
Mobile Root Exploit Detection based on System

Events Extracted from Android Platform
You Joung Ham, Won-Bin Choi, Hyung-Woo Lee

School of Computer Engineering, Hanshin Univ., 411, Yangsan-dong, Osan,

Gyeonggi Province, 447-791, Rep. of Korea.

e-mail: you86400@hanmail.net, bindon@hanmir.com, hwlee@hs.ac.kr

Abstract—Recently, the number of attacks by malicious application has

significantly increased, targeting Android-platform mobile terminal such

as Samsung Galaxy Note I/II and Galaxy Tab 10.1, etc. The malicious

application can be distributed and installed on user’s mobile devices

through open market after masquerading as a common normal

application. An attacker inserts malicious code into an application, which

might threaten privacy by root exploit. Once the root exploit attack is

successful, malicious code can collect and steal private data stored in

mobile terminal, for example, SMS messages, contacts list and public key

certificate for banking. To protect the private information from the

malicious exploit attack, several response mechanisms such as malicious

code detection, rooting attack detection and countermeasure method are

required. To meet this end, this paper investigates mobile root exploits

for Android based mobile devices. Based on that, this paper proposes

countermeasure system that enables to extract and collect events related

to root exploit attacks occurring from mobile terminal, which contributes

to active protection from malicious mobile attacks.

Keywords- Smart Mobile Device, Root Exploits, Detection, Malicious

Application, Kernel Event, Android Platform

I. INTRODUCTION
1

Recently, diversified attacks performed by malicious mobile

application masquerading as an innocuous application have been

growing high, targeting to a widely used Android platform based

mobile device such as Samsung Galaxy Note I/II and Galaxy Tab 10.1,

etc. An exploit is a piece of software, a chunk of data, or sequence of

commands that takes advantage of a bug, glitch or vulnerability in

order to cause unintended or unanticipated behavior to occur on

computer software, hardware, or something electronic. Such behavior

frequently includes such things as gaining control of a computer

system[1]. In particular, Android rooting is the process of allowing

users of smart phones, tablets, and other devices running the Android

mobile operating system to attain privileged control (known as ‘root

access’) within Android’s subsystem[2]. Therefore, Android root

exploit attack can expose a serious threat to privacy and security of the

mobile user. In terms of mobile root exploits, an attacker inserts

malicious codes into mobile application, which can collect and steal

sensitive data from the user’s mobile device, for example, SMS

messages, contacts list and public key certificate for banking[3]. To

prevent from spreading those malicious applications, it is necessary to

examine a mobile root exploit running on Android-based mobile

device and analyze their characteristics. Based on the analysis, this

study is expected to provide effective countermeasures against the

malicious rooting attack on android-based mobile device.

Firstly, this study investigates existing malicious applications

running on a commercial mobile device to understand how it operates

internally. Since Android malware using a exploit

RageAgainstTheCage exploit[4] was discovered, GinerBreak

1
 Corresponding Author: Hyung-Woo Lee is with the School of Computer Engineering, Hanshin Univ.,

411, Yangsan-dong, Osan, Gyeonggi Province, 447-791, Rep. of Korea. (e-mail: hwlee@hs.ac.kr). This

research was supported by Basic Science Research Program through the National Research Foundation

of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant #

2012R1A1A2004573)

exploit[5] based on GingerBread API has been analyzed and evolved

into more advanced malicious root exploit module, named

GingerMaster[6]. If applications infected by mobile root exploit

module are installed and executed, private data stored in a mobile

device can be leaked to remote attacker without user's

awareness[7,8,9,10].

Security-related vulnerabilities were scrutinized on mobile devices

against malicious application as a related works[11,12,13]. Especially,

malicious application was implemented using the experimental exploit

in [12]. It was demonstrated that the experimental malicious

application could actually steal private data, particularly the user’s

public key certificate from inside of smartphone by mobile root

exploit[14]. To cope with the security problem like this, our idea is the

use of system event monitoring by kernel daemon. Daemon is created

and installed on mobile device to collect events activated by system

kernel while it runs in background. Event log consists of normal

events as well as attack-type events[15]. Therefore, we propose a

proactive countermeasure method against security-related

vulnerability by collecting and extracting system events caused by

mobile root exploit attacks done by malicious application.

