
Port Knocking- An Additional Layer of Security for SSH 
and HTTPS 

 
Jigar A. Raval1, and Samuel Johnson1 

1Computer Center, Physical Research Laboratory, Ahmedabad, Gujarat, India 
 
 

Abstract - The availability of communication resources 
remote access of e-mails and data is increasingly required 
and desirable by users. This, however, implies security of user 
data and e-mails. The vulnerability of the system depends on 
the ability to scan the system for an open port and on the 
service running on the open port. Such open ports are entry 
points for attacks. Masking of open ports and services on the 
system, using port knocking technique, provides a simple and 
reliable method. Initially, during the port knock sequence all 
the ports remains closed, thus the services or open ports 
become invisible to any malicious port scan. After a valid port 
knock, a predetermined port is opened allowing access of 
predefined service. Thus port knocking technique adds an 
extra layer of security without any major changes to the 
application. 

In this paper, we discuss a complete practical approach of 
securing SSH and HTTPS (Web based email access) using 
available open source software. We wish also to share our 
experiences so that enterprise level secure systems can be 
deployed just by use of free and open source (FOSS) software. 

Keywords: SSH security, HTTPS Security, IPtables, Port 
knocking 

 

1 Introduction 
 Any system connected to the Internet can be scanned or 
probed to get detail of any open ports and associated services 
running on the respective open ports and then to exploit the 
vulnerabilities of the service to hack into the server. We 
normally need to connect to the respective service port for 
different requirements like to manage the system remotely, to 
remotely access of the data, to remotely access web based 
email. These open ports are entry point for the attackers. 
Looking with another angle, if the port is not open, it is 
difficult to exploit the service. Thus these open ports are the 
“Achilles heel” of the system.  

For example, services like SSH, HTTPS (for this paper it 
refers to web email access) are running on a predefined well 
known port like 22, and 443. The default port is always open 
in the firewall so the service can be accessible over the 
network. When we use SSH, HTTPS services on standard 
well known port, we are likely to see brute force login 

attempts from different or same IP addresses. The SSH, 
HTTPS does not limit unsuccessful login attempts by itself. 
There are multiple ways to deal with problem.  One good way 
is to use different non-standard port to hide the service to 
discover and use the service vulnerabilities to exploit the 
server. But using latest freely available tools like nmap[1] a 
complete scan of all the ports on the server will quickly reveal 
the open port and get the associated service detail like version 
of the service, running on the server. Then the hackers use the 
details, to find the vulnerabilities of the service and try to 
exploit the system using the service vulnerabilities. Another 
important point is to have a strong authentication mechanism. 
But this will not stop brute-force, dictionary attacks on the 
server. The other way is to configure the firewall (IPtables) 
and allow access of SSH/HTTPS from specific IP Address. 
However, it is difficult to open specific IP address if the 
legitimate user access request is coming from dynamically 
assigned IP address. IPtables can be further customized to 
stop brute force attacks but still we do not want to make 
system resources (CPU, Memory of server, and network) busy 
to deal with unnecessary traffic. Hence, there should be an 
appropriate security layer in place to protect from such system 
scanning, and unauthorized access attempts while keeping it 
accessible online to the trusted users. A good solution is to 
limit access of SSH, HTTPS services using a technique called 
- port knocking. The access to the SSH, HTTPS will be 
unavailable until there is some kind of secret port knock 
sequence. Then the port will be open for a certain time, and 
for specific IP address from where the correct port knock 
sequence observed. It may be relatively difficult for an 
attacker to find that the remote system uses the port knocking 
as there is no port open for entering the system. Even the 
system scan using nmap tool does not show open ports on the 
system.   
 
Consider that for an attacker who does not know the knock 
sequence, in order to discover it requires massive brute force 
effort. That is, without prior knowledge of knock sequence, a 
simple two TCP port knock sequence (eg 5678, 4567) would 
require a scan of every combination of two ports in the range 
of 1-65535. The port would not open until the correct two 
port knock sequence received.  That equates to attempt of a 
maximum of 655352 packets in order to obtain and detect a 
single successful opening. On the other hand, an authorized 
user would be able to open the port and access the system 
from any corner of the world. 
 



