
Actions, Objects, and Subjects

Hannu-Matti Järvinen Department of Pervasive Computing, Tampere University of Technology, Finland

Abstract— This paper proposes an action-oriented compu-
tational model to be used as the low-level implementation of
programs, hence effectively omitting processes. The benefits
of the model are that concurrent execution, mutual exclu-
sion, and synchronisation are automatically provided without
explicit programming, messages are not needed between
executing bodies, deadlocks do not exist at the action level,
and the system uses implicitly as many parallel execution
units as possible.

However, action orientation is not a natural way to think
for humans. Therefore, also subjects, which are objects
providing liveness, are introduced to make programming
sequential, but still making it easy to implement the program
as actions, hence getting the benefits listed above.

Keywords: Concurrent languages, concurrent programming, par-
allel processors

1. Introduction
Concurrent execution has become a more and more im-

portant part of software. Many systems are distributed and
processors have several cores. Traditionally, each process
computes one task, and in some cases, interacts with other
processes or threads. This interaction may take place as
common variables, causing critical sections to appear, or by
message passing, where messages carry data from process
to process. Anyway, introducing concurrency causes needs
for mutual exclusion and synchronisation mechanisms, and
creates problems like starvation and deadlock.

To overcome the problems caused by concurrency, pro-
gramming languages offer concepts like monitors, message
passing, channels, futures, or rendez-vous. However, the
basic problems, i.e., mutual exclusion and synchronisation,
still exist, and the programmers have to understand them
to cope with them. In most cases, concurrency has to be
programmed explicitly into programs, the main exception
being parallel processing in scientific computing.

The action-oriented execution model used in this paper
was independently suggested by Chandy and Misra as Unity
[2], by Back and Kurki-Suonio as Joint Actions [1], and
by Lamport as Temporal Logic of Actions (TLA) [8]. The
model makes critical sections obsolete, and hence also mu-
tual exclusion. The model also has a built-in synchronisation
mechanism. These are evident benefits if compared with
the traditional process-oriented execution model. However,
although this model has been used in several research
projects, the models have not been adopted in practical
software production. There are probably two main reasons

for that. First, humans tend to think causally and find causal
relations even if there are none [6]. Using actions is in
contradiction to this causality. Second, all these methods
are intended for specification and the real implementation
still has to be process-oriented. Since changing the program
structure from action-oriented to process-oriented is not a
trivial task and there are no tools to automatically do it, this
may consume all benefits that action orientation can offer. In
short, the action-oriented paradigms have been suggested for
high-level specification, and the implementation is assumed
to be process-oriented.

In this paper, a low-level action-oriented system is in-
troduced with high-level sequential programming bodies,
subjects. The benefits of the idea are that synchronisation and
mutual exclusion is implicitly solved by the action-oriented
model, but the programmer will still be able to describe
the system as programs where statements have the human-
expeced causal relationships.

This paper is organised as follows: First, action system
with objects are discussed, then action execution at low
level is introduced, and before brief discussion subjects are
described through an example.

2. Action-oriented execution model with
objects

In action-oriented models, actions can be considered either
state transitions from a state to another, or relations between
two states. Hence, actions do not contain any memory, but
the whole state of the computation is stored in variables.
In contrast, in process-oriented systems the state of the
computation is in the variables and program counters of the
processes or threads. The DisCo specification language uses
the same model as [1], [2], and [8], but its variables are
collected into objects [4]. The action-oriented approach is
discussed in detail by Kurki-Suonio in [7].

2.1 Concurrent Actions
Actions alter the state, but do not consume time ideally. In

TLA, an action A can be expressed as a predicate between
two states, e.g. s[[A]]t, where s and t are states. Starting
from a state s0, we can see a sequence of actions take place,
forming a behaviour. Formally, a behaviour is an infinite
sequence of states σ = s0, s1, s2, s3...

There is a non-stuttering1 action between each state of

1Stuttering actions do not alter the interesting set of variables; they can
be added anywhere. Altering the set of interesting variables, alters the set
of stuttering actions, too, and an alternative behavior is constructed.



a behaviour. If two actions access distinct sets of vari-
ables, their order can be changed without violating TLA
formulas, since TLA does not have operators next step or
previous step. Hence, behaviours σ0 = s0, s1, s2, s3, ... and
σ1 = s0, s2, s1, s3, ... are different, but there are no TLA
predicates that can distinguish these behaviours from each
other (note that if the sets of accessed variables are not
distinct, this is probably not the case, but then action guards
may prevent either behaviour).

