
A Systems Engineering Approach

for Assured Cyber Systems
Major Logan O. Mailloux, Dr. Brent T. Langhals, and Dr. Michael R. Grimaila

 Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, United States

Systems Engineering (SE) has gained favor as a means to tame

the complexity of modern systems, specifically the design, analysis,

and development of complex systems. This paper describes a SE

approach for system assurance of modern Information Technology

(IT) centric “cyber systems”. In this paper, we discuss recent

trends in information security towards the establishment of security

patterns and identify key security patterns for the development of

cyber systems. Specifically, this paper provides a cursory review of

security patterns and highlights the utilization of key cyber patterns

during the SE development process for a given cyber system. SE

functional decomposition and system integration activities are

described as they pertain to meeting formal system assurance

claims resulting in secure and assured cyber systems.

Keywords—Systems Engineering; Security Patterns; Cyber

Assurance

I. INTRODUCTION

Systems Engineering (SE) has gained favor as a means to
tame the complexity of modern systems, specifically the
design, analysis, and development of complex systems. The
authors propose a SE approach for system assurance of modern
Information Technology (IT) centric “cyber systems” that
addresses cyber system complexity and security through
established information security practices and fundamental SE
processes. Specifically, this paper provides a cursory review of
security patterns and highlights the utilization of key cyber
patterns during the SE development process for a given cyber
system. SE functional decomposition and system integration
activities are further described as means to provide formal
system assurance justification for cyber systems.

Section II describes the cyber security problem as it
pertains to system complexity, while Section III provides a
background of essential SE processes and principles used to
tame system complexity. Section IV describes findings related
to key security patterns, applicability within SE development
processes, and justification of system assurance claims.

II. PROBLEM STATEMENT

The problem of IT security is so pervasive that “cyber
security” has turned into a multi-billion dollar industry over the
past decade. Recent public announcements from the highest
levels in the U.S. government are quite telling on the subject.
On February 12, 2013 President Obama issued an Executive
Order which cited improving critical infrastructure cyber
security as one of the most serious national security challenges
the country faces [1]. Furthermore, while facing the most
ominous Department of Defense (DoD) budget cuts since the
cold-war, U.S. Cyber Command announced a colossal

expansion plan from 900 to 4,900 personnel [2]. Perhaps even
more telling, the private security firm Mandaint

®
 released a

comprehensive report APT1 which details an extensive cyber
espionage campaign conducted by the Chinese military against
U.S. private firms [3].

 Current cyber security approaches are failing in almost
every area of interest from common operating system
vulnerabilities to meticulously planned attacks against security
software vendors. The cyber security problem is especially
difficult because IT systems have deeply rooted design flaws,
software bugs, weak assumptions, configuration issues, and
various other deficiencies which result in vulnerabilities and
weaknesses. The challenge is further intensified since these
deficiencies can be introduced anytime in the system lifecycle
from initial design and development to system fielding,
configuration, and day-to-day operation. Modern cyber
systems also fail because of unknown software issues,
unexpected hardware failures, and unrealized operational and
support system dependencies.

Principally, the cyber security problem is due to rising
complexity—“the measure of how difficult a system is to
understand, and thus to analyze, test, and maintain” [4].
Today’s cyber systems are so complex that effectively
designing and developing secure systems is exceedingly
difficult bordering on nearly impossible. The beloved security
engineer’s Orange Book i.e., the DoD’s 1985 Trusted
Computing Evaluation Criteria correctly states the dilemma
precisely: “the [cyber system] must be of sufficiently simple
organization and complexity to be subjected to analysis and
tests, the completeness of which can be assured” [5]. The
elusive problem of providing secure and assured cyber systems
is a significant cause of concern in the U.S. as a whole, and the
DoD in particular.

III. BACKGROUND

This section provides a baseline of SE processes and
principles to facilitate shared understanding of complex
systems. The Defense Acquisition Guidebook (DAG)
definition of systems engineering is provided for inspection:

Systems Engineering. An interdisciplinary approach and
process encompassing the entire technical effort to evolve,
verify and sustain an integrated and total life cycle balanced
set of system, people, and process solutions that satisfy
customer needs [6].