In this paper, we have discussed port knocking technique, its 
implementation using IPtables, our experiment results and 
proposed a setup using all the available open source tools 
which adds an additional layer of security to secure SSH, 
Web email access using HTTPS with very less complexity on 
the server and client. 
 

1.1 About SSH 

 The main purpose of SSH [2] is to securely transmit data 
over network connections using strong encryption and 
authentication methods. It is a replacement of non-secure 
Telnet, FTP and r-commands (rlogin, rcp, rsh). Many 
organizations now use SSH because of its features like secure 
remote login, secure file transfer, secure remote 
administration, secure remote-command execution, port 
forwarding (tunneling).  

There are many methods/ways like Replay Attacks, 
Eavesdropping, Man-in-the-Middle Attacks, IP and DNS 
spoofing, an attacker might use to gain access of data in 
transit. SSH mitigate such attacks very effectively.  

However, for strengthening SSH, we propose following 
steps, should be sufficient to protect SSH server and client, 
even if the number of attacks continues to rise.  

(A) Run the service on non-standard port 

(B) Defining restricted user access list 

(C) Port Knocking [3,4] using IPtables [5]  

1.2 About HTTPS 

 HTTPS (Hypertext Transfer Protocol Secure) is not a 
protocol in itself, rather it is a security add-on on top of 
HTTP using SSL/TLS. HTTPS URLs begin with "https://" 
and use port 443 by default, whereas HTTP URLs begin with 
"http://" and use port 80 by default. HTTPS is especially 
important over unencrypted/insecure networks such as Wi-Fi, 
cybercafé, etc, as anyone on the same network can do packet 
sniffing and discover sensitive information. Every thing in 
HTTPS message is encrypted, including headers and 
response/request. 

To prepare a web server to accept HTTPS connection, the 
administrator must create a public key certificate, also known 
as the Digital Certificate. Digital Certificates forms the basis 
of secure HTTPS/SSL session. A certificate is simply a 
public key containing along with it an identity such as email 
id, organizations name, URL, It can not only be used for 
establishing the authenticity of the indentifying entity, but can 
also be used for encryption (using various key exchange 
techniques). 

A certificate can be self generated and self-signed or a signed 
certificate can be bought from a Certificate Authority (CA). 
Both have their merits and demerits. 

The organizations allow secure (HTTPS) email access 
through web based tool like SquirrelMail, TWIG within their 
own network and also from outside the network. There are 
many ways to break even HTTPS. Attackers can use 
vulnerabilities of web application to exploit and hack the 
server. For hardening web based email access using HTTPS, 
we propose following steps, should be sufficient to protect 
HTTPS server which provides web based email access even if 
the number of attacks continues to rise.  

(A) Run the service on non-standard port 

(B) Defining restricted user access list  

(C) Port Knocking [3,4] using IPtables [5]  

For experiment, we have configured latest version of 
Apache[14], PHP[15], Squirrelmail[13] on CentOS linux 
platform.  

The remainder of this paper is organized as follows. The 
paper presents a port knocking technology briefly in Section 
II, followed by Section III presents the details about the 
implementation and result. Finally, Section IV presents 
concluding remarks and outlines future work. 

