
A Systems Engineering Approach  

for Assured Cyber Systems 
Major Logan O. Mailloux, Dr. Brent T. Langhals, and Dr. Michael R. Grimaila 

 Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, United States
 

 
Systems Engineering (SE) has gained favor as a means to tame 

the complexity of modern systems, specifically the design, analysis, 

and development of complex systems.  This paper describes a SE 

approach for system assurance of modern Information Technology 

(IT) centric “cyber systems”.  In this paper, we discuss recent 

trends in information security towards the establishment of security 

patterns and identify key security patterns for the development of 

cyber systems.  Specifically, this paper provides a cursory review of 

security patterns and highlights the utilization of key cyber patterns 

during the SE development process for a given cyber system.  SE 

functional decomposition and system integration activities are 

described as they pertain to meeting formal system assurance 

claims resulting in secure and assured cyber systems. 
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I. INTRODUCTION 

Systems Engineering (SE) has gained favor as a means to 
tame the complexity of modern systems, specifically the 
design, analysis, and development of complex systems.  The 
authors propose a SE approach for system assurance of modern 
Information Technology (IT) centric “cyber systems” that 
addresses cyber system complexity and security through 
established information security practices and fundamental SE 
processes.  Specifically, this paper provides a cursory review of 
security patterns and highlights the utilization of key cyber 
patterns during the SE development process for a given cyber 
system.  SE functional decomposition and system integration 
activities are further described as means to provide formal 
system assurance justification for cyber systems. 

Section II describes the cyber security problem as it 
pertains to system complexity, while Section III provides a 
background of essential SE processes and principles used to 
tame system complexity.  Section IV describes findings related 
to key security patterns, applicability within SE development 
processes, and justification of system assurance claims. 

II. PROBLEM STATEMENT 

The problem of IT security is so pervasive that “cyber 
security” has turned into a multi-billion dollar industry over the 
past decade.  Recent public announcements from the highest 
levels in the U.S. government are quite telling on the subject.  
On February 12, 2013 President Obama issued an Executive 
Order which cited improving critical infrastructure cyber 
security as one of the most serious national security challenges 
the country faces [1].  Furthermore, while facing the most 
ominous Department of Defense (DoD) budget cuts since the 
cold-war, U.S. Cyber Command announced a colossal 

expansion plan from 900 to 4,900 personnel [2].  Perhaps even 
more telling, the private security firm Mandaint

®
 released a 

comprehensive report APT1 which details an extensive cyber 
espionage campaign conducted by the Chinese military against 
U.S. private firms [3].   

  Current cyber security approaches are failing in almost 
every area of interest from common operating system 
vulnerabilities to meticulously planned attacks against security 
software vendors.  The cyber security problem is especially 
difficult because IT systems have deeply rooted design flaws, 
software bugs, weak assumptions, configuration issues, and 
various other deficiencies which result in vulnerabilities and 
weaknesses.  The challenge is further intensified since these 
deficiencies can be introduced anytime in the system lifecycle 
from initial design and development to system fielding, 
configuration, and day-to-day operation.  Modern cyber 
systems also fail because of unknown software issues, 
unexpected hardware failures, and unrealized operational and 
support system dependencies. 

Principally, the cyber security problem is due to rising 
complexity—“the measure of how difficult a system is to 
understand, and thus to analyze, test, and maintain” [4].  
Today’s cyber systems are so complex that effectively 
designing and developing secure systems is exceedingly 
difficult bordering on nearly impossible.  The beloved security 
engineer’s Orange Book i.e., the DoD’s 1985 Trusted 
Computing Evaluation Criteria correctly states the dilemma 
precisely: “the [cyber system] must be of sufficiently simple 
organization and complexity to be subjected to analysis and 
tests, the completeness of which can be assured” [5].  The 
elusive problem of providing secure and assured cyber systems 
is a significant cause of concern in the U.S. as a whole, and the 
DoD in particular. 

III. BACKGROUND 

This section provides a baseline of SE processes and 
principles to facilitate shared understanding of complex 
systems.  The Defense Acquisition Guidebook (DAG) 
definition of systems engineering is provided for inspection: 

Systems Engineering.  An interdisciplinary approach and 
process encompassing the entire technical effort to evolve, 
verify and sustain an integrated and total life cycle balanced 
set of system, people, and process solutions that satisfy 
customer needs [6]. 