In action-oriented models, therefore, concurrency is mod-
elled by nondeterministic selection of actions to be executed.
Further, actions accessing distinct variables can be executed
concurrently, since we can serialise them in any order. To
be precise, we can execute actions concurrently, if the sets
of assigned variables are distinct and action do not refer to
variables assigned to by other actions. Formally, if VAa

is
the set of variables assigned (and referred) to by action A,
and VAr is the set of variables referred only by action A,
then parallel execution is possible for a set of distinct actions
S, where

∀A,B ∈ S, A 6= B :

VAa
∩ VBa

= ∅ ∧ VAa
∩ VBr

= ∅ ∧ VBa
∩ VAr

= ∅ (1)

This means that even if the action models are originally
sequential, we can execute actions concurrently, provided
that (1) holds for each set of actions executed concurrently.
Since actions do consume time in real computation, this
might have other consequences as well, but they are not
discussed in this paper. When variables are collected into
objects, (1) can be used for objects instead of variables. In
some cases, this may appear as unnecessarily strict, but this
is good enough for many practical purposes.

In this paper, the action-oriented execution model is
used as the lowest mechanism in computation instead of
processes. Since the model allows concurrent execution of
distinct actions, we get a system which can use as many
parallel processing units as there are distinct actions enabled.
There are huge benefits in this idea: without the concept of
processes, programmers do not need to take care of mutual
exclusion or synchronisation, deadlocks cannot happen at
action level, and there is no need for message passing. All
execution takes place in actions that alter the contents of
objects that participate in them.

The basic components of the action-oriented execution
model are objects and actions. In this paper, we use a model
derived from DisCo [5]. Actions, objects, and their properties
in this model are briefly introduced.

2.2 Objects
An object may contain any kind of data, data structures,

containers, or combination of them. In this paper, objects are
unnamed entities that contain data; from the programmer’s
point of view they can be considered record types.

Objects are usually created by the initialisation of the sys-
tem. However, the model allows the creation and destruction
of objects and actions during execution.

2.3 Actions
An action can be considered a potential state transition

between two states determined by the objects of the system.
The action has participants (objects) that participate in the
action in roles, and two parts: a guard and a body. The guard
indicates when the action can be selected for execution, i.e.,
the action is enabled. The body contains a piece of program
code that is executed whenever the action is selected for
execution. The participants are distinct, i.e., an object may
participate in an action in one role only. In contrast to DisCo,
syntactic actions are not models that introduce a set of TLA
actions whose participants are computed in run-time, but
actions have fixed participants and parameters that are given
at the creation time.

Action guards and bodies may refer to the data of the
action participants only. Any datatype can be part of an
object. Since actions may not refer to data outside its
participants, referencing through pointers or references is
allowed only in those cases where the target data is also
either a participant of the action or part of a participant
object.

The action guards in Joint actions, Unity, TLA, and DisCo
can be divided into three parts:

1) Global part that can refer to any variable or object in
the system. The reference is possible by quantifications
or closures.

2) Common part that can refer to the contents of several
participants.

3) Local part that can refer to the contents of a single
participant only.

Although a very powerful expression, global part of the
guard is hard to implement and very inefficient if imple-
mented. They are not included in the action model of this
paper. Furthermore, action guards are syntactically separated
to local and common parts to make the implementation of
the scheduler more efficient. For example, the local part of
the guard has to be evaluated only, if the contents of the
participant are changed, and if any of local parts of the action
guard is false, there is no use to evaluate the common part.
Once evaluated, the value of the common part can be stored
for further use until the contents of an action participant is
changed.

2.4 Objects in Action-oriented Systems
In traditional object-oriented systems, classes contain both

the data and the methods that access the data. This is
illustrated on the left side of Figure 1. Whenever the values
of objects are needed or updated, corresponding method is
invoked. Method calls are indicated by arrows in Figure 1 to



Object A

Object B

Object C

� Call of method 2

� Call of method 1

� Call of method 3

Object A

Object B

Object C

Action A

��

��ZZ

ZZ

�
�
�
�
��

�
�
�
�
�
�
�
��

Action B
��

��ZZ

ZZ

A
A
A
A
A
A
AA

Fig. 1: Classes and methods (left), Classes and actions (right)

emphasise that an external caller is needed. The methods are
printed in black, since normally their contents are private.