2 Port Knocking 
 Port knocking is a technique that can be used to hide 
services that are running on a secure and hardened server. 
This is achieved by not opening the port until a correct 
sequence of knock packets are received by the server. The 
client attempts to initiate several three-way-handshakes and 
receives no reply. These connections attempts are monitored 
and recorded by firewall (IPtables). Initially, the server 
presents no open ports to the public and is monitoring all 
connection attempts. The client initiates connection attempts 
to the server by sending SYN packets to the ports specified in 
the knock. It is important to understand that port knocking is 
an added form of security, and not meant as a replacement for 
regular security maintenance. This process of knocking is 
what gives port knocking its name. The server offers no 
response to the client during the knocking phase, as it 
"silently" processes the port sequence. When the firewall 
(IPtables) decodes a valid knock, it opens a port for the 
specific IP address from where the port was knocked for a 
specific time. Following figures show how port knocking 
technique works: 

 



                  

Fig. 1[3]. Default all the ports are blocked 

              

Fig.2[3] User knocks the required ports 

            

Fig.3[3] The system opens the defined port for specific host 
from where user has knocked the port 

2.1 Pros and Cons of Port Knocking 

 The main benefit of port knocking is that it allows for 
stealthy authentication into a host without open ports. The 
method is stealthy because it is not possible to determine if 
the host is listening for knocks/requests. Since information is 
flowing as connection attempts, rather than packet data 
payload, it is unlikely that this method would be easily 
detected. The system is flexible, because existing applications 
such as SSH, which perform their own authentication, do not 
need to be changed, as port knocking is just an additional 
outer layer of security for the machine [4]. Consider that for an 
attacker who do not know the knock sequence, in order to 
discover it requires massive brute force effort. That is, 
without prior knowledge of knock sequence, a simple three 
TCP port knock sequence (eg 5678, 4567, 6789) would 
require a scan of every combination of three ports in the 
range of 1-65535. The port would not open until the correct 
three port knock sequence received.  That equates to attempt 
of a maximum of 655353 (over 281 trillion) packets in order 
to obtain and detect a single successful opening. On the other 
hand, an authorized user would be able to open the port and 
access the system from any corner of the world.   Modern 
port knock implementations are much more intelligent and 
mature, some use highly secure cryptographic hashes in order 

to defeat the most common attacks like packet sniffing and 
packet replay. 

However, as with any security system, the disadvantage 
begins with the small inconveniences that must be endured 
while that system is in use. The use of the client imposes an 
overhead for each connection and users require instruction. 
Port knocking cannot be used to protect public services such 
as mail or web, as this would require everyone to know the 
knock. Thus, the public services should be relocated to a 
demilitarized zone (DMZ) and isolated from the hosts with 
sensitive information. 

The implementation of any system that manipulates firewall 
rules in an automated fashion must be robust to prevent 
legitimate users and system administrators from being locked 
out. Also, if the service daemon crashes, the host access will 
not be available. Appropriate measures should be 
implemented to avoid such a scenario. 

3 Experiment and Result 
 Our proposed setup solution comprises use of IPtables 
firewall which is built right into the Linux kernel. However, 
port knocking can be implemented using various methods. It 
could be implemented as a standalone daemon processes like 
knockd, fwknop, etc.. There also exists software to encrypt 
the entire knock sequence. However, it requires the use of 
dedicated software on both client and server side for the 
encryption and decryption process. To overcome these, we 
have not considered encryption in port knocking. We have 
configured IPtables with ‘recent module’ which requires 
initially single port to be knocked.  However, it is possible to 
configure IPtables to sense multiple ports knocking in defined 
sequence. Hence, there is no specific daemon required to run 
on the server. Also, client does not require any specific 
software to knock the port. To avoid denial of service attack, 
we have also implemented rate control using IPtables. 

3.1 Port knocking for SSH (An IPtables based 

approach): 

 We have implemented port knocking on the experiment 
server. We have separately installed latest SSH package. The 
new SSH is compiled in such a way that it does not display its 
version in nmap scanning or telnet command line access. This 
makes it more difficult for the attacker to find the SSH 
version and use the vulnerability for attacking the server.  

To make the system/service more harden, we select the non 
standard port to run SSH. We have also taken other known 
security measures to protect the system i.e. allow only 
protocol version 2, allow only specific users, disable root 
login, etc. 

We have implemented port knocking using IPTables. So, 
there would be no running service failed that could fail the 
access. By default, all the traffic is dropped by IPtables rules. 