The DAG definition identifies a three part interdisciplinary 
approach which addresses the entire solution space across 
systems, people, and processes.  The holistic SE approach is 
particularly important when considering the cyber security This work was supported by a research grant from the Air Force Research 

Laboratory (F4FBFV1297J001). 



problem in operational environments where users and 
administrators are responsible for the operation, configuration, 
and maintenance of critical cyber systems.  History has shown 
that people and processes are much more vulnerable than 
specific technologies.  Consider for example, the devastating 
results of the Stuxnet worm against the Iranian Nuclear facility, 
Natanz.  The facility was arguably one of the most protected 
facilities in the world, yet a single well planned cyber attack 
was able to cause untold damage through processes and 
personnel vulnerabilities [7]. 

The challenge for systems engineers is not only to support 
the entire technical effort to evolve, verify, and sustain systems 
but to completely understand the complex system under 
development.  The International Council on Systems 
Engineering (INCOSE) handbook elaborates this concept: 

The SE process has an iterative nature that supports 
learning and continuous improvement. As the processes 
unfold, systems engineers uncover the real requirements 
and the emergent properties of the system. Complexity can 
lead to unexpected and unpredictable behavior of systems; 
hence, one of the objectives is to minimize undesirable 
consequences [8]. 

Systems engineers are therefore responsible to discover and 
facilitate shared understanding regardless of system 
complexity.  To this end, the SE developmental process, 
commonly known as the V-model, is captured in Fig. 1 [9].

1
  

Note: The SE V-model will be referred to as the SE 
development process throughout this paper to more accurately 
capture its intended purpose.

 

 
Fig. 1: The Systems Engineering Development Process 

 The goal of the SE development process is to make 
complex systems more readily understandable for users, 
developers and decision makers.  The process demonstrates SE 
functional decomposition activities down the left side, system 

implementation at the bottom, and system integration activities 
up the right side.  Although the process shows a linear 
progression, there are numerous iterations both vertically and 
horizontally within and across the various SE activities.  

 Functional decomposition is an essential SE tool to define, 
analyze, and understand complex systems.  Functional 
decomposition products based on core mission requirements 
can provide great benefit for system users, developers, and 
decision makers.  However, functional decomposition is also a 
challenging task; one that is often misunderstood, 
underutilized, and readily dismissed.  As a general guideline, 
functional decompositions should be accomplished at the level 
of detail necessary for a given project, while addressing: 

 Functional Requirements 

 Inputs, Outputs, and Controls 

 System Boundaries 

 System Interfaces 

 System Dependencies 

 
Basic functional decompositions can be accomplished quickly 
using informal block diagrams or common work breakdown 
structures, while detailed decompositions can be accomplished 
through formal system architectures.  Those associated with 
system development in the DoD should be familiar with the 
DoD Architecture Framework (DoDAF) which provides a 
detailed set of products for this specific task.  Although the 
DoDAF can be somewhat cumbersome, it can yield great 
benefits when properly and proportionally utilized. 

 System implementation corresponds to the realization of 
the system under development by many specialized domain 
engineers.  Components are built to specification in order to 
meet design criteria and higher level requirements.  
Implementation is typically accomplished over long periods of 
time across multiple assembly initiatives, which result in 
components ready for individual verification.  Supply chain 
integrity is a critical part of the implementation, and a current 
focus item for DoD acquisition efforts. 

System integration activities provide Verification and 
Validation (V&V) of specific components, system design, and 
system requirements against their respective functional 
decomposition activities.  The overall purpose of V&V is to 
provide confidence to the user that the developed system will 
meet user requirements.  Verification activities demonstrate 
that the implemented components, subsystems, and systems 
function as specified, while validation activities confirm the 
system operates as intended by the user.   

SE V&V activities consist of assessment, test, and 
evaluation efforts which span the entire system development 
process in a continuous fashion.  For example, requirements 
validation starts early on in concept definition, continues down 
into verification of individual components in the form of 
derived requirements, and ends with the validation of a fully 
integrated system against the original user system definition.  
Lastly, as with much of the SE development process, V&V 
activities are scalable from brief efforts to meticulously 
detailed efforts which can take months or years in some cases.   