On the right side of Figure 1, the action A (illustrated
by a large diamond) contains the calls illustrated on the left
side of the picture. Action B is another action with two
participants; it shares the first method of object C with action
A. Methods are white, since they are programmed as part
of the action. Although private implementations of methods
could be used also with actions, in any case an action has to
contain some code of its own to make the methods interact.
An action may be selected for execution if it is enabled.
Hence, an external caller is not needed and lines are used
instead of arrays to emphasise this.

3. Action Execution
This part describes the high-level idea of execution where

basic primitives are actions instead of processes. Without
going to details, there exists an experimental environment
where this model has been tested.

The system consists of a scheduling processor and n
processing units that execute the actions. These can be tra-
ditional processors. For efficiency, they should be connected
to each other by special hardware, but the experimental envi-
ronment we have is built to run on a normal multiprocessor
computer. The overall structure is illustrated in Figure 2.

The model works as follows: First, the scheduler selects a
set of enabled actions from the action store to the action
queue, remembering that actions to be selected shall be
distinct from each other and actions already in the queue
or in execution. Second, one of the processing units takes
an action description from the queue, loads the action code
and accessed objects into its local memory2, and executes the
action. Third, when the execution is finished, altered objects
are copied to the common memory, and action is returned
to the action store.

2Loading is not needed if the processors have access to the common
memory.

�
�

�
�Scheduler

Action queue
-

? ? ? ?�

�

�

�

�

�

�

�

�

�

�

�
Proc. Proc. Proc.

1 2 3 ...

�

�

�

�
Proc.
n

6

Action store

�

Fig. 2: The overall structure of action execution.

In short, synchronisation conditions are expressed by
action guards, and mutual exclusion is automatically taken
care of by the scheduler. This means that the basic primitives
for concurrent execution are handled by hardware and the
scheduler instead of the programmer, much like how the vir-
tual memory is taken care of by hardware and the operating
system instead of manual overlay by programmers. Note that
the code to be executed is not affected when processors are
added or removed.

3.1 Crossing roads
An example of crossing roads is used to show how action-

oriented approach works. Consider a crossing of two roads,
one north to south and the other west to east.

There is a lane to go forward or turn right and a separate
lane of its own to turn left, all of these for each direction.
Each lane has a corresponding traffic light, as illustrated in
Figure 3.

The lanes are named as follows: the first letter gives the
approaching direction, and second and third letters give the
destination. So, SW stands for from south to west, and SNE
from south to north and east. One possible set of pairs that
are safe to have green lights on at the same time is NSW
and SNE, WES and EWN, NE and SW, and WN and ES.
Running this sequence will eventually give all directions a
green light.

There are three classes that can be identified: a traffic light,
a lane, and a car. The car is not part of the system but an
external object. The lane is an abstraction that is connected
to traffic lights: the traffic light can be green or yellow only
if the lane is safe, i.e. all lanes crossing the lane have the
corresponding traffic light red.

The simplest class is Lane. It has to contain a variable
indicating if the lane is safe or not. Class Traf_light includes



SNE

6

-SW

�

aaa aaa

Fig. 3: Crossing with lanes SW and SNE and their signals
illustrated.

class Lane is
safe: Boolean:=false;

end;

class Traf_light is
lamp: (RED, YELLOW, GREEN):=RED;

end;

Fig. 4: Classes Lane and Traf_light.

a state variable that corresponds to the colour of the traffic
light. Classes Lane and Traf_light could be combined to one
class since they are closely connected, but this would make
the objects less intuitive. The classes are given in Figure 4.

Actions set_red, set_green, set_yellow, free_lane, and
reserve_lane are using these classes. The first four actions
have participants of the given classes only and they are
shown in Figure 5.

Action set_green puts the green light on, if the cor-
responding Lane is safe. Action participants are defined
between keywords is and body of the action. Expression after
participant name list (after the colon) is the local guard of
the participant.

Note that the connection between participants lane and
light could be expressed in the common guard using iden-
tities (e.g. lane.id=light.id), but since these relations never
change, the condition is left out, and actions are created for
only those pairs of lanes and traffic lights that are connected.