As per our needs, we have configured IPtables rules in such a 
way that it requires knock only one port and also avoid any 
extra utility on the client machine for knocking the port. The 
IPtables rules are written to open SSH port only for the 
specific IP address from where the port is knocked and keeps 
the port open for specific time period only. In other words, 
after knocking the ports, user must establish the session 
within the specific time period otherwise the IPtables rule 
drops the request and user should knock the port again to 
establish the SSH session. We have configured IPtables to log 
all the request of port scan, port knock and SSH. We have 
also tried to block some of the common attacks and force 
SYN packets check, Fragments packets check, XMAS 
packets check, drop all NULL packets etc.   

In order to test the proposed setup, we have kept the system 
on the internet for more than a year.  We have not observed a 
single unauthorized login attempt which was observed earlier 
while SSH service was running on well known port number 
22. We have also observed that suppose the port is scanned 
and open for SSH session, at the same time if attacker scan 
the system using nmap the scan will display scan port either 
filtered or closed.  

To analyze the server logs, we have developed web based 
software to analyze and display Monthly, Yearly SSH 
successful and failed login attempts by username, source IP 
address with IP Address geo-location. The software is 
developed on Linux using Java, Mysql and Apache-Tomcat. 
We have used GeoLite[6] freely available database to get geo-
location of the IP Address. As mentioned, we have already 
rejected port 22 access attempt using IPtables. We have 
statistics of port 22 access attempts with source IP address 
and respective country. The statistics shows an average of 17 
attempts on port 22 per day. Figure 4 shows day wise 
graphical representation rejected port 22 access attempts for 
the month of January 2013.  

Daily SSH Port 22 Attempts - January 2013

12 11

5

10

17
20

16 16 15
13

26

15 14

9

16

9

25

21
18 19

16

23

17

21

29

15

19

26

15
18 19

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Date

N
o

. o
f 

A
tt

e
m

p
ts

 

Fig.4 Dropped Port 22 Access Attempts-January 2013 

Following table shows dropped port 22 access attempts 
(January 2013) of top five countries. Figure 5 also represents 
graphical representation for the same.  

 

 

Sr. 
No. 

Country No. of Access 
Attempts 

1. China 199 

2. US 47 

3. Pvt. IP Address 42 

4. India 34 

5. Korea, Republic 27 

 

Table 1 - Country wise dropped port 22 access attempts 

199

47 42 34 27 17 13 11 11 10

0

50

100

150

200

250

C
h

in
a

U
n

it
ed

S
ta

te
s

P
vt

A
d

d
re

ss

In
d

ia

K
o

re
a,

R
ep

u
b

li
c

R
u

ss
ia

n
F

ed
er

at

T
ai

w
an

G
er

m
an

y

V
ie

tn
am

F
ra

n
ce

Countries

N
o

. 
o

f 
A

tt
em

p
ts

 

Fig.5 Country wise Dropped Port 22 Access Attempts  

 

In the month of January 2013, there are total 244 number of 
successful and 18 number of failed (user has entered incorrect 
password) logins observed.   

Sometimes Educational and Research institutes have a 
requirement to provide the access of Institute subscribed 
Library Journals/Paper from home/outside network to the 
students/scientists. To enable the access, we have 
experimented two mechanisms (1) SSH tunneling and (2) 
using freely available sshuttel[7] script  which we customized 
as per our experimental need. We did experiment using both 
the mechanism on windows and linux client. It worked 
successfully and user could browse Institute subscribed 
Library Journals/Paper from home/outside Institute’s 
network.  

3.1.1 SSH tunneling 

  Below Figure 6 shows the experimental setup using 
SSH tunneling to access Institute’s network and also to 
access Institute’s Library subscribed journals over Internet.    