This paper is organized as follows. Chapter 2 analyses the rooting

process performed in Android platform mobile device and takes a look

at an application that threatens the mobile device security by rooting

attack. Chapter 3 investigates how the security information like private

data and banking data are stolen by malicious application which is

specially developed for experimental purpose. Chapter 4 presents

experiment results obtained by running daemon process that is

designed to gather system events coming from mobile device and cope

with malicious attacks based on mobile root exploits.

II. ANALYSIS OF MOBILE EXPLOIT ATTACK

Android is an operating system based on Linux kernel. In Linux,

root account has the highest level of authorization over the system,

that is, root user can access all the files and programs inside the

system. Rooting is a process that allows the users to gain root

privileges over the Android system. To gain insight into attack

mechanism for a currently used mobile device, this study analyses a

rooting attack based on exploit discovered earlier. In addition, the

study examines an internal structure of malicious application that

appeared on the Android market more recently. Based on the analysis,

this paper suggests security vulnerabilities of mobile terminals. Before

progressing further, it would be useful to take a look at the rooting

process performed by its own user without harmful intent.

A. Active Rooting Mechanism for Smart Mobile Device

Generally, the user is not allowed to attain root privilege over

Android-platform mobile device since Android is an operating system

based on Linux. However, after rooting an Android based mobile

terminal, the users can do anything they want, for example, they can

add and edit new fonts, improve system performance and modify the

user interface as they want. Therefore, active rooting is performed

mailto:you86400@hanmail.net
mailto:bindon@hanmir.com
mailto:hwlee@hs.ac.kr
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Glitch
http://en.wikipedia.org/wiki/Vulnerability_(computer_science)
mailto:hwlee@hs.ac.kr

with the goal of overcoming limitations that hardware manufactures

pus on mobile devices, resulting in the ability to alter or replace

system applications and settings by running specialized root exploit

application[3].

There are a number of root exploit programs that allow users to

acquire the root privilege over their own mobile device, such as

SuperOneClick[16], Universal Androot[17], Z4root[18] and Odin[19]

etc. These are good purpose rooting programs that help user gain

admin privilege. For example, SuperOneClick, run on environment

over ‘Microsoft .NET Framework 2.0’ or greater version, supports

rooting and un-rooting for almost all of mobile devices. When rooting

or un-rooting is carried out, the mobile device needs to be connected

to PC.

The steps to install SuperOneClick and root the mobile device are

as follows. First, connect an android device to PC via USB, and run

the program. Second, click ‘Root’ button and then reboot the device.

After rebooting, the user can see ‘Superuser’ application that has been

installed. Finally, if the user runs ‘Superuser’ program, the user gets

root access. Other programs also can be executed similarly with this

one.

When it comes to Samsung Galaxy Tab 10.1, rooting can be done

in a passive way due to the change of internal system structure of

device. By pressing volume down button and power button together,

galaxy tab goes to recovery mode. After it enters recovery mode, start

to execute exploit file for Galaxy Tab 10.1. Once exploit file runs,

subsequent process would be same as mentioned above. Superuser

application will be installed on the device. Once installed, the user is

able to confirm whether rooting is successfully completed, via adb

shell.

Fig. 1. Exploit Execution and Confirmation in Galaxy Tab 10.1

To root Galaxy Note I, ‘Tegrak Kernel’[20] is required to be

installed. If users install Tegrak Kernel over the existing system, they

can modify an internal system and install additional modules on it

without affecting system files and functionalities of legal version of

firmware. In order to install Tegrak Kernel, Samsung integrated USB

driver must be installed first. Once Tegrk Kernel is installed, software

Odin needs to be installed with maintaining connection between PC

and Galaxy Note I. Odin is a program that enables the user to change

system firmware. It is time to check version and build number of the

device. Based on the version and build number, corresponding version

of Tegrak Kernel needs to be installed using Odin. Kernel will be

upgraded for Galaxy Note I through Odin as shown in fig. 2.