Action set_yellow is enabled, if the traffic light is green
and given time have been elapsed. It has only one participant,
green_on, indicating the time green light should be on. This
value is given when the action is created. Function timeout
returns true if given time has elapsed since last update of
the object. This requires that also the time of the update is
stored when updating an object. Action set_red is almost

action set_green is
Lane as lane: safe;
Traf_light as light: lamp=RED;

body
light.lamp:=GREEN;

end;

action set_yellow(green_on: seconds) is
Traf_light as light:
lamp=GREEN and timeout(green_on);

body
light.lamp:=YELLOW;

end;

action set_red (yellow_on: seconds) is
Traf_light as light:
lamp=YELLOW and timeout(yellow_on);

body
light.lamp:=RED;

end;

action free_lane (margin: seconds) is
Lane as lane: safe;
readonly Traf_light as light:
lamp=RED and timeout(margin);

body
lane.safe:=false;

end;

Fig. 5: Actions set_green, set_yellow, set_red and free_lane.

identical to action set_yellow.
Action free_lane waits margin seconds after the execution

of set_red to be sure that there are no cars on the lane before
freeing it.

To enforce any sequence to go through all lanes, a
control object is needed to guide the behaviour of action
reserve_line. The control class has four states indicating the
current phase of the system; this ensures all directions will
get green light in a steady basis. The control class, action
reserve_line are in Figure 6.

3.2 Initialisation
The initialisation code has to create the traffic lights, lanes,

and actions. It is intended to be sequential code executed
before the action system is invoked. Note that new actions
and objects can be created and deleted also in run-time. The
code in Figure 7 shows how the participants and parameters
of actions are given static values in creation, hence making
it possible to omit common parts of guards describing the
relations between the objects.

This system will execute forever. In some cases execution
will lead to a situation where no actions are enabled and the



type Safe_pairs is
(NSW_SNE, NE_SW, WES_EWN, WN_ES);

class Control is
state: Safe_pairs:=NSW_SNE;

end;

action reserve_lane
(current, next: Safe_pairs) is
Control as cont: state=current;
readonly Lane as old_1, old_2:

not safe;
Lane as new_1, new_2: not safe;

body
cont.state := next;
new_1.safe, new_2.safe:=true, true;

end;

Fig. 6: Action reserve_line

initially
nsw, sne, ne, sw, wes,

ewn, wn, es: Lane; // Creates lanes
tl_nsw, tl_sne, tl_ne, tl_sw, tl_wes,

tl_ewn, tl_wn, tl_es: Traf_light;
control: Control;
// Some constant values
green_on, yellow_on: seconds:=20, 5;
margin: seconds:=8;
// Create actions for a lane
create set_red(yellow_on, nse);
create set_yellow(green_on, nse);
create set_green(nse, tl_nse);
create free_lane(margin, nse, tl_nse);
// etc. for each lane
create reserve_lane(NSW_SNE, NE_SW,

nsw, sne, ne, sw);
// etc. for each safe pair

end initially;

Fig. 7: Initialisation code for the action version

system terminates. This means that deadlocks are possible at
the application level although at action level the deadlocks
caused by the mutual exclusion of objects as resources are
prevented.

4. Subjects
As mentioned in the introduction, the action-oriented view

is not close to the way humans think. For example, reading
and changing the algorithm that controls which lanes are
given turn is not easy. Hence, even if the traditional problems
of concurrency and scalability for n processors could be
solved by actions, there is no much hope to alter the way

Object A

Object B

Object C

Action A
��

��ZZ

ZZ

�
�
�
�
��

�
�
�
�
�
�
�
��

Action B
��

��ZZ

ZZ

A
A
A
A
A
A
AA

Subject S

Code of action A

Code of action B

Code of other
actions

Z
Z
Z}

�

Fig. 8: Subjects versus actions and objects.

of human thinking. Virtual memory was referred to as an
analogous example. It also gives a good next goal, since one
cannot see from the source code if the application is made
for a virtual memory computer or not. Unfortunately, action
orientation abandons the basic abstraction of processes and
use actions instead and this is too drastic a change to be
completely hidden from the programmer.

To make programming for action systems closer to se-
quential thinking characteristic for humans, a concept of
subjects is introduced. Note that although term subject is
used, the model does not follow subject-oriented program-
ming introduced in [3]. However, there are some similarities.
In [3] subjects are different views to an object; in this paper,
subjects are different views to a set of objects.

On the left side of Figure 8, there are the same actions and
objects as were on the right side of Figure 1. On the right
side of Figure 8 is a subject code, from which the actions
are recognised and implemented. Note that there can be both
private and open methods; however, their details are not it
the scope of this paper.

In contrast to action-oriented systems, subjects provide
an illusion of sequential behaviour; this is maintained by
an implicit control object (not shown in Figure 8) and
writing the code sequentially. The compiler recognises the
boundaries of actions, and transforming this to an action
system can be hidden from the programmer. Concurrency is
implicit, if there are more than one subject in the system,
and the programmer does not need to worry about the mutual
exclusion or synchronisation of objects.