HOME 
PC

browserbrowser

22222222
Internet Server

Proxy
Server

Internet / 
Subscribed 

Journals 
Access

Encrypted 
Tunnel

Fig.6 SSH tunneling 

3.1.2 sshuttle[7] for Linux:  

 There is one open source Python based Linux tool/script 
available called sshuttle to establish SSH based VPN type 
tunnel. It creates transparent proxy server on local machine 
for all IP addresses that match 0.0.0.0/0. More specific 
defined IP addresses can also be used. We have modified the 
script as per our needs and repacked the whole bundle in a 
single Linux package file (RPM and DEB) called SSHVPN. 
Below figure 7 shows experimental setup to securely access 
Institute’s network using sshuttle over Internet.  

 

Fig. 7 SSH VPN using sshuttle 

We have successfully tested the network access using our 
customized script from Linux client.  

3.2 Port knocking for HTTPS (Web email access): 

 As explained earlier, the organizations also allow secure 
email access through web based (HTTPS) within their own 
network and also outside the network. To further secure from 
automated brute force password and other automated scripts 
attacks, we would also like to use port knocking for the web 
based email access. Now, the problem is that unlike SSH, 
HTTP is a stateless protocol. As a result, the port has to be 
kept open for the entire duration of mail access. For 
experiment, we have configured latest version of Apache[14], 

PHP[15], Squirrelmail[13] on CentOS linux platform. We have 
also taken care of basic security of Apache and PHP.  

Solution 1: 

 A simple solution for the problem would be to designate 
another port which would close the HTTPS port. To automate 
the close port request, we modified the signout php page of 
webmail and incorporated the closing port knock. The closing 
knock port was chosen to be 80 (HTTP port) so that it is not 
readily visible in browser’s address bar. 

The solution was extensively tested and was working fine for 
users accessing mail from their home. However, a new 
problem arose, if the user was behind a NAT proxy. That is, 
if more than one user logs in from the same NATed Proxy IP, 
then the first one to signout will terminate the connection for 
all users since all ‘appear’ to come from the same IP address 
due to Network Address Translation in work behind the 
scene. 

Now, since iptables do not provide a direct way to count the 
number of requests from same ip address, and take actions 
accordingly, the only choice we had in deploying this 
solution was to create a custom program that would monitor 
iptable’s log and would insert or delete rules to allow or deny 
users. The script would make a note of number of IPs 
currently connected and would only delete the access rule 
when the last user from the same IP has quit. The drawback 
in this approach was that if that external program were to quit 
or terminate for some reason, then even legitimate users 
(irrespective of NAT) would be denied of mail access. 

Though the problem of NAT would rarely occur, and though 
the workaround in that case would be to simply allow access 
for that organization temporarily, the inherent complications 
involved in dealing with this rare problem, the manual 
intervention required and dependence on an external program 
forced us to think of other possibilities. 

Solution 2: 

We analyzed access logs of the users’ web based email access 
and monitor the duration of their webmail session and found 
that on average, a user typically spends only around five to 
fifteen minutes time while checking mail. 

Based on that, we chose to close the port automatically after a 
predefined period of say thirty minutes. So as to not surprise 
the user by terminating the connection, a count down timer 
will also be displayed which would show the remaining time 
till port close. If the user wishes to extend the period, he/she 
shall again knock the opening port. 

If in that duration, another user arrives from the same IP 
(using NAT) the time period of both the users will get 
extended. 



3.3 Implementation 

 We have successfully tested both the solutions and 
found that solution 2 is more suitable without adding a layer 
of complexity. Since last two months, solution 2 is running 
on our test server. We have not observed any brute force 
login attempts, Denial of Service Attacks. We have also 
configured IPtables in such a way that if someone tries to 
scan the port, the system will automatically block the IP 
address for temporary defined time period.  However, we are 
still doing further more experiments.  

4 Conclusions and future work 
 Initially SSH was running on the well-known standard 
port 22. We have already set the Access Control List (ACL). 
However, we have observed many unsuccessful login 
attempts for login id like root, guest, mysql, admin, etc. from 
different IP sources. Some of the time we have observed 
unsuccessful brute of attack or Denial of Service attacks.  