1. Although other common development models and processes exist, such 

as evolutionary acquisition and spiral development, the SE V-model was 
chosen because of its general acceptance in the SE community and clear 

linkages between decomposition and integration activities.  Furthermore, 

distinct verification and validation activities readily lend themselves to the 
formalized ‘justified confidence’ requirements of system assurance claims as 

described in Section IV, parts C and D. 



IV. RESEARCH 

This section details the SE development process in 
conjunction with key security patterns to provide a baseline for 
secure and assured cyber systems.   

A. Assessment of Security Patterns 

For the software engineering community, design patterns 
are widely accepted to communicate object-oriented concepts 
and architectural structures.  Because of their demonstrated 
benefits, other communities, such as the IT security community 
have attempted to develop equally effective security patterns.  
The seminal text for security patterns is “Security Patterns—
Integrating security and systems engineering” by Schumacher 
et al. [10], while other publications of note are “Secure Design 
Patterns” by the Carnegie-Mellon Software Engineering 
Institute [11], a survey of security patterns by Yoshioka et al. 
[12], the online security pattern repository [13], and the open 
group security pattern technical guide [14].  Additionally, the 
First International Workshop on Cyberpatterns was hosted in 
2012, which focused on attack-oriented security patterns [15].  
Formally, a security pattern is defined as: 

Security Pattern.  A security pattern describes a particular 
reoccurring security problem that arises in specific 
contexts, and presents a well-proven generic solution [10].  

A strict interpretation of security patterns yields a growing, yet 
limited, set of results.  However, given the broad nature of a 
pattern’s stated purpose i.e., a well-proven generic solution to a 
reoccurring problem, there are many such security patterns 
available for review.  Less formal security patterns exist in 
many formats captured as policy, standards, best practices, 
guides, processes, instruction manuals, checklists and many 
more, which ultimately result in a very large body of 
knowledge with significant depth. 

 From the practitioners’ point of view, the key problem then 
becomes knowing when and where to apply the appropriate 
patterns.  Therefore, the proposed SE approach for secure and 
assured systems highlights the utilization of key cyber patterns 
during specific points in the system development process.  The 
key security patterns are introduced in Section B and fully 
described in Sections C and D. 

B. Key Cyber Patterns for Cyber System Development 

 Key cyber security patterns were derived from the reviewed 
literature and categorized into the formalized SE 
developmental process as shown in Fig. 1.  Because of overall 
similarity, concept definition and requirements analysis will be 
addressed together.  System design will be addressed 
singularly, which supports the use of conventional IT 
enterprise architectures used in the design and operation of 
many IT centric systems.  Component design and 
implementation activities will likewise be addressed together 
due to similarity of purpose. 

1) Concept Definition and Requirements Analysis:  

Security patterns supporting system concept definition and 

requirements analysis are mostly related to high-level policy 

and risk management.  These activities should not be 

discounted as they form the backbone of all cyber system 

security decisions.  There are a number of critial issues at this 

level of system development which security patterns can aid.  

Key security patterns for consideration: 

• Risk Management – conduct threat and vulnerability 
assessments, predict likeliness factors, calculate expected 
loss, prioritize results, plan/implement mitigation actions, 
and re-evaluate expected loss.  Risk management is perhaps 
the single greatest concern for a cyber system under 
development. 

• Asset Identification and Assessment – determine critical 
information and technologies, mission threads, core 
business processes, intellectual property, essential 
knowledge, personnel, and other crucial resources.  This 
security pattern may be considered part of risk management 
proper; however, because of its importance we have 
specifically identified the security pattern as a uniquely 
important task.  It also serves to prioritize security and 
assurance measures during the entire development process. 

• Formalize Security Requirements – define and document 
the extent to which cyber security attributes are desired 
and/or required.  Consider confidentiality, integrity, and 
availability, along with other security attributes specific to 
the system under development. 

2) System Design:  Security patterns supporting system 

design have grown out of enterprise level security, software, 

and network architectures used extensively by software and IT 

professionals for design and operation.  While the practioners’ 

architectures are focused more on building and operating 

cyber systems, the systems engineer’s design architecture is 

focused more on understanding the system under development 

as discussed in Section III.  Key security design patterns for 

consideration: 

• Determine Appropriate Security Approach – select a 
scheme to achieve the desired security state i.e., approaches 
for deterrence, prevention, detection, and recovery.  These 
decisions will heavily influence the system design and 
specific components. 