The DAG definition identifies a three part interdisciplinary
approach which addresses the entire solution space across
systems, people, and processes. The holistic SE approach is
particularly important when considering the cyber security This work was supported by a research grant from the Air Force Research

Laboratory (F4FBFV1297J001).

problem in operational environments where users and
administrators are responsible for the operation, configuration,
and maintenance of critical cyber systems. History has shown
that people and processes are much more vulnerable than
specific technologies. Consider for example, the devastating
results of the Stuxnet worm against the Iranian Nuclear facility,
Natanz. The facility was arguably one of the most protected
facilities in the world, yet a single well planned cyber attack
was able to cause untold damage through processes and
personnel vulnerabilities [7].

The challenge for systems engineers is not only to support
the entire technical effort to evolve, verify, and sustain systems
but to completely understand the complex system under
development. The International Council on Systems
Engineering (INCOSE) handbook elaborates this concept:

The SE process has an iterative nature that supports
learning and continuous improvement. As the processes
unfold, systems engineers uncover the real requirements
and the emergent properties of the system. Complexity can
lead to unexpected and unpredictable behavior of systems;
hence, one of the objectives is to minimize undesirable
consequences [8].

Systems engineers are therefore responsible to discover and
facilitate shared understanding regardless of system
complexity. To this end, the SE developmental process,
commonly known as the V-model, is captured in Fig. 1 [9].

1

Note: The SE V-model will be referred to as the SE
development process throughout this paper to more accurately
capture its intended purpose.

Fig. 1: The Systems Engineering Development Process

 The goal of the SE development process is to make
complex systems more readily understandable for users,
developers and decision makers. The process demonstrates SE
functional decomposition activities down the left side, system

implementation at the bottom, and system integration activities
up the right side. Although the process shows a linear
progression, there are numerous iterations both vertically and
horizontally within and across the various SE activities.

 Functional decomposition is an essential SE tool to define,
analyze, and understand complex systems. Functional
decomposition products based on core mission requirements
can provide great benefit for system users, developers, and
decision makers. However, functional decomposition is also a
challenging task; one that is often misunderstood,
underutilized, and readily dismissed. As a general guideline,
functional decompositions should be accomplished at the level
of detail necessary for a given project, while addressing:

 Functional Requirements

 Inputs, Outputs, and Controls

 System Boundaries

 System Interfaces

 System Dependencies

Basic functional decompositions can be accomplished quickly
using informal block diagrams or common work breakdown
structures, while detailed decompositions can be accomplished
through formal system architectures. Those associated with
system development in the DoD should be familiar with the
DoD Architecture Framework (DoDAF) which provides a
detailed set of products for this specific task. Although the
DoDAF can be somewhat cumbersome, it can yield great
benefits when properly and proportionally utilized.

 System implementation corresponds to the realization of
the system under development by many specialized domain
engineers. Components are built to specification in order to
meet design criteria and higher level requirements.
Implementation is typically accomplished over long periods of
time across multiple assembly initiatives, which result in
components ready for individual verification. Supply chain
integrity is a critical part of the implementation, and a current
focus item for DoD acquisition efforts.

System integration activities provide Verification and
Validation (V&V) of specific components, system design, and
system requirements against their respective functional
decomposition activities. The overall purpose of V&V is to
provide confidence to the user that the developed system will
meet user requirements. Verification activities demonstrate
that the implemented components, subsystems, and systems
function as specified, while validation activities confirm the
system operates as intended by the user.

SE V&V activities consist of assessment, test, and
evaluation efforts which span the entire system development
process in a continuous fashion. For example, requirements
validation starts early on in concept definition, continues down
into verification of individual components in the form of
derived requirements, and ends with the validation of a fully
integrated system against the original user system definition.
Lastly, as with much of the SE development process, V&V
activities are scalable from brief efforts to meticulously
detailed efforts which can take months or years in some cases.

1. Although other common development models and processes exist, such

as evolutionary acquisition and spiral development, the SE V-model was
chosen because of its general acceptance in the SE community and clear

linkages between decomposition and integration activities. Furthermore,

distinct verification and validation activities readily lend themselves to the
formalized ‘justified confidence’ requirements of system assurance claims as

described in Section IV, parts C and D.