More specific steps are as follows. First step is to create

Tegrak/update/ folder in sdcard of device. Second step is to copy

Tegrak-kernel-Build*.zip file to the folder, and to execute it. After

running Odin, the user needs to select Tegrak-kernel-

Build*.recovery.tar in PDA in a tab that says ‘PDA’ and run it. Now

the device goes to recovery mode. In recovery mode, the user can see

Tegrak kernel rooting module installed on sdcard as shown in fig.3.

This Tegrak kernel enables the user to root and un-root. It also

provides the function to overclock processor inside the device for

enhancing system performance.

Fig. 2. Check Rebooting in mobile device

Fig. 3. Steps how to root using Tegrak Kernel in mobile device

B. Passive Rooting Mechanism for Smart Mobile Device

As mentioned in previous section, the role of rooting module is to

allow users to root their own device. However, if the rooting module is

misused, it can be harmful attacking tool. When a malicious attacker

inserts it into mobile application, it can steal important private data

from the mobile terminal. RageAgainstTheCage exploit[4] is one of

well-known rooting codes used for this purpose. It can be embedded

into malicious mobile application using C language based NDK

module. If a malicious application containing RageAgainstTheCage

exploit is installed and executed, it would copy malicious code to

internal Android mobile device. That malicious code file is a binary

executable file that had been produced by cross compiling. Once the

malicious code is successfully copied, it makes a change to access

permission of specific folder using chmod command. Subsequently, it

invokes lots of processes by calling fork() over 400 times in Linux

shell. At last, buffer will be overflown in Linux kernel. If Android

based system kernel is not possible to run any process due to buffer

overflow, Linux shell will be forced to terminate. At this moment, if

malicious code gets access to shell, it can obtain root permission to

access for kernel. Android 2.3 known as GingerBread has been

updated to fix this security vulnerability problem caused by

RageAgainstTheCage mechanism. However, new type of mobile root

exploit named GingerBreak appeared targeting Android 2.3

GingerBread.

GingerBreak exploit[5] gains admin access permission after

message hooking handled by ‘init’ process on Linux shell.

GingerBreak exploit includes su file that has been modified from

original one. If the su file is copied to system folder, the mobile

terminal is considered to be rooted permanently. There are two types

of rooting: temporary and permanent type of rooting. If device is

temporarily rooted, system state will be recovered back as normal un-

rooted state after rebooting without need of separate recovery steps.

On the contrary, permanently rooted device can be recovered back

only through separate un-rooting process. As of GingerBreak, it roots

the device permanently.

In terms of rooting process itself, GingerMaster exploit[6] is very

similar to GingerBreak. However, it is known that GingerMaster

steals much more information than GingerBreak. GingerMaster

exploit takes advantage of the most recent root exploit against Android

2.3. And it was identified on August 2011 for the first time by

evolution of existing DroidKungFu mobile application, which is

repackaged into legitimate ones. Working mechanism and structure of

GingerMaster is considered to be similar to that of GingerBreak.

GingerMaster is one of extremely powerful malwares for Android 2.3

since it is not detected by existing virus scan tools. GingerMaster is

concealed behind the general application. It is then installed and

silently launches a service in a background. While the malicious

service runs, it collects user’s private data stored in mobile terminal

and transmits the data to specific external server. More specifically,

GingerMaster exploit can bury itself inside the device in a form of

regular file named gbfm.png. In the meanwhile, it actually gains root

privilege over the device. After getting root privilege, GingerMaster

lets the mobile terminal connect to a remote C&C server, and silently

download and install the malicious application without user’s

awareness. The malware installed through this process, will silently

transfer internal information to outside.

Upon completion of rooting described earlier, the user is able to

modify a basic system structure. In addition, the user can move key

pad position and edit/delete/update applications installed in device as

the user please.

On the other hand, rooted device is exposed to serious risk relating

to security vulnerabilities like leakage of sensitive information, for

example, contacts list, SMS messages contained in inbox and outbox,

and web site accessing history etc. There are a number of malicious

applications containing exploit to attack mobile terminal. In next

section, we are going to take a look at those malwares.