• Security-Oriented Functional Decomposition – conduct 
decomposition using established security principles i.e., 
separation of duties, least privilege, and defense-in-depth. 

• Separate Security Functionality – separate security 
functionality from other system functionality.   

3) Component Design and Implementation:  This grouping 

of security patterns is by far the largest,  with many software 

and application specific security patterns available for 

consideration.  These technology specific security patterns are 

generally applicable to very specific problems, although there 

are a number of very helpful objective-based security patterns 

such as “The Twenty Critical Security Controls” [16] and 

“Raising the Bar for Cybersecurity” [17].  Because of the 

abundance of security patterns available at this level, three 

types of security patterns are considered:  



• Design Pattern Extensions for Security – security oriented 
extensions of longstanding object oriented software design 
patterns.  These patterns provide great utility and ease of 
use for cyber system software implementers. 

• Objective-Based – robust solutions to the broader cyber 
security problem.  Generally, cover multiple security 
attributes and referred to as best practices. 

• Application Specific – focused on the configuration and 
operation of cyber systems or security devices.   Examples 
include firewalls, audit/logging, input validation, white 
listing, secure web applications, and many others. 

 Next, Section C briefly describes system assurance with 
respect to the SE development process, before entering a 
detailed discussion of the confluence of key cyber security 
patterns, the SE development process, and their contribution 
towards system assurance in Section D. 

C.  Systems Engineering Approach for System Assurance 

Given the complex nature of modern cyber 
implementations and the current threat environment, system 
assurance is sometimes considered an unobtainable goal.  
Despite this bleak view, the National Defense Industrial 
Association (NDIA) recently published a comprehensive text 
for system assurance titled Engineering for System Assurance, 
which makes progress towards solidifying the practice.  The 
definition of system assurance is provided for inspection: 

System Assurance. The justified confidence that the system 
functions as intended and is free of exploitable 
vulnerabilities, either intentionally or unintentionally 
designed or inserted as part of the system at any time 
during the life cycle [18]. 

Notably, NDIA describes ‘justified confidence’ with formal 
assurance claims including: context, assumptions, justification, 
evidence, and criteria which are used to formally answer the 
desired level of assurance for critical functional requirements. 

The SE development process provides the flexibility to 
account for assurance claim context and assumptions early on 
while addressing justification, evidence, and criteria during 
system integration.  SE functional decomposition and system 
integration activities can be used at each point in the 
development process to provide justified confidence through a 
formal and defined process.  Each SE activity from concept 
definition to validation is scalable, which provides selectively 
robust support for critical system functions and their assurance 
claims.  Specifically, SE system integration activities readily 
lend themselves to meeting assurance claims through defined 
V&V activities.   

D. Detailed SE Process Activities for System Assurance 

This section addresses each SE functional decomposition 
and system integration activities as they contribute towards 
cyber system assurance.  A description of the relationship 
between the SE activity, key cyber security patterns, and 
formalized assurance claims i.e., context, assumptions, 
justification, evidence, and criteria is described.  Because of 
inherent dependencies concept definition and requirements 
analysis will be addressed together. 

1) Concept Definition & Requirements Analysis 
As the starting point in the SE development process, 

concept definition and requirements analysis form the basis of 
all future decomposition and integration activities.  Modern 
cyber systems face many common requirements problems, 
however, these problems are compounded by the additional 
challenges associated with cyber system complexity and 
security requirements.  Further, all future assurance claim 
justification efforts will be accomplished against these 
formalized requirements.   

The assurance claim is intended to define system assurance 
requirements, which take the form of confidence levels during 
concept definition and requirements analysis.  With respect to 
assurance of cyber systems, concept definition and 
requirements analysis activities should result in both 
formalized security requirements and desired levels of 
assurance for functional requirements. 