The example of crossing roads is revisited to illustrate
how subject-oriented approach works. We can observe this
example from three points of view. These views are first
described informally as follows.

First, the car (or the driver) sees the crossing as the
following sequence of events:

1) Approach the crossing and select correct lane x.
2) Arrive at the stop line of lane x. Stop if light x is red

or yellow has been on for some time.



3) Go if light x is green or yellow has just appeared.
4) Leave the crossing.
Since the car is not part of the system, this is an interface

of the system, and hence not implemented.
Second, the traffic light for each lane is internal to the

system and runs repeatedly the following sequence:
1) Show red light.
2) The lane is safe, show green light.
3) Time out for green, show yellow light.
4) Time out for yellow, show red light.
5) Time out for safety margin, release the lane.
Third, the internal control logic may repeat the following

sequence:
1) Wait lanes are free and reserve the first pair of lanes.
2) Wait lanes are free and reserve the second pair of lanes.
3) Wait lanes are free and reserve the third pair of lanes.
4) Wait lanes are free and reserve the fourth pair of lanes.
Naturally, the control logic could be much more sophis-

ticated. For example, each step could check if there are
cars approaching on the corresponding lane. However, we
continue with this simple system.

We can identify the following objects: cars, traffic lights
for each lane, and the lanes. Cars are not part of the
implementation, and lanes and lights could be united, but
since the lights are actually control objects (subjects) and
lanes are mostly abstractions within the system, we keep
them separate. Using these objects we can write subjects
Traf_light and Control (Figure 9) from the informal de-
scription (the cars and initialisation of the system have been
omitted to save space). Note that although class Lane of
Figure 4 is used, the introduction of subject Traf_light makes
separate class for traffic lights obsolete.

Each wait statement on Control and Traf_light can be
represented as an action. For example, the first wait of
Control could be transformed to the action Control_1 in
Figure 10 that resembles action reserve_line in Figure 6.

The detailed semantics of the programming language used
for subjects is not in the scope of this paper. Actually, any
object-oriented programming language will do, if subjects
and statements wait and collection are added.

The wait statement means that the execution of the subject
in that branch is stopped until the given condition is true. In
translating to actions, the condition is used as the guard of
an action and its statements form the action body.

The collection statement indicates alternatives that may
take place; each of them is actually an action of its own,
and if they are distinct, they can be executed in parallel.
This statement was not needed in this example.

The following rules to transform sequential code of sub-
jects to actions are created from the notes above.

1) Create a control object with a control variable for the
subject.

2) The guard of the first action is a test if the control
variable is in the initial state.

subject Traf_light (lane: Lane,
green_on, yellow_on, margin: seconds)

is
lamp: (RED, YELLOW, GREEN);

begin
lamp:=RED;
loop
wait lane.safe then
lamp:=GREEN;

end;
wait timeout(green_on) then
lamp:=YELLOW;

end;
wait timeout(yellow_on) then
lamp:=RED;

end;
wait timeout(margin) then
lane.safe:=false;

end;
end loop;

end Traf_light;

subject Control (
p1s, p1t, // pair 1: straight and turn
p2s, p2t, p3s, p3t, p4s, p4t: Lane) is

begin // Lanes are initially unsafe
loop
wait not (p4s.safe or p4t.safe) then
p1s.safe, p1t.safe:=true, true;

end;
wait not (p1s.safe or p1t.safe) then
p2s.safe, p2t.safe:=true, true;

end;
wait not (p2s.safe or p2t.safe) then
p3s.safe, p3t.safe:=true, true;

end;
wait not (p3s.safe or p3t.safe) then
p4s.safe, p4t.safe:=true, true;

end;
end loop;

end Control;

Fig. 9: Subjects Traf_light and Control

action Control_1 is
readonly Lane as p4s, p4t: not safe;
Lane as p1s, p1t;
Control as cont: status=1;

begin
p1s.safe, p1t.safe:=true, true;
cont.status:=2;

end Control_1;

Fig. 10: Action Control_1 generated from subject Control



3) The body of the first action starts immediately after
begin, and ends when a collection, wait, or a loop
containing wait(s) is encountered.

4) A loop containing waits introduces a new control
object that is used within the loop, applying these
same rules. If the loop does not include waits, it is
implemented as a traditional loop in the action body.