C. Malicious Application on Smart Mobile Device

Various types of malicious apps targeting Android device have

been seen and reported. Among them, several renowned types of

malwares will be described here. First one is DroidOS/Spitmo(SpyEye

attack)[21]. Malicious mobile exploit codes are hidden behind internet

banking applications. If the user downloads the banking app, it leads

to installing malware on mobile terminal. Once installation completes,

the user is instructed to call a specific number, which charges user’s

phone bill with huge costs. If malicious codes are activated, Trojan

horse will be installed on the system. Trojan horse can steal SMS

related data and send those data to C&C server as attacker specified.

When a user browses to the targeted bank a message is injected

presenting a ‘new’ mandatory security measure, enforced by the bank,

in order to use its online banking service. The initiative pretends to be

an Android application that protects the phone’s SMS messages from

being intercepted and will protect the user against fraud. Once the user

clicks on ‘set the application’, they are given further instructions to

walk them though downloading and installing the application.

To complete the installation, the user is instructed to dial the

number ‘325000’; the call is intercepted by the Android malware and

an ‘alleged’ activation code is presented, to be submitted later in to the

‘bank’s site’. Besides concealing the true nature of the application, this

"activation code" does not serve any legitimate purpose. Once the

Trojan has successfully installed, all incoming SMS messages will be

intercepted and transferred to the attacker’s Command and Control

server (C&C). A code snippet is run when an SMS is received,

creating a string, which will later be appended as a query string to a

GET HTTP request, to be sent to the attacker's drop zone[21].

Fig. 4. DroidOS/Spitmo Trojan Horse(SpyEye)

Second, DroidDeluxe[22] is a malware that includes malicious

code to acquire root privilege over the system. While it runs, it collects

mobile device related information such as manufacturer name, model

name, and device information, and then transmits the information to

specific google account (UA-19670793-1). DroidDeluxe packages the

RageAgainstTheCage/Zimperlich root exploit in an executable named

password. When it runs, it will start the exploitation process in the

background without user's awareness (to obtain the root privilege). If

successful, it will then launch another embedded executable named

special. This special program essentially changes the file mode of

account-related files in the phone and makes them world-readable and

world-writable. Once malicious app is executed, it makes a change to

access mode of files that hold private information. The reason why it

changes access mode of that file, it aims to get read/write-enabling

permission for that file. As a result, important personal information

might be stolen to outside.

Fig. 5. DroidDeluxe Malicious Application

Third, BaseBridge[23] exploits security weakness existing in older

version of Android 2.3. BaseBridge exploit can be easily embedded

into other legitimate apps. When an infected app is installed, the

malware will ask users to upgrade it. If users choose to do so, it will

install itself on another area of the phone with the name

“com.android.battery”. After the installation, a new prompt will ask

the user to restart the app in order to run it. Once the app is restarted,

the malware is activated. While app is executed, it connects to the

remote server and sends IMSI(international mobile subscriber

identity) and OS configuration information. Additionally, it silently

transmits information associated with SMS. It also can erase the

specific SMS message.

Finally, CruiseWind is an app that includes malicious code to

relay the SMS[24]. FlashServer is forced to be installed on the system,

which lets the system connect to the remote server. After connection is

established, the FlashServer downloads XML file and keeps on

sending a series of messages to a specific number as encoded in the

file, which incurs considerable costs for phone bill. Moreover, the app

can automatically delete message sent by malicious application to

prevent from awareness. Besides from these apps, wide variety types

of malwares exist by attacker using shell code such as SimpleEpo,

Hexbot and BullMoose etc. SimpleEpo is a kind of Trojan app. Hexbot

is capable of automatic insertion of java script containing malicious

code into HTML file, which is provided by normal webserver.

BullMoose with similar attacking pattern to Hexbot, is a mutated form

of Hexbot. Following chapter describes detailed function and working

process of the malicious app more specifically.

III. ANALYSIS OF MALICIOUS MOBILE APPLICATION

To gain insight into security-related vulnerability existing in

mobile device, this paper developed experimental-purpose malicious

app that steals private and banking information via rooting method.

The malicious app was implemented, targeting most of the Android-

platform mobile terminal.

A. Generate a GingerMaster-like Exploit : BinBreak

In this study, the malicious app was developed using a

GingerMaster-like exploit(named it as a BinBreak). It collects private

information stored in mobile device and sent to remote server. This

study analyses security vulnerability for mobile terminal using

experiment application.