In cyber system development risk management is a 
critically important, yet a rather challenging task due to system 
complexity.  For the cyber system developer, there is an 
overwhelming amount of information dedicated to IT risk 
management as it is a completely unique field of study.  
Fortunately, much of the conceptual material is similar in 
nature.  Of note, the National Institute of Standards and 
Technology (NIST) produced an IT security framework which 
is rather verbose, but clearly articulated and detailed.  NIST 
Special Publication 800-30 is an excellent place for the cyber 
systems engineer to start learning this vital security pattern 
[19].  A general rule of thumb is the level of security should be 
commensurate with an item’s value as described in the asset 
identification and assessment security pattern. 

Cyber system risk management must consider many 
difficult software issues, significant operational and support 
dependencies, and a hostile cyber threat environment that can 
change in a moment’s notice.  Because of the unbounded 
nature of risk management assessment and mitigation, the 
systems engineer should ensure baseline level of risk 
management is conducted, while providing additional detailed 
analysis where necessary to meet the user’s needs.  SE concept 
definition and requirements analysis activities coupled with 
risk management aid in the development of secure and assured 
cyber systems by appropriately addressing critical functions for 
cyber systems. 

There are many very effective security patterns available 
for performing asset identification and assessment, especially 
as they pertain to risk.  There is an expected overlap with risk 
management as asset identification and assessment are often 
cited as the first and second steps in the risk management 
process.  However, in the cyber community asset identification 
and assessment is typically focused on physical asset inventory 
and does not adequately address the entire range of mission 
critical functions, information, and assets.  This common 
shortfall supports why we have chosen to included this task as 
a uniquely important security pattern for cyber systems. 

Within the DoD, Critical Program Information (CPI) has 
been a mainstay in program protection planning for identifying 
information and technology assets [20].  Criticality Analysis, 
and to a lesser extent Critical Mission Threads, are also 



methods widely employed in the DoD [6].  The purpose of 
these activities is simply to gain an accurate understanding of 
the resources—systems, people, processes—a system utilizes 
and prioritize their significance towards mission 
accomplishment.  These prioritized critical functions and 
resources should then serve as the focus of system security and 
assurance efforts throughout the SE developmental process. 

Formalized security requirements have recently been 
recognized as a necessary functional requirement for cyber 
system and not merely a support requirement.  The distinction 
is significant and puts more attention on securing and assuring 
a system rather than falling into a security checklist mentality.  
The goal of the formalized security requirements is to consider 
and define what security attributes should be for critical 
functions in a cyber system under development.  System 
assurance levels should be considered at this point in like 
manner.  The direct link between formalized security 
requirements and desired assurance levels is a natural fit. 

Security requirements are usually described in the context 
of the industry established security attributes: Confidentiality, 
Integrity, and Availability.  For each core function of a cyber 
system, cyber security attributes should be enumerated.  
Typically, enumeration is done categorically in the form of 
“high, medium, low” or “extreme, urgent, high, medium, low” 
in a comparative fashion.  The scale is subject to user 
preference and specific application.  Two simple examples 
follow: 1. A command and control system may have an 
“urgent” data integrity requirement along with “high” 
availability and confidentiality requirements; and 2. An 
intelligence signal processing cyber system may have 
“extreme” confidentiality and integrity requirements, along 
with “medium” availability requirements.     

Security professions often extend these core attributes with 
various other information security principles.  For example, the 
core security attributes will often be extended with 
Identification, Authentication, and Non-Repudiation for secure 
communication functions.  Furthermore, formalized security 
requirements specify the desired security principles and 
assurance levels for a system under development, which are 
also used during validation activities.  Early SE functional 
decomposition activities are very helpful when paired with 
formalized security requirements to address the whole cyber 
system—systems, people and processes—security problem.  

2) System Design 
Once system requirements are established, design is the 

next step in providing an effective system.  System design is 
where SE faces the challenge of realizing system-wide 
requirements in a functional design.  In order to accomplish 
this task, systems engineers must first have a detailed 
operational and technical understanding of the subject 
domain(s).  Second, systems engineers must study system 
functionality, inputs, outputs, controls, boundaries, interfaces, 
and dependencies.  Additionally, there are many known and 
unknown complexity issues that may surface during system 
design activities.  These issues will need to be addressed as 
they arise to assure the functionality of the system. 

