communication is one-to-many or many to many,
programmer could choose one or both to pass different subject
to interested game elements. According to GoF, The observer
pattern is applicable and appropriate in many situations
including when (1) The application has two separate aspects
that can be varied independently of one another, or (2)the
application involves objects that when changed require
changing other objects. In observer pattern, a list of
watcher(observers) are notified any time the state of the
subject changes. The observer pattern defines a one-to-many
dependency between objects that when one object changes
state, all its dependents are notified and updated automatically.
The abstracting coupling between subject and observers make
it easier to update notifications to be broadcasted and as a
result the subject is not interested in which observers care
about the changes, since it is their responsibility to react to
it[9]. The observer pattern allows programmer vary subject
and observers independently. The subjects can be reused
without reusing their observers, and vice versa.

Mediator pattern promotes the many-to-many relationships

between interacting peers to “full object status”. The Mediator
pattern defines an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping objects
from referring to each other explicitly, and it lets you vary
their interaction independently[9]. The communications
between objects are encapsulated in mediator, and objects are
no longer directly communicating with each other, but rather
through the mediator. If mediator pattern is used for
communication among game objects, the mediator will be
responsible to update game objects. The mediator handles
communications between all of these objects to reduce
coupling between game objects when the sprite might collide
with one another under certain circumstances as illustrated by
the UML in figure 7.

IV. CONCLUSION

In this paper, we have presented the use of a family of
design patterns in game development that can be integrated
with XNA game development well during game programming.
We have covered design patterns that could be used to create
sprite, separate behaviors from sprite with strategy and

command patterns, separate states from sprite by using state
patterns, game state management with state design pattern,
communication among sprite with observer or mediator
patterns, and collision detection with the visitor pattern.
Additionally, the applicability of other design patterns in game
development should be also investigated as well.

To evaluate the benefits of object-oriented design patterns
in game, we plan to conduct a software quality metrics analysis
in terms of size, complexity, coupling and cohesion in near
future.

REFERENCES

[1] S. Björk, S. Lundgren, H. Grauers, and S.- Göteborg,
“Game Design Patterns,” Lecture Note of the Game
Design track of Game Developers Conference, 2003.

[2] D. Toll and T. Olsson, “Why is Unit-testing in
Computer Games Difficult?,” in 2012 16th European
Conference on Software Maintenance and
Reengineering, 2012, pp. 373–378.

[3] P. V. Gestwicki, “Computer games as motivation for
design patterns,” ACM SIGCSE Bulletin, vol. 39, no. 1,
p. 233, Mar. 2007.

[4] M. R. Wick, “Teaching Design Patterns in CS1 : a
Closed Laboratory Sequence based on the Game of
Life,” in SIGCSE, 2005, pp. 487–491.

[5] S. Hansen, “The Game of Set – An Ideal Example for
Introducing Polymorphism and Design Patterns,” in
SIGCSE, 2004, pp. 110–114.

[6] M. A. Gómez-Martín, G. Jiménez-Díaz, and J. Arroyo,
“Teaching design patterns using a family of games,”
ACM SIGCSE Bulletin, vol. 41, no. 3, p. 268, Aug.
2009.

[7] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation
of object-oriented design patterns in game
development,” Information and Software Technology,
vol. 49, no. 5, pp. 445–454, May 2007.

[8] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M.
Shantz, “Designing a PC Game Engine,” Computer
Graphics inEntertainment, no. February, pp. 2–9,
1998.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software, 1995.