As of GingerMaster-like exploit, once installed and executed, the

application gains root access from kernel. Subsequently, it compresses

a folder including public key certificate with compression tool named

tar and then sends the compressed data to remote server. Furthermore,

it stores contacts list and web accessing history in a SQLite format and

sends them to remote server as well. Finally, it automatically starts

recording and sends recorded file to remote server, if the device

receives specific contents of SMS message.

Fig. 6. Flow of BinBreak Exploit

Rooting process of GingerMaster-like BinBreak exploit is

performed by spoofing NetLinkMessage via Volume Daemon running

on Linux kernel in Android. When rooting process begins, firstly

BinBreak searches and finds out PID of Volume Daemon. It can be

accomplished by looking for each file named /proc/<PID>/cmdline,

where PID means currently running processes’ PID. Currently running

process can be known from /proc/net/netlink file. Once identifying

Volume Daemon’s PID, malware retrieves device-related information

from /etc/vold.fstable that is a file system table of Volume Daemon.

With use of Volume Daemon’s PID, socket connection is established.

Finally, it sends specific message through the connection and gains

root privilege.

B. Experimental-purpose Malicious App. : Andoku

In this study, malicious application named Andoku was developed

using a BinBreak exploit for experimental purpose. It is designed to

analyze security vulnerability of mobile device. Andoku application

performs rooting process in conjunction with Tegrak kernel. In

addition to this, Andoku has a functionality to check whether any

internal data is leaked or not. For this purpose, Andoku is an

application evolved from Sudoku which is one of popular games. If a

user clicks ‘Resume Game’ button, a BinBreak exploit hidden behind

Andoku application will be secretly executed as shown in fig. 7.

Fig. 7. Malware Andoku concealing BinBreak exploit

If a user installs and runs Andoku on his/her Android platform

mobile device, a BinBreak module is invoked without user’s

awareness and it takes away root privilege over the system. Once

gaining root privilege, malware steals private information such as

contacts list, SMS messages and Internet accessing history.

Furthermore, worse thing might happen when the user utilizes online

banking service via mobile device. Banking confidential information

like public key certificate will be compressed and sent to the remote

server as specified by attacker. Fig.8 shows how Andoku collects,

compresses private information and sends it to the external server,

when Andoku runs.

Fig. 8. Private Information Compressing and Sending Module in Andoku

To compress data more efficiently, an additional class named

ZipCompress has been developed as shown in fig. 9.

Fig. 9. Implementation of ZipCompress Class for Andoku

C. Private Information Leakage through Experimental Andoku

Malware

Once Andoku is running, it can be observed that ZipCompress

sends private information stored in device to outside. It is also eye

witnessed that other information stored in SQLite is transferred to

remote server.

Fig. 10. Check the information transferred from user's device to remote

server

Database is used to store and maintain various information such as

names, phone numbers and web accessing histories generated while

the user is using device. Therefore, important information including

internet accessing history and contacts list are sent to external server

without user’s awareness if Andoku is executed. Andoku also has a

function to send information about package currently running on the

device.

Fig. 11. Contacts list sent by Andoku

Another experiment was performed like this. If an application

running on the mobile device was clicked, contacts list and web server

accessing histories were sent to the remote server secretly, as shown in

fig.12.

Fig. 12. Contacts list and Web Accessing Records sent by Andoku

Finally, it is eye witnessed that user’s public key certificate was

compressed and sent by Andoku to remote server. Data stored in

SQLite DB also was transferred to outside.

Fig. 13. Public Key Certificate Leakage and SQLite Table

From the experiments described above, it is clearly verified that

Android platform mobile device has security vulnerabilities in case

that it installs malicious app, which permits to secretly run exploit,

attain root privilege illegally and transmit internal data to remote

server outside. Therefore, it is required to study about proactive

countermeasures against this rooting attack.