In general, SE should analyze and document system 
complexity through functional decomposition activities which 

typically result in a set of architectural products called views.  
These architectural views or products are scalable to a desired 
level of specificity, from conceptual block diagrams to detailed 
design architectures for the most complex systems.  SE design 
activities fall right in line with providing assured systems 
through justifiable decision making to “build-in” smarter and 
more effective security solutions right from the start at less 
cost.  System design decisions also need to be considered in a 
cost-benefit manner, with a clear understanding of the 
programmatic nature of large developmental efforts.   

Appropriate security approaches should be selected to meet 
the overall security requirements.  Often there is a mutually 
supportive overlap between security approaches as discussed in 
the security pattern literature.  The security objective(s) will 
drive the security approach resulting in a mix of deterrence, 
prevention, detection, and response solutions.  These 
approaches are tempered by the cost-benefit nature of risk 
management.  Clearly articulating and applying security 
approaches for critical system functions directly supports 
assurance claims, contributing to a more stable system. 

Recent trends are moving towards more cost-effective 
approaches of detection and response.  It is often much simpler 
and quicker to rebuild a compromised system than attempt to 
prevent future compromises, which can be seen as impossible.  
There has also been a significant movement towards resilient 
and agile systems, which can self-recover from failures.  
System design is the optimal time to consider which 
approaches will be implemented for a given cyber system to 
meet the defined security and assurance requirements. 

Separation of duties, least privilege, and defense-in-depth 
constitute the core of modern information security principles 
and should be considered throughout functional decomposition 
and specifically system design activities.  As with selecting 
appropriate security approaches, applying core security 
principles builds towards a stable cyber system.  In principle, 
this security pattern requires only a slight modification to 
existing SE functional decomposition practices.  Considering 
key security principles during the design phase of a system is 
perhaps more of a basic practice and less of a documented 
security pattern, however, its importance cannot be overstated 
to solving the assured cyber system problem.   

Separate security functionality should be considered and 
designed in whenever possible.  This security pattern is often 
viewed expressly for software development efforts to separate 
security checks from object creation, however, this security 
pattern should be more broadly applied.  For example, each 
security test or check should be considered separately from any 
system functional requirement.  Separating security 
functionality has the benefit of clearly identifying security 
checks and reducing implementation complexity.  Separate 
security checks should be enforced throughout system design 
and implementation wherever feasible given the appropriate 
risk management and cost-benefit considerations. 

3) Component Design & Implementation 
Although it is not the aim of this paper to discuss security 

patterns as they pertain to component design and 
implementation, there are a couple of interesting comments 
which should be made.  First, because of the wide popularity of 



object oriented design patterns a rash of security-oriented 
extensions quickly arose.  These design pattern extensions for 
security are very helpful for software engineers attempting to 
“build-in” security and should be applied wherever possible. 

Second, there is essentially no limit to existing and 
potential application-specific security patterns, because they 
are tightly coupled to technological solutions for specific 
problems i.e., filtering on a firewall.  There are literally 
thousands of application-specific security patterns available for 
review across many cyber security related problem sets.  These 
security patterns should be investigated for a given application 
as many excellent ideas exist for securing cyber devices. 

Third, because of the numerous application-specific 
patterns at the component level, consolidated security patterns 
have appeared.  We’ve termed these objective-based security 
patterns which attempt to answer the broader cyber system 
security problem.  Popular examples of objective-based 
security patterns are the SANS Top Twenty critical controls 
and the Australian DoD’s top 4 mitigation strategies. 

4) Component and System Verification 
As system integration begins, there is a natural fit between 

component and system verification activities and system 
assurance goals.  Verification activities can range from 
documentation reviews to detailed line by-line code reviews 
spanning days, weeks, or months.  Formally, verification is 
described as “the purpose of the Verification Process is to 
confirm that the specified design requirements are fulfilled by 
the system” [21].  The prioritization of the cyber system 
verification activities should be driven by function criticality as 
described during functional decomposition activities.  Fig. 2 
shows the key cyber security patterns mapped to the SE 
development process for concept/requirements validation, 
system design verification, and component 
design/implementation verification. 