The multi layer security approach helps us to secure and 
harden the SSH service. We did experiment on the system 
with SSH and Port Knocking for more than one year. We 
have not observed any unsuccessful login attempt and brute 
force login attacks on the server. SSH with the above setup 
enable to economically, privately, effectively and safely 
access the system from public networks like internet.  

We have also successfully tested open source - One Time 
Password (OTP) package on our server. To use this, user 
need to carry a pre-generated one time password list on a 
paper or a file. If it is lost/deleted than user can not 
communicate with the system.  Hence, we would like to 
further study in detail for integration of OTP tool. 

Although right now, we are doing experiment using timeout 
for HTTPS port knock session, in the future, we may instead 
use the external program based approach if it clears our 
rigorous testing process. In the near future, IPtables might 
itself contain branching logic so that we no longer be 
dependent on the external program. 

No single piece of software can be complete security 
solution. To harden the system, we plan to enable Multi-
Factor authentication and also to use available open source 
fail2ban utility which blocks the IP address for the certain 
defined time period for the defined unsuccessfully login 
attempts. 

The experimental test setup will be useful to other 
organization to secure their SSH and web based email access 
services without any additional complexity on the server and 
client.  

5 Acknowledgements 
We thank Dr. A.D.K. Singh, Prof. V.K.B.Kota, Mr. 

Dholakia G. G., for providing their valuable suggestions and 
encouragement in establishing this system. We also thank our 
colleagues Mr. Alok Shrivastava, Mr. Hitendra Mishra, and 
Mr. Tejas Sarvaiya at the Computer Center and all the PRL 
users for their support and cooperation. 
 

6 References 
[1] NMAP- http://nmap.org 

[2] SSH – http://www.openssh.org 

[3] Port Knocking – http://www.portknocking.org 

[4] M. Krzywinski, “Port Knocking: Network 
Authentication across Closed Ports”. SysAdmin 2003. 
Magazine 12: pp 12-17 

[5] IPtables – http://www.netfilter.org 

[6] GeoLite Database- 
http://www.maxmind.com/app/geolite 

[7] Sshuttle- https://github.com/apenwarr/sshuttle 

[8] S. Krivis, “Port Knocking: Helpful or Harmful? – An 
Exploration of Modern Network Threats”, GIAC Security 
Essentials Certification, 2004, unpublished 

[9] Fwknop – http://www.cipherdyne.org 

[10] S. Jeanquier, “An Analysis of Port Knocking and Single 
Packet Authorization”, MSc Thesis, Information Security 
Group, Royal Holloway College, University of London, 2006 

[11] B. Maddock, Port Knocking: An Overview of Concepts, 
Issues and Implementations, GIAC Security Essentials 
Certification, 2004, unpublished 

[12] R. deGraaf, C. Aycock M. Jacobson, “Improved Port 
Knocking with Strong Authentication”. ACSAC 2005, pp. 
409-418 

[13] SquirrelMail – http://squirrelmail.org 

[14] APACHE – http://www.apache.org 

[15] PHP – http://php.net 

[16] Di Gioia P. , "Behind Closed Doors: An Evaluation of 
Port Knocking Authentication'. Donald Bren School of 
Information and Computer Sciences, University of California, 
Irvine 2004. 

[17] Dr. Hussein Al-Bahadili and Dr. Ali H. Hadi "Network 
Security Using Hybrid Port Knocking" IJCSNS International 
Journal of Computer Science and Network Security, VOL. 10 
No. 8, August 2010  


	1 Introduction
	1.1 About SSH
	1.2 About HTTPS

	2 Port Knocking
	2.1 Pros and Cons of Port Knocking

	3 Experiment and Result
	3.1 Port knocking for SSH (An IPtables based approach):
	3.1.1 SSH tunneling
	3.1.2 sshuttle[7] for Linux: 

	3.2 Port knocking for HTTPS (Web email access):
	3.3 Implementation

	4 Conclusions and future work
	5 Acknowledgements
	6 References