IV. ROOT EXPLOIT DETECTION AND RESPONSE SYSTEM

We propose countermeasures against mobile root attacks by

analyzing malicious application’s event activity caused by root

exploits. The idea is to invoke monitoring daemon process at Android

kernel in background. The purpose of daemon is to keep on

monitoring services and processes running on the device and to

investigate events collected and extracted from the system. To meet

this goal, this study proposes internal structure of daemon process that

is designed to extract events occurring from system. Next, this paper

presents an implementation result on the proposed system. This study

named the proposed application by ‘PrintDaemon’ and suggested the

effective way how to monitor events generated by malicious

application and how to actively cope with this attacks.

A. System Event Extraction from Android Device

Daemon process in Android platform keeps running at kernel as

background process as long as OS is up and running, since Android is

an Linux based OS. Various daemons are widely used such as nntpd

which is a daemon to deliver news to USENET, fingerd which is a

daemon to display current login user information, httpd which is a web

server for Linux, and bootpd which is a daemon to support being boot

server.

There are many kinds of daemons. Before daemon starts, parent

process is created first. Parent process invokes daemon as a child

process and then parent dies. The child process invoked by parent

creates new session and get a control as a leader. The child process,

daemon is looping forever and doing its own work without

termination.

To build daemon process, cross compile is required. Cross

compile is a process of creating a target code that is generated in one

computer and run in another one through the way of using compiler to

cross compile a program. Cross compiler is good solution in an

environment where host system and target system is incompatible with

each other. More specifically speaking, our daemon is developed with

NDK. By cross compiling, it can be applied to ARM processor.

For doing this, the first thing to do is install cross compiler using

Sourcery G++ Lite for ARM to set a build platform to be GNU/Linux.

A build platform means an environment where the compiler is actually

compiled. In this environment, daemon.c is created and compiled by

cross compiler. If compiling completes, background.png will be

generated, which needs to be inserted into the folder of Android-based

mobile device. Last thing to do is to change access mode of the file

and run it. It is seen that new daemon process is added to kernel and is

being executed in Android based device. With help of the daemon

process, it is possible to collect and investigate information relating to

services and processes performed in mobile device, which can help us

detect anomalies that might happen in mobile device.

B. System Event Extracting and Logging System

The daemon process designed and implemented in this study

enables the user to verify and retrieve services and processes running

on inside of kernel in Android-based mobile device. If PrintDaemon

application is executed, it invokes event monitoring daemon at kernel

and the application is running in background. The background running

application transfers event information to DB server in a log format

whenever event occurs. DB server is implemented to collect and store

the event data that comes from multiple devices. Those events

information collected from the mobile device are used to detect any

suspected event due to rooting attack.

Fig. 14. Structure of PrintDaemon Application

PrintDaemon application was developed in Eclipse developing

environment. The project implementing PrintDaemon is mainly

composed of several folders and files as follows: (1) src folder

containing Java source files, (2) gen folder containing R.java that

holds mapping information between resource file and memory address,

(3) assets folder storing resource files such as library files, binary files,

and Android SDK, (4) res folder which stores image/layout/string, and

(5) AndroidManifest.xml file that defines Activity/Service/Permission

etc.

Fig. 15. Structure of PrintDaemon Android Project and Screen Display when

running

While PrintDaemon is being executed, daemon process collects

event data occurring in mobile device. The application also has

functionality to retrieve data with user, PID, PPID, and name. Server

and client are implemented as thread so that they can be operated on

higher version of Android. If the user clicks Send DB button, the

application sends current process related information to DB server,

thus we can check the information. DB server is designed to retrieve

and check the event for each mobile device. The information relating

to event can also be retrieved with PID and PPID.

Fig. 16. Process Information Send

If toggle button is clicked, data transfer function to DB is activated.

In this case, process information will be continuously transferred to

DB server even if the application is terminated. When the application

starts again, button status will be changed from on to off depending on

whether the application is executed or not. Event monitoring

application is implemented to display information on the main screen

in the sequence of user, PID, PPID and Name. The information is

stored in MySQL DB in the sequence of user, PID, PPID, USIZE,

RSS, WCHAN, PC, and Name. In terms of data extraction, event data

coming from malware will be extracted with user, PID, PPID and

name.