IV. RESEARCH

This section details the SE development process in
conjunction with key security patterns to provide a baseline for
secure and assured cyber systems.

A. Assessment of Security Patterns

For the software engineering community, design patterns
are widely accepted to communicate object-oriented concepts
and architectural structures. Because of their demonstrated
benefits, other communities, such as the IT security community
have attempted to develop equally effective security patterns.
The seminal text for security patterns is “Security Patterns—
Integrating security and systems engineering” by Schumacher
et al. [10], while other publications of note are “Secure Design
Patterns” by the Carnegie-Mellon Software Engineering
Institute [11], a survey of security patterns by Yoshioka et al.
[12], the online security pattern repository [13], and the open
group security pattern technical guide [14]. Additionally, the
First International Workshop on Cyberpatterns was hosted in
2012, which focused on attack-oriented security patterns [15].
Formally, a security pattern is defined as:

Security Pattern. A security pattern describes a particular
reoccurring security problem that arises in specific
contexts, and presents a well-proven generic solution [10].

A strict interpretation of security patterns yields a growing, yet
limited, set of results. However, given the broad nature of a
pattern’s stated purpose i.e., a well-proven generic solution to a
reoccurring problem, there are many such security patterns
available for review. Less formal security patterns exist in
many formats captured as policy, standards, best practices,
guides, processes, instruction manuals, checklists and many
more, which ultimately result in a very large body of
knowledge with significant depth.

 From the practitioners’ point of view, the key problem then
becomes knowing when and where to apply the appropriate
patterns. Therefore, the proposed SE approach for secure and
assured systems highlights the utilization of key cyber patterns
during specific points in the system development process. The
key security patterns are introduced in Section B and fully
described in Sections C and D.

B. Key Cyber Patterns for Cyber System Development

 Key cyber security patterns were derived from the reviewed
literature and categorized into the formalized SE
developmental process as shown in Fig. 1. Because of overall
similarity, concept definition and requirements analysis will be
addressed together. System design will be addressed
singularly, which supports the use of conventional IT
enterprise architectures used in the design and operation of
many IT centric systems. Component design and
implementation activities will likewise be addressed together
due to similarity of purpose.

1) Concept Definition and Requirements Analysis:

Security patterns supporting system concept definition and

requirements analysis are mostly related to high-level policy

and risk management. These activities should not be

discounted as they form the backbone of all cyber system

security decisions. There are a number of critial issues at this

level of system development which security patterns can aid.

Key security patterns for consideration:

• Risk Management – conduct threat and vulnerability
assessments, predict likeliness factors, calculate expected
loss, prioritize results, plan/implement mitigation actions,
and re-evaluate expected loss. Risk management is perhaps
the single greatest concern for a cyber system under
development.

• Asset Identification and Assessment – determine critical
information and technologies, mission threads, core
business processes, intellectual property, essential
knowledge, personnel, and other crucial resources. This
security pattern may be considered part of risk management
proper; however, because of its importance we have
specifically identified the security pattern as a uniquely
important task. It also serves to prioritize security and
assurance measures during the entire development process.

• Formalize Security Requirements – define and document
the extent to which cyber security attributes are desired
and/or required. Consider confidentiality, integrity, and
availability, along with other security attributes specific to
the system under development.

2) System Design: Security patterns supporting system

design have grown out of enterprise level security, software,

and network architectures used extensively by software and IT

professionals for design and operation. While the practioners’

architectures are focused more on building and operating

cyber systems, the systems engineer’s design architecture is

focused more on understanding the system under development

as discussed in Section III. Key security design patterns for

consideration:

• Determine Appropriate Security Approach – select a
scheme to achieve the desired security state i.e., approaches
for deterrence, prevention, detection, and recovery. These
decisions will heavily influence the system design and
specific components.

• Security-Oriented Functional Decomposition – conduct
decomposition using established security principles i.e.,
separation of duties, least privilege, and defense-in-depth.

• Separate Security Functionality – separate security
functionality from other system functionality.