5) The condition of a wait becomes the guard of the next
action.

6) The code until the next collection, wait, or loop
containing wait(s) becomes the body of the action.

7) Add update code for the control variables into each
action body, and the corresponding tests of the control
variables to the action guards.

Actions can be automatically generated from the subject
descriptions and directly executed by the action model
computer described earlier as illustrated in Figure 8. The
objects participating in actions can be resolved relatively
easy by the compiler.

Subjects and objects are closely related. Objects provide
room for local variables and methods associated with them;
so do subjects, but they also make something happen. When
methods describe potential things that can happen, i.e., safety
properties, subjects also introduce liveness properties for the
system, just like processes have implicit liveness properties.

5. Discussion and Conclusions
The action-oriented model can be used on top of a general

purpose operating system as was done when the concept was
tested by an experimental environment built on Posix threads
interface. The experiments show that the action-oriented sys-
tem is working in principle, but the existence of the operating
system and its scheduler makes it impossible to determine
if this paradigm is really competitive in comparison with
a traditional process-oriented system. The experiments also
indicate that action-oriented programs work logically equally
well regardless of the number of processors available.

The model is expected to work better in specialised en-
vironments having multiple processors. Hence, actual hard-
ware supporting the action orientation as shown in Figure
2 together with measurements are needed—in other words,
the idea needs empirical results to support it.

The main difference with action orientation and most other
approaches is to completely omit the idea of processes,
and gather data to objects that participate in actions. In
spite of the benefits of action systems, they are as such
not very attractive, since they are in contradiction to the
way humans think. Our thinking is based on causality, and
we even tend to find causality when there is none. Hence,
working with actions requires a lot of effort. Introducing
subjects that describe the system from the viewpoints of
active interfaces gives the programmer possibility to think
causally, and makes it easy to implement the program as
actions.

The proposed approach has several benefits:
1) implicit mutual exclusion
2) implicit synchronisation
3) the prevention of most of the potential deadlocks
4) less starvation possibilities
5) still sequential programming
6) power control is implemented easier.

Starvation and high-level deadlocks may still occur. These
deadlocks are either programmed (i.e., the computations
should terminate anyway) or high-level logical errors. Star-
vation cannot happen without mutual exclusion. Hence, it
is possible, but its possibility can be considerably decreased
by a good action scheduler.

The power control has not been mentioned before. Shortly,
if a processor finds the queue empty, it can enter a power-
saving mode. The scheduler can wake up processors if the
queue is longer than the number of active processors.

The proposed subject-oriented programming idea hides
the actions of action-oriented models, but does not harm
the benefits of action orientation: implicit mutual exclusion
and synchronisation, no low-level deadlocks and implicitly
parallel execution whenever possible.

Overall, this approach seems to be very attractive es-
pecially in environments where computation power and
efficient power control is needed. However, although tested
in principle, it is still mostly an idea, which requires a lot
of further research.

Acknowledgements
I want to thank professors Mikko Tiusanen, Tommi

Mikkonen, and Kari Systä for their comments, and especially
professor Shmuel Katz from Technion for his inspiring
questions that started the way towards subjects.

References
[1] Back, R.J.R., Kurki-Suonio, R., Distributed co-operation with action

systems. ACM Transactions on Programming Languages and Systems
10, 4 (Oct. 1988), pp. 513–554.

[2] Chandy, K.M., Misra, J., Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[3] Harrison, W., Ossher, H. Subject-oriented programming: a critique of
pure objects. Proceedings of the eighth annual conference on Object-
oriented programming systems, languages, and applications (OOPSLA
’93). ACM, New York, NY, USA, pp. 411–428.
http://doi.acm.org/10.1145/165854.165932

[4] Järvinen, H.-M., Kurki-Suonio, R., DisCo specification language: mar-
riage of actions and objects. Proc. 11th International Conference on
Distribured Computing. Arlington, Texas, May 1991, IEEE Computer
Society Press, 142–151.

[5] Järvinen, H.-M., The Design of a Specification Language for Reactive
Systems. Doctoral thesis. Tampere University of Technology, 1992.
ISBN 951–721–817–6.

[6] Kahneman, D., Thinking Fast and Slow, Macmillan, 2011. ISBN 978–
1–4299–6935–2.

[7] Kurki-Suonio, R., A Practical Theory of Reactive Systems, Springer
2005. ISBN 3–540–23342–3.

[8] Lamport, L., The temporal logic of actions. Research Report 71, Digital
systems Research Center, 1991.


