
Fully Automatic Parallel Programming 
 

Bryant Nelson and Nelson Rushton(contact author) 

(bryant.nelson | nelson.rushton) @ ttu.edu 

Dept. of Computer Science, Texas Tech University 

Box 43104 Lubbock, TX 79409-3104 

 

 

Abstract - SequenceL is a small, statically typed, purely 

functional programming language, whose semantics enable 

compilation to parallel executables from function definitions.  

This paper reports the results of experiments on the 

performance of parallel programs automatically generated 

by the SequenceL compiler. In particular we examine the 

parallel speedups obtained in running SequenceL programs 

on multicore hardware. 

Keywords: SequenceL, Functional Programming, Parallel 

Programming  

 

1 SequenceL 

  SequenceL is a simple, general purpose, purely 

functional programming language [Cooke et.al. 2008]. By 

simple, we mean that the entire syntax and semantics of the 

language can be described in about 20 pages, including 

examples. By general purpose, we mean the language is not 

specific to any domain; and by purely functional we mean 

that SequenceL programs consist of equations defining 

functions, without any I/O or assignment. To be part of a 

working executable program, SequenceL programs are 

compiled to C++ and linked with so-called “driver code” that 

orchestrates I/O operations. 

 

 The original aim of SequenceL was to give programmers 

a way to describe computations in terms of the relation 

between input and output data, without direct reference to a 

particular procedure for obtaining them [Cooke et. al. 2009]. 

On its surface, this sounds like the aim of functional 

languages in general, but in reality 

almost all functional languages act as 

shorthand for known procedures. For 

example,  the author of a Haskell or 

Lisp program does not necessarily have 

to think about how his program will be 

executed (say, left to right lazy 

evaluation, or left to right eager 

evaluation, respectively), but if he does 

think about it, he may know exactly 

how it will execute because the 

language semantics make guarantees 

about the order. The semantics of SequenceL make no such 

guarantees. 

 

 Because SequenceL makes no guarantees about the order 

of evaluation, it is not possible for a SequenceL programmer 

to optimize their code in a compiler-independent way. On the 

other hand, this means the compiler may perform 

optimizations in ways that are not constrained as in other 

languages. In particular, since the language makes no 

guarantees about the order of evaluation, evaluations may be 

done in parallel. SequenceL’s Normalize-Transpose semantic 

(see Section 2) is particularly amenable to parallelisms being 

automatically discovered and exploited by the compiler. This 

automated parallelism was first pointed out in 

[Cooke/Andersen 2000], and implemented as a prototype 

with encouraging results reported by Nemanich [Nemanich 

et. al. 2010]. In 2009 the patent on SequenceL’s semantics 

was licensed to Texas Multicore Technologies (TMT), who 

have since been engaged in commercial scale development of 

the compiler. 

 

2 Parallelizations by SequenceL 

2.1 Normalize-Transpose 

 The parameters of a SequenceL function are explicitly 

typed according to their depth. Depth can be thought of as the 

dimensionality of an expression. For example, scalars have 

depth 0, lists have depth 1, matrices have depth 2, etc. One 

way in which SequenceL alleviates the need for iterative or 

recursive algorithms is with Normalize-Transpose (NT). NT 

is a method of function application that applies some 

operation on every element in a list. A function defined on 

 

Figure 1: NT Illustration 

 



arguments of depth D can be applied to a list of arguments of 

depth D. The result is the function applied element-wise. 

 For example, since the scalar addition function (+) is 

declared with scalars (depth 0) for both arguments, the 

expression [10,20,30] + 1, where the first argument is a list, 

triggers an NT and has a value of [11,21,31]. Similarly 

because of NT, the value of the SequenceL expression 

[10,20,30] + [1,2,3] is [11,22,33]. The NT semantic is one 

device that allows SequenceL to automatically extract 

parallelizations. It can be proven that the parallelisms 

generated are free of race conditions and other parallel 

anomalies. 

 

2.2 Indexed Functions 

Another way SequenceL avoids the use of recursion is 

through a construct called indexed functions. Using indexed 

functions a programmer can specify a nonscalar data 

structure element-wise, a function of the parameters of the 

function. This is very similar to the way vector and matrix 

valued functions are often defined in informal mathematics. 

Take for example the Identity function defined below -- 

where for each nonnegative integer N, Identity(N) is the NxN 

identity matrix: 

 

Figure 2: Identity Matrix as Indexed Function 

 

2.3 Consume-Simplify-Produce 

The third source of automatic parallelizations in 

SequenceL is that parameters of a function call may be 

evaluated in parallel. This is known as Consume-Simplify-

Produce, or CSP.  