3) Component Design and Implementation: This grouping

of security patterns is by far the largest, with many software

and application specific security patterns available for

consideration. These technology specific security patterns are

generally applicable to very specific problems, although there

are a number of very helpful objective-based security patterns

such as “The Twenty Critical Security Controls” [16] and

“Raising the Bar for Cybersecurity” [17]. Because of the

abundance of security patterns available at this level, three

types of security patterns are considered:

• Design Pattern Extensions for Security – security oriented
extensions of longstanding object oriented software design
patterns. These patterns provide great utility and ease of
use for cyber system software implementers.

• Objective-Based – robust solutions to the broader cyber
security problem. Generally, cover multiple security
attributes and referred to as best practices.

• Application Specific – focused on the configuration and
operation of cyber systems or security devices. Examples
include firewalls, audit/logging, input validation, white
listing, secure web applications, and many others.

 Next, Section C briefly describes system assurance with
respect to the SE development process, before entering a
detailed discussion of the confluence of key cyber security
patterns, the SE development process, and their contribution
towards system assurance in Section D.

C. Systems Engineering Approach for System Assurance

Given the complex nature of modern cyber
implementations and the current threat environment, system
assurance is sometimes considered an unobtainable goal.
Despite this bleak view, the National Defense Industrial
Association (NDIA) recently published a comprehensive text
for system assurance titled Engineering for System Assurance,
which makes progress towards solidifying the practice. The
definition of system assurance is provided for inspection:

System Assurance. The justified confidence that the system
functions as intended and is free of exploitable
vulnerabilities, either intentionally or unintentionally
designed or inserted as part of the system at any time
during the life cycle [18].

Notably, NDIA describes ‘justified confidence’ with formal
assurance claims including: context, assumptions, justification,
evidence, and criteria which are used to formally answer the
desired level of assurance for critical functional requirements.

The SE development process provides the flexibility to
account for assurance claim context and assumptions early on
while addressing justification, evidence, and criteria during
system integration. SE functional decomposition and system
integration activities can be used at each point in the
development process to provide justified confidence through a
formal and defined process. Each SE activity from concept
definition to validation is scalable, which provides selectively
robust support for critical system functions and their assurance
claims. Specifically, SE system integration activities readily
lend themselves to meeting assurance claims through defined
V&V activities.

D. Detailed SE Process Activities for System Assurance

This section addresses each SE functional decomposition
and system integration activities as they contribute towards
cyber system assurance. A description of the relationship
between the SE activity, key cyber security patterns, and
formalized assurance claims i.e., context, assumptions,
justification, evidence, and criteria is described. Because of
inherent dependencies concept definition and requirements
analysis will be addressed together.

1) Concept Definition & Requirements Analysis
As the starting point in the SE development process,

concept definition and requirements analysis form the basis of
all future decomposition and integration activities. Modern
cyber systems face many common requirements problems,
however, these problems are compounded by the additional
challenges associated with cyber system complexity and
security requirements. Further, all future assurance claim
justification efforts will be accomplished against these
formalized requirements.

The assurance claim is intended to define system assurance
requirements, which take the form of confidence levels during
concept definition and requirements analysis. With respect to
assurance of cyber systems, concept definition and
requirements analysis activities should result in both
formalized security requirements and desired levels of
assurance for functional requirements.

In cyber system development risk management is a
critically important, yet a rather challenging task due to system
complexity. For the cyber system developer, there is an
overwhelming amount of information dedicated to IT risk
management as it is a completely unique field of study.
Fortunately, much of the conceptual material is similar in
nature. Of note, the National Institute of Standards and
Technology (NIST) produced an IT security framework which
is rather verbose, but clearly articulated and detailed. NIST
Special Publication 800-30 is an excellent place for the cyber
systems engineer to start learning this vital security pattern
[19]. A general rule of thumb is the level of security should be
commensurate with an item’s value as described in the asset
identification and assessment security pattern.

Cyber system risk management must consider many
difficult software issues, significant operational and support
dependencies, and a hostile cyber threat environment that can
change in a moment’s notice. Because of the unbounded
nature of risk management assessment and mitigation, the
systems engineer should ensure baseline level of risk
management is conducted, while providing additional detailed
analysis where necessary to meet the user’s needs. SE concept
definition and requirements analysis activities coupled with
risk management aid in the development of secure and assured
cyber systems by appropriately addressing critical functions for
cyber systems.