Fig. 17. Process Information Send Search

C. Rooting Attak Event Detection

It has been demonstrated that the daemon proposed in this study is

designed and implemented to check event data by monitoring events

in background. PrintDaemon application invokes daemon process that

collects and checks log data generated by main processes in the

system. Furthermore, log data can be sorted by choosing user, PID,

PPID and name. Those functionalities are useful to extract and collect

suspected events that might be generated by malicious app like

BinBreak-based Andoku and various kinds of malwares masquerading

as normal app. In case of using daemon based rooting attack event

monitoring method, it is possible to implement the system to detect

abnormal symptom that might be caused by rooting attack in the

mobile device.

We gathered and compared the patterns of internal system event

activated from mobile device. We can view the difference on the

system event pattern as Fig. 18. In case of malicious application such

as Andoku, we can see that more processes and events are activated

from the malicious root exploit. Therefore it is possible for us to

distinguish between the characteristics of root exploit and normal

application. Fig.19 presents the screen in which rooting attack is

successfully detected using data collected in DB server.

Fig. 18. System Event Pattern Comparison

(Normal & Malicious App.)

Fig. 19. Detection Result Screen for rooting attack to mobile terminal

V. CONCLUSION

We described various types of attacks to Android-based mobile

devices with malicious mobile root exploit applications. Based on that,

this study also proposed countermeasures to cope with it. First, root

exploit attacks were investigated. Primary goal of rooting attack is to

obtain root privilege illegally. Second, security vulnerability for

mobile device was explored using exploit-infected malicious

application specially developed for illegal purpose. It was observed

that private information and banking data including public key

certificate was successfully stolen by running malicious application in

the mobile device. Third, countermeasure system was proposed.

Proposed system mainly consists of two components: (1) proposed

system keeps on monitoring while it runs on Android-based Linux

kernel and (2) as a proposed system was operating in conjunction with

the monitoring daemon, it collects information generated by

processors and services running on mobile device. Moreover, it was

designed to determine whether the mobile device is infected with

malicious app or not. The proposed method utilizing event extracting

daemon enables the user to detect whether mobile device is attacked

by malicious code with exploit. To detect attacks much faster, future

work will be carried out focusing on correlation analysis on event

information generated by multiple devices.

ACKNOWLEDGMENT

This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant #
2012R1A1A2004573)

REFERENCES

[1] Exploit, http://en.wikipedia.org/wiki/Exploit_(computer_security)

[2] Android rooting, http://en.wikipedia.org/wiki/Android_rooting

[3] Rooting – is it for me? Some Q&A, http://www.androidcentral.com/rooting-it-me-

some-qa

[4] Android Root Source Code: Looking at the C-Skills,

http://intrepidusgroup.com/insight/2010/09/android-root-source-code-looking-at-the-

c-skills/

[5] Egzthunder1, Root your Gingerbread Device With Gingerbreak, April 21, 2011,

from http://www.xda-developers.com/android/ root-your-gingerbread-device-with-

gingerbreak/

[6] GingerMaster: First Android Malware Utilizing a Root Exploit on Android 2.3,

http://www.csc.ncsu.edu/faculty/jiang/GingerMaster/

[7] Android Developer Web Site, “Android.com. (2009, December 16). What is

android?”, Android Developer http://developer.android.com/guide/basics/what-is-

android.html, 2009. 12

[8] Jill Duffy, "A Concise Guide to Android Rooting", pcmag

http://www.pcmag.com/article2/0,2817,2393273,00.asp, 2011. 9

[9] Harron Q. Raja, "How to Root Your Android Phone/Device?",

http://www.addictivetips.com/mobile/how-to-root-your-android-phone-device/, 2011.

1

[10] Derek Scott, "Rooting for Dummies : A Begineer's Guide to Rooting Your

Android Device",(http://www.androidauthority.com/rooting-for-dummies-a-

beginners-guide-to-root-your-android-phone-or-tablet-10915/), 2011. 3

[11] William Ench, “Defending users against smartphone apps: techniques and future

irections,” Proceedings of the 7th International Conference on Informatin Systems

Security (ICISS’11), Vol.7, No.1, pp.47-70, Springer-Verlag, 2011.

[12] Iker Burquera, Urko Zurutuza, Simin Nadjm-Tehrani, “Crowdroid: Behavior-based

Malware Detection System for Android,” Proceedings of the 1st ACM workshop on

Security and Privacy in Smartphone and Mobile Devices (SPSM’11), Vol.1, No.1,

pp.15-26, 2011..