When SequenceL is compiled to C++ CSPs, indexed 

functions, and NTs are compiled into highly parallel 

programs, capable of running on an arbitrary number of 

processor cores. The number of cores can be specified at 

runtime. 

3 Heat Map and its Explanation 

A set of benchmarks informally known as a heat map is 

periodically run to test the performance of compiled 

SequenceL. The heat map problems have been chosen 

essentially at random from modules that have been written 

for commercial TMT customers over the past three years. 

Tables 1 and 2 list all of the heat map problems that are at 

least 70 lines of SequenceL code. The cut-off at 70 lines of 

code was chosen to represent problems that cannot be 

trivially parallelized by hand. 

 

The problems in Table 1 (LU factorization, 2D Fourier 

Transform, and the Barnes-Hut N-body problem) have well 

known specifications and can be considered repeatable 

experiments, which can be used for performance comparison 

between SequenceL and other methods including by-hand 

parallelization. The problems in Table 2 (Semblance, 

Compare Predicates, Speech Filter, and WirelessHART) are 

not repeatable in the sense that they contain algorithms 

proprietary to TMT customers. They are listed here as 

anecdotal observations. 

 

The heat map reports the average run time over 10 

executions of several different programs and compares the 

performance of the SequenceL on 1, 2, 4, 8, 12, 16, 20 and 

24 cores. The following table shows the average run times 

over 10 executions when run on a Centos 6.3 machine with 

16GB of memory, and a 1333MHz / E5-2620, running at 2.0 

GHz. 

 

Figure 3: CSP Illustration 



 

Table 1: Standard Algorithms 

Cores LU 

Factorization 

2D Fourier 

Transform 

Barnes-Hut N-Body 

1 12.426 2.690 29.850 

2 6.335 1.347 15.976 

4 4.130 0.674 8.830 

8 2.973 0.338 4.765 

16 2.494 0.245 3.483 

12 2.400 0.218 3.297 

20 2.425 0.215 3.174 

24 2.511 0.203 3.007 

 

Table 2: Proprietary Algorithms 

Cores Semblance Compare 

Predicates 

Speech 

Filter 

WirelessHART 

1 20.993 3.341 108.742 21.996 

2 11.335 2.167 54.364 18.000 

4 5.962 1.129 29.324 14.668 

8 4.038 0.654 20.021 13.194 

12 3.100 0.593 14.353 12.993 

16 2.542 0.608 16.185 13.196 

20 2.902 0.607 11.142 13.484 

24 3.371 0.559 9.979 13.770 

 

 

4 Conclusions and Future Work 

The SequenceL compiler generated parallel algorithms 

automatically, without human intervention between the 

functional description of the solution and the parallel 

executable. Parallel speedups were obtained in every case. In 

most cases the speedups continued nearly linearly up to 

around 8 cores. Above 8 cores, performance either increased 

slightly or decreased slightly as more cores were added, with 

the exception of speech filter in which substantial speedups 

were obtained up to 24 cores. 

 

This “core ceiling” phenomenon for linear speedups is not 

unexpected in general, since any parallel program running on 

a physical machine will eventually reach such a threshold due 

both to communication overhead and to the theoretical limits 

of parallelization for the algorithm. The fact that the 

threshold (of 8 cores) was consistent across problems 

indicates that in this case the ceiling may have been hardware 

dependent. This is especially plausible here, because the 

machine used in this experiment has only 12 distinct physical 

processors, with up to 24 simulated through hyper-threading. 

 

In our experience this performance is competitive with the 

performance of hand coded parallel algorithms -- though of 

course the reader with similar or greater experience may 

draw their own conclusions. Future work includes a 

comparison of this performance with hand coded parallel 

implementations of the same algorithms, comparison with 

the performance of hand coded sequential algorithms, and 

running the experiment on different hardware. 

 

5 References 

[Cooke/Andersen 2000] Daniel E. Cooke, Per Andersen: 

Automatic parallel control structures in SequenceL. Softw., 

Pract. Exper. 30(14): 1541-1570 (2000) 

 

[Cooke et.al. 2008] Daniel E. Cooke, J. Nelson Rushton, 

Brad Nemanich, Robert G. Watson, Per Andersen: 

Normalize, transpose, and distribute: An automatic approach 

for handling nonscalars. ACM Trans. Program. Lang. Syst. 

30(2) (2008) 

 

[Cooke et. al. 2009] Daniel E. Cooke, J. Nelson Rushton: 

Taking Parnas's Principles to the Next Level: Declarative 

Language Design. IEEE Computer 42(9): 56-63 (2009) 

 

[Nemanich et. al. 2010] Brad Nemanich, Daniel E. Cooke, J. 

Nelson Rushton: SequenceL: transparency and multi-core 

parallelisms. DAMP 2010: 45-52 

[1] 06). 