There are many very effective security patterns available
for performing asset identification and assessment, especially
as they pertain to risk. There is an expected overlap with risk
management as asset identification and assessment are often
cited as the first and second steps in the risk management
process. However, in the cyber community asset identification
and assessment is typically focused on physical asset inventory
and does not adequately address the entire range of mission
critical functions, information, and assets. This common
shortfall supports why we have chosen to included this task as
a uniquely important security pattern for cyber systems.

Within the DoD, Critical Program Information (CPI) has
been a mainstay in program protection planning for identifying
information and technology assets [20]. Criticality Analysis,
and to a lesser extent Critical Mission Threads, are also

methods widely employed in the DoD [6]. The purpose of
these activities is simply to gain an accurate understanding of
the resources—systems, people, processes—a system utilizes
and prioritize their significance towards mission
accomplishment. These prioritized critical functions and
resources should then serve as the focus of system security and
assurance efforts throughout the SE developmental process.

Formalized security requirements have recently been
recognized as a necessary functional requirement for cyber
system and not merely a support requirement. The distinction
is significant and puts more attention on securing and assuring
a system rather than falling into a security checklist mentality.
The goal of the formalized security requirements is to consider
and define what security attributes should be for critical
functions in a cyber system under development. System
assurance levels should be considered at this point in like
manner. The direct link between formalized security
requirements and desired assurance levels is a natural fit.

Security requirements are usually described in the context
of the industry established security attributes: Confidentiality,
Integrity, and Availability. For each core function of a cyber
system, cyber security attributes should be enumerated.
Typically, enumeration is done categorically in the form of
“high, medium, low” or “extreme, urgent, high, medium, low”
in a comparative fashion. The scale is subject to user
preference and specific application. Two simple examples
follow: 1. A command and control system may have an
“urgent” data integrity requirement along with “high”
availability and confidentiality requirements; and 2. An
intelligence signal processing cyber system may have
“extreme” confidentiality and integrity requirements, along
with “medium” availability requirements.

Security professions often extend these core attributes with
various other information security principles. For example, the
core security attributes will often be extended with
Identification, Authentication, and Non-Repudiation for secure
communication functions. Furthermore, formalized security
requirements specify the desired security principles and
assurance levels for a system under development, which are
also used during validation activities. Early SE functional
decomposition activities are very helpful when paired with
formalized security requirements to address the whole cyber
system—systems, people and processes—security problem.

2) System Design
Once system requirements are established, design is the

next step in providing an effective system. System design is
where SE faces the challenge of realizing system-wide
requirements in a functional design. In order to accomplish
this task, systems engineers must first have a detailed
operational and technical understanding of the subject
domain(s). Second, systems engineers must study system
functionality, inputs, outputs, controls, boundaries, interfaces,
and dependencies. Additionally, there are many known and
unknown complexity issues that may surface during system
design activities. These issues will need to be addressed as
they arise to assure the functionality of the system.

In general, SE should analyze and document system
complexity through functional decomposition activities which

typically result in a set of architectural products called views.
These architectural views or products are scalable to a desired
level of specificity, from conceptual block diagrams to detailed
design architectures for the most complex systems. SE design
activities fall right in line with providing assured systems
through justifiable decision making to “build-in” smarter and
more effective security solutions right from the start at less
cost. System design decisions also need to be considered in a
cost-benefit manner, with a clear understanding of the
programmatic nature of large developmental efforts.

Appropriate security approaches should be selected to meet
the overall security requirements. Often there is a mutually
supportive overlap between security approaches as discussed in
the security pattern literature. The security objective(s) will
drive the security approach resulting in a mix of deterrence,
prevention, detection, and response solutions. These
approaches are tempered by the cost-benefit nature of risk
management. Clearly articulating and applying security
approaches for critical system functions directly supports
assurance claims, contributing to a more stable system.