[13] Alexandre Bartel, Jacques Klein, Yves Le Traon, Martin Monperrus,

“Automatically Securing Permission-Based Software by Reducing the Attack

Surface: An Application to Android,”Technical Report, University of Luxembourg,

SNT, 2011.

[14] Won-Jun Jang, Sik-Whan Cho, Hyung-Woo Lee, Hong-il Ju, Jeong-Nyeo Kim,

“ Rooting attack detection method on the Android-based smart phone, ”

International Conference on Computer Science and Network Technology

(ICCSNT2011), Vol.1, No.1, pp.477-481, 2011.

[15] Event monitoring, Wikipedia, http://en.wikipedia.org/wiki/Event_monitoring

[16] SuperOneClick v2.3.3, http://forum.xda-

developers.com/showthread.php?t=803682

[17] UniversalAndroot, http://lifehacker.com/5642797/universal-androot-roots-most-

android-phones-no-pc-or-hacking-required

[18] Z4root, http://forum.xda-developers.com/showthread.php?t=833953

[19] Odin, http://forum.xda-developers.com/showthread.php?t=1738841

[20] Tegrak Kernel, http://tegrak2x.blogspot.kr

[21] First SpyEye Attack on Android Mobile Platform now in the Wild

DroidOS/Spitmo attack is vurtually undetectable, http://www.mag-

securs.com/Alertes/tabid/63/articleType/ArticleView/articleId/28778/First-SpyEye-

Attack-on-Android-Mobile-Platform-now-in-the-Wild-DriodOS-Spitmo-attack-is-

virtually-undetectable.aspx

[22] Security Alert: New Root-Capable DroidDeluxe Malware Found in Alternative

Android Markets, http://www.csc.ncsu.edu/faculty/jiang/DroidDeluxe/

[23] BaseBridge: new Android malware has been busy,

http://www.ubergizmo.com/2011/05/basebridge-new-android-malware/

[24] Mobile threat report Q4 2011, F-Secure, http://www.slideshare.net/fsecure/mobile-

threat-report-q4-2011, 2011

http://en.wikipedia.org/wiki/Event_monitoring
http://forum.xda-developers.com/showthread.php?t=803682
http://forum.xda-developers.com/showthread.php?t=803682
http://lifehacker.com/5642797/universal-androot-roots-most-android-phones-no-pc-or-hacking-required
http://lifehacker.com/5642797/universal-androot-roots-most-android-phones-no-pc-or-hacking-required
http://forum.xda-developers.com/showthread.php?t=833953
http://forum.xda-developers.com/showthread.php?t=1738841
http://tegrak2x.blogspot.kr/
http://www.mag-securs.com/Alertes/tabid/63/articleType/ArticleView/articleId/28778/First-SpyEye-Attack-on-Android-Mobile-Platform-now-in-the-Wild-DriodOS-Spitmo-attack-is-virtually-undetectable.aspx
http://www.mag-securs.com/Alertes/tabid/63/articleType/ArticleView/articleId/28778/First-SpyEye-Attack-on-Android-Mobile-Platform-now-in-the-Wild-DriodOS-Spitmo-attack-is-virtually-undetectable.aspx
http://www.mag-securs.com/Alertes/tabid/63/articleType/ArticleView/articleId/28778/First-SpyEye-Attack-on-Android-Mobile-Platform-now-in-the-Wild-DriodOS-Spitmo-attack-is-virtually-undetectable.aspx
http://www.mag-securs.com/Alertes/tabid/63/articleType/ArticleView/articleId/28778/First-SpyEye-Attack-on-Android-Mobile-Platform-now-in-the-Wild-DriodOS-Spitmo-attack-is-virtually-undetectable.aspx
http://www.csc.ncsu.edu/faculty/jiang/DroidDeluxe/
http://www.ubergizmo.com/2011/05/basebridge-new-android-malware/
http://www.slideshare.net/fsecure/mobile-threat-report-q4-2011
http://www.slideshare.net/fsecure/mobile-threat-report-q4-2011