 
Fig. 2: Key Cyber Security Patterns 

 

Revisiting the definition of verification, the systems 
engineer’s goal is to “confirm that the specified design 
requirements are fulfilled” and should use whatever tools 
necessary to accomplish the task.  A simple list of verification 
techniques includes: basic function testing, result comparisons, 
input/output sensitivity, parameter checking, structural code 

review, detailed code walkthrough, review of math/logic 
proofs, and detailed end-to-end input/output traces.  This list is 
by no means exhaustive and meant merely as a starting point.  
Due to specific nature of verification activities and desired 
level of justification evidence, it is difficult to recommend 
specific verification activities for a given cyber system 
implementation.  The author recommends reviewing cyber 
system verification activities and processes found in ISO/IEC 
15288 [21], ISO/IEC 26702 [22], the DAG [6], and the 
INCOSE SE handbook [8]. 

As a pertinent aside, security measurement and evaluation 
of cyber systems is a highly debated subject.  The effectiveness 
of current evaluation criteria and resulting formal measurement 
i.e., security audits are being called into question.  It seems that 
despite significant effort put towards the development of 
thorough IT security criteria, they have not provided a 
sufficiently suitable solution to the cyber system assurance 
problem.  This is evidenced by the weekly announcements of 
cyber security breaches, vulnerabilities, and the non-stop 
release of critical patches by major software developers. 

5) Requirements and Concept Validation 
During validation activities the entire technical effort 

described as systems, people, and processes should be 
evaluated to determine if it can meet the specified users’ 
requirements.  Formally, validation is described as: “the 
purpose of the Validation Process is to provide objective 
evidence that the services provided by a system when in use 
comply with stakeholders’ requirements, achieving its intended 
use in its intended operational environment” [21].  The output 
of the validation activities should be a determination to what 
extent the systems meet’s the desired capability. 

SE validation activities tie closely to system assurance case 
evaluation methodology as described by NDIA’s Engineering 
for Systems Assurance: “the purpose of an assurance case is to 
provide convincing justification to stakeholders that critical 
system assurance requirements are met in the system’s 
expected environment(s)” [18].  SE validation activities 
significantly contribute to demonstrable proof that a particular 
system meets its documented purpose(s).  There are some very 
helpful security patterns to assist in system validation as shown 
in Fig. 2 as previously discussed. 

Some additional issues for consideration are system 
re-purposing and unexpected operational environments.  
System evaluation is typically only considered for the planned 
operational environment, despite a high likelihood of other 
possible implementations.  Without a broader consideration, 
systems become immediately vulnerable when re-purposed or 
deployed in less than ideal environments.  The system engineer 
must also consider that the system itself is always changing 
due to regular patching cycles, scheduled upgrades, operator 
rotations, and process improvement initiatives. 

A basic list of SE validation activities consists of 
addressing: Key Performance Parameters (KPPs), initial 
assumptions, requirements traceability, concept review and 
requirements assessment (i.e., a document review addressing 
the stated purpose, requirements, and key functions), external 
validity (i.e., black box testing), and internal validity (i.e., 



white box testing).  This list is by no means exhaustive and 
meant merely as a starting point for validation activities.  It is 
difficult to recommend specific validation activities for a given 
cyber system implementation and the author recommends 
reviewing cyber system validation activities and processes 
found in ISO/IEC 15288 [21], ISO/IEC 26702 [22], the DAG 
[6], and INCOSE SE handbook [8]. 

Once the system is fully integrated, SE validation activities 
can justifiably determine if the system can meet the desired 
levels of assurance.  The SE development process, particularly 
system integration, culminates in validation activities which 
are designed to provide objective evidence that user 
requirements are being meet.  These same results can be 
leveraged to provide justified confidence in the desired system 
functionality for system assurance claims. 

V. CONCLUSION 

This paper presented a description of key cyber security 
patterns categorized to the SE development process.  This 
paper further examined SE decomposition and integration 
activities, detailing their contribution to achieving cyber system 
security and assurance.  SE V&V activities were examined and 
determined to provide sufficient justification to meet formal 
systems assurance claims.  Specifically, verification can be 
used to directly support the justification, evidence, and criteria 
associated with formal assurance claims, while validation 
defines and supports the context, assumptions, justification, 
and criteria associated with these claims for cyber systems.  In 
conclusion, this paper builds upon cyber security patterns and 
established SE process to provide assured cyber systems. 
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