Recent trends are moving towards more cost-effective
approaches of detection and response. It is often much simpler
and quicker to rebuild a compromised system than attempt to
prevent future compromises, which can be seen as impossible.
There has also been a significant movement towards resilient
and agile systems, which can self-recover from failures.
System design is the optimal time to consider which
approaches will be implemented for a given cyber system to
meet the defined security and assurance requirements.

Separation of duties, least privilege, and defense-in-depth
constitute the core of modern information security principles
and should be considered throughout functional decomposition
and specifically system design activities. As with selecting
appropriate security approaches, applying core security
principles builds towards a stable cyber system. In principle,
this security pattern requires only a slight modification to
existing SE functional decomposition practices. Considering
key security principles during the design phase of a system is
perhaps more of a basic practice and less of a documented
security pattern, however, its importance cannot be overstated
to solving the assured cyber system problem.

Separate security functionality should be considered and
designed in whenever possible. This security pattern is often
viewed expressly for software development efforts to separate
security checks from object creation, however, this security
pattern should be more broadly applied. For example, each
security test or check should be considered separately from any
system functional requirement. Separating security
functionality has the benefit of clearly identifying security
checks and reducing implementation complexity. Separate
security checks should be enforced throughout system design
and implementation wherever feasible given the appropriate
risk management and cost-benefit considerations.

3) Component Design & Implementation
Although it is not the aim of this paper to discuss security

patterns as they pertain to component design and
implementation, there are a couple of interesting comments
which should be made. First, because of the wide popularity of

object oriented design patterns a rash of security-oriented
extensions quickly arose. These design pattern extensions for
security are very helpful for software engineers attempting to
“build-in” security and should be applied wherever possible.

Second, there is essentially no limit to existing and
potential application-specific security patterns, because they
are tightly coupled to technological solutions for specific
problems i.e., filtering on a firewall. There are literally
thousands of application-specific security patterns available for
review across many cyber security related problem sets. These
security patterns should be investigated for a given application
as many excellent ideas exist for securing cyber devices.

Third, because of the numerous application-specific
patterns at the component level, consolidated security patterns
have appeared. We’ve termed these objective-based security
patterns which attempt to answer the broader cyber system
security problem. Popular examples of objective-based
security patterns are the SANS Top Twenty critical controls
and the Australian DoD’s top 4 mitigation strategies.

4) Component and System Verification
As system integration begins, there is a natural fit between

component and system verification activities and system
assurance goals. Verification activities can range from
documentation reviews to detailed line by-line code reviews
spanning days, weeks, or months. Formally, verification is
described as “the purpose of the Verification Process is to
confirm that the specified design requirements are fulfilled by
the system” [21]. The prioritization of the cyber system
verification activities should be driven by function criticality as
described during functional decomposition activities. Fig. 2
shows the key cyber security patterns mapped to the SE
development process for concept/requirements validation,
system design verification, and component
design/implementation verification.

Fig. 2: Key Cyber Security Patterns

Revisiting the definition of verification, the systems
engineer’s goal is to “confirm that the specified design
requirements are fulfilled” and should use whatever tools
necessary to accomplish the task. A simple list of verification
techniques includes: basic function testing, result comparisons,
input/output sensitivity, parameter checking, structural code

review, detailed code walkthrough, review of math/logic
proofs, and detailed end-to-end input/output traces. This list is
by no means exhaustive and meant merely as a starting point.
Due to specific nature of verification activities and desired
level of justification evidence, it is difficult to recommend
specific verification activities for a given cyber system
implementation. The author recommends reviewing cyber
system verification activities and processes found in ISO/IEC
15288 [21], ISO/IEC 26702 [22], the DAG [6], and the
INCOSE SE handbook [8].

As a pertinent aside, security measurement and evaluation
of cyber systems is a highly debated subject. The effectiveness
of current evaluation criteria and resulting formal measurement
i.e., security audits are being called into question. It seems that
despite significant effort put towards the development of
thorough IT security criteria, they have not provided a
sufficiently suitable solution to the cyber system assurance
problem. This is evidenced by the weekly announcements of
cyber security breaches, vulnerabilities, and the non-stop
release of critical patches by major software developers.

5) Requirements and Concept Validation
During validation activities the entire technical effort

described as systems, people, and processes should be
evaluated to determine if it can meet the specified users’
requirements. Formally, validation is described as: “the
purpose of the Validation Process is to provide objective
evidence that the services provided by a system when in use
comply with stakeholders’ requirements, achieving its intended
use in its intended operational environment” [21]. The output
of the validation activities should be a determination to what
extent the systems meet’s the desired capability.

SE validation activities tie closely to system assurance case
evaluation methodology as described by NDIA’s Engineering
for Systems Assurance: “the purpose of an assurance case is to
provide convincing justification to stakeholders that critical
system assurance requirements are met in the system’s
expected environment(s)” [18]. SE validation activities
significantly contribute to demonstrable proof that a particular
system meets its documented purpose(s). There are some very
helpful security patterns to assist in system validation as shown
in Fig. 2 as previously discussed.

Some additional issues for consideration are system
re-purposing and unexpected operational environments.
System evaluation is typically only considered for the planned
operational environment, despite a high likelihood of other
possible implementations. Without a broader consideration,
systems become immediately vulnerable when re-purposed or
deployed in less than ideal environments. The system engineer
must also consider that the system itself is always changing
due to regular patching cycles, scheduled upgrades, operator
rotations, and process improvement initiatives.

A basic list of SE validation activities consists of
addressing: Key Performance Parameters (KPPs), initial
assumptions, requirements traceability, concept review and
requirements assessment (i.e., a document review addressing
the stated purpose, requirements, and key functions), external
validity (i.e., black box testing), and internal validity (i.e.,

white box testing). This list is by no means exhaustive and
meant merely as a starting point for validation activities. It is
difficult to recommend specific validation activities for a given
cyber system implementation and the author recommends
reviewing cyber system validation activities and processes
found in ISO/IEC 15288 [21], ISO/IEC 26702 [22], the DAG
[6], and INCOSE SE handbook [8].

Once the system is fully integrated, SE validation activities
can justifiably determine if the system can meet the desired
levels of assurance. The SE development process, particularly
system integration, culminates in validation activities which
are designed to provide objective evidence that user
requirements are being meet. These same results can be
leveraged to provide justified confidence in the desired system
functionality for system assurance claims.

V. CONCLUSION

This paper presented a description of key cyber security
patterns categorized to the SE development process. This
paper further examined SE decomposition and integration
activities, detailing their contribution to achieving cyber system
security and assurance. SE V&V activities were examined and
determined to provide sufficient justification to meet formal
systems assurance claims. Specifically, verification can be
used to directly support the justification, evidence, and criteria
associated with formal assurance claims, while validation
defines and supports the context, assumptions, justification,
and criteria associated with these claims for cyber systems. In
conclusion, this paper builds upon cyber security patterns and
established SE process to provide assured cyber systems.

ACKNOWLEDGMENTS

Thank you to Mr. Rick Dove, INCOSE system security
engineering working group chair, who provided helpful
guidance towards the study of security patterns.

This work was supported by a research grant from the Air
Force Research Laboratory (F4FBFV1297J001).

REFERENCES

[1] President Barack Obama. Improving Critical Infrastructure
Cybersecurity. Executive Order, Office of the Press Secretary.
12 February 2013.

[2] Nakashima, Ellen. “Pentagon to boost cybersecurity force,” The
Washington Post, 27 January 2013. [Online]. Accessed: 23 February
2013. Available: http://www.washingtonpost.com/world/national-
security/pentagon-to-boost-cybersecurity-force/2013/01/19/d87d9dc2-
5fec-11e2-b05a-605528f6b712_story.html.

[3] APT1 - Exposing One of China’s Cyber Espionage Units, Mandiant®
[Online]. Accessed: 23 February 2013. Available:
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

[4] Definition of complexity is adapted from Information Technology—
Security Techniques—Evaluation Criteria for IT Security, Part 1:
Introduction and General Model, Third Edition. ISO/IEC 15408-
1:2009(E). Switzerland: International Organization for Standardization,
15 December 2009.

[5] Trusted Computer System Evaluation Criteria. DoD 5200.28-STD.
Washington: Department of Defense, 26 December 1985.

[6] Defense Acquisition University. Defense Acquisition Guidebook,
Chapter 4, Systems Engineering. [Online]. Accessed: 11 October 2012.
Available: https://acc.dau.mil/CommunityBrowser.aspx?id=490091.

[7] Langner’s Stuxnet Deep Dive S4 Video. [Online]. Accessed: 3 March
2013. Available: http://www.digitalbond.com/blog/2012/01/31/langners-
stuxnet-deep-dive-s4-video/.

[8] INCOSE System Engineering Handbook v. 3.2.2. INCOSE‐TP-2003-
002-03.2.2. San Diego, CA: International Council on Systems
Engineering (INCOSE), October 2011.

[9] See [8]. Adapted from Forsberg, K., H. Mooz, H. Cotterman,
Visualizing Project Management, 3rd Ed., J.Wiley & Sons, 2005.

[10] Schumacher, Markus., Eduardo Fernandez-Buglioni, Duane Hybertson,
Frank Buschmann, and Peter Sommerlad. Security Patterns: Integrating
Security and Systems Engineering. West Sussex, England: John Wiley
& Sons, Ltd. 2006.

[11] Secure Design Patterns, Software Engineering Institute, Chad Dougherty
et al., CMU/SEI-2009-TR-010, updated oct 2009.

[12] Yoshioka, Nobukazu., Hironori Washizaki, and Katsuhisa Maruyama.
“A Survey On Security Patterns,” Progress in Informatics, National
Institute of Informatics, no .5, pp.35-47, 2008.

[13] Security Patterns Repository Version 1.0. [Online]. Accessed 22 January
2013. Available: http://www.securitypatterns.org/.

[14] Blakley, B. and Heath, C. et al.. Security Design Patterns. Technical
Guide, G031. The Open Group, April 2004.

[15] Proceedings of Cyberpatterns 2012. Abingdon, UK. 9-10 July 2012.

[16] Critical Controls for Effective Cyber Defense, Version 4.0. SANS
Institute InfoSec Reading Room. [Online]. Accessed 22 February 2013.
Available: http://www.sans.org/critical-security-controls/cag4.pdf.

[17] Lewis, James A. “Raising the Bar for Cybersecurity.” Center for
Strategic & International Studies: Technology & Public Policy.
12 February 2013.

[18] National Defense Industrial Association (NDIA) Assurance Committee.
2008. Engineering for Systems Assurance. Arlington, VA: NDIA.

[19] National Institute of Standards and Technology. Risk Management
Guide for Information Technology Systems. SP 800-30. Gaithersburg,
MD: Information Technology Laboratory, July 2002.

[20] Department of Defense. Critical Program Information (CPI) Protection
Within the Department of Defense, Change 1. DoD Instruction 5200.39.
Washington: Under Secretary of Defense for Intelligence, 28 December
2012.

[21] Systems and software engineering – System life cycle processes.
ISO/IEC 15288:2008(E). Switzerland: International Organization for
Standardization, 31 January 2008.

[22] Systems engineering – Application and management of the systems
engineering process. ISO/IEC 26702:2007(E). Switzerland:
International Organization for Standardization, 15 July 2007.

http://www.washingtonpost.com/world/national-security/pentagon-to-boost-cybersecurity-force/2013/01/19/d87d9dc2-5fec-11e2-b05a-605528f6b712_story.html
http://www.washingtonpost.com/world/national-security/pentagon-to-boost-cybersecurity-force/2013/01/19/d87d9dc2-5fec-11e2-b05a-605528f6b712_story.html
http://www.washingtonpost.com/world/national-security/pentagon-to-boost-cybersecurity-force/2013/01/19/d87d9dc2-5fec-11e2-b05a-605528f6b712_story.html
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
https://acc.dau.mil/CommunityBrowser.aspx?id=490091&lang=en-US
http://www.digitalbond.com/blog/2012/01/31/langners-stuxnet-deep-dive-s4-video/
http://www.digitalbond.com/blog/2012/01/31/langners-stuxnet-deep-dive-s4-video/
http://www.securitypatterns.org/
http://www.sans.org/critical-security-controls/cag4.pdf

