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Abstract— With current advances in high performance com-
puting, particularly the applications of GPUs, it is easy to
see the need for a model for GPU algorithm development.
We developed a model which offers a multi-grained approach
intended to accommodate nearly any GPU.

Radiation therapy is one of the most effective forms of
cancer treatment available. In order to minimize the risk to
the patient, physicians design treatment plans that expose the
tumor to the prescribed levels of radiation while minimizing
the exposure to the surrounding tissues. Our system allows
users to quickly and easily visualize and compare treatment
plans in order to identify the best one, with the most
critical aspect of the simulation being implemented on the
GPU using our parallel algorithm design model. In this
paper, we show how the application of our model results in
significant increases in algorithm performance, particularly
in radiation therapy treatment simulation.
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1. Introduction

The rapid advancement of the Graphics Processing Unit,
or GPU, over the last few years has opened up a new
world of possibilities for high-speed computation, ranging
from biomedical to computer vision applications. Recent
examples include [1], [2], and [3]. However, the GPU
architecture is unlike that of any other, and designing al-
gorithms to fully harness the capabilities of a GPU is not
an easy task, especially when one considers the advantages
and disadvantages of the various resources that a GPU has
available to it.

Radiation therapy is a technique commonly used to erad-
icate malignant cancerous tumors. The therapy works by
applying a controlled dosage of radiation to the tumor tissue
in an attempt to damage the cancerous cells. Healthy tissue
can also be damaged by the radiation, which raises the
importance of optimizing the treatment in such a way that
the tumor receives as much radiation as possible while the
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surrounding tissues receive as little as possible. We have
developed a visualization system which provides treatment
planners several different viewpoints to aid in choosing the
best radiation treatment plan. The primary component of our
system is an intensity mapping algorithm which utilizes a
simple yet novel mapping scheme combined with a color-
based representation of accumulated dosages to simulate the
total amount of radiation delivered to a given target and
the surrounding tissue. The result is an accurate, multi-view,
navigable 3D representation of a given treatment plan that
is beneficial for both practical clinical situations as well as
educational environments.

The initial version of our system suffered from lag issues
and was not capable of displaying multiple treatments with
their accumulated dosages in real-time. Therefore, we uti-
lized this as an opportunity to apply our Parallel GPU Model
(PGM) to this system, more specifically to the mapping
algorithm, as a validation of our model. The results were
that our PGM version of the intensity mapping algorithm
was able to not only perform in real-time, but also at a
higher frame-rate, regardless of the granularity the various
treatments were displayed at.

In this paper we present this application of our parallel
algorithm design model for the GPU architecture, which
demonstrates its effectiveness when applied to highly paral-
lelizable tasks such as radiation treatment computation and
simulation. In Section 2 we discuss the GPU architecture
and the PGM; in Section 3 we present a brief overview
of radiation therapy; in Section 4 we discuss the methods
and materials used in the development of our simulation; in
Section 5 we show the application of our PGM to the simu-
lation itself, particularly to the intensity mapping algorithm;
in Section 6 we discuss the results of the application of our
model as compared to other implementations; and finally in
Section 7 we conclude and remark on future work.

1.1 Contribution

We believe that our main contribution with this paper is to
demonstrate the potential advantages of utilizing the high-
performance computing power of the GPU. In this case we
have chosen to apply our Parallel GPU Model to the task of
simulating radiation therapy treatments for cancer patients.



With the application of our PGM, we are able to develop
a version of our simulation which allows highly detailed
simulations of treatments as they are delivered in real-time.
We hope that this example of the benefit of utilizing GPUs
will not only demonstrate the validity of our model, but will
also encourage other researchers to take advantage of all that
the GPU architectures has to offer.

1.2 Related Work

Borfield and Webb [4] have done work in the field of
dosage calculation algorithms, as did Otto [5] and Vas-
silev [6]. Hamza-Lup et al [7] discuss the need for 3D
treatment plan representation systems which allow both the
clinician and the patient the ability to visually understand
the advantages as well as the disadvantages of a given
treatment plan. They present a system which allows the
modeling of a plan in a 3D environment given a variety
of input parameters. While producing fairly accurate results,
their system does suffer from certain limitations, including
the fact that it is web-based which makes its performance
unpredictable due to bandwidth changes, as well as the lack
of ability to view multiple treatments side by side, and
the lack of a visual representation of accumulated dosage
over a multi-beam treatment. While these methods have
contributed considerably to the field of radiation therapy,
they are limited when addressing the real-time, fine-grained
needs of advancing current clinical treatment capabilities.

While there were several influences in the development
of our Parallel GPU Model, the most noteworthy was the
work of Leslie Valiant and his BSP model. The BSP, or
bulk-synchronous parallel model, was proposed to overcome
the limitations of the PRAM model [9], while maintaining
its simplicity. In the BSP model, a BSP computer con-
sists of a set of n processor/memory pairs (nodes) that
are interconnected by a communication network. The BPS
model is Multiple Instruction Multiple Data (MIMD) in
nature, and uses the concept of a superstep, which is
comprised of a computation step, a communication step,
and a synchronization step. The BSP model is also variable
grained, loosely synchronous, has non-zero overhead, and
uses message passing or shared variables for communication.

The program executes as a strict sequence of supersteps.
In each superstep, a process executes the computation oper-
ations in at most w cycles, a communication operation that
takes gh cycles, and a barrier synchronization that takes !/
cycles. Note that in the communication overhead gh, g is
the proportional coefficient for realizing a h relation. The
value of g is platform-dependent, but independent of the
communication pattern. In other words, gh is the time that
it takes to execute the most time-consuming /4 relation.

Within a superstep, each computation operation uses only
data in its local memory. This data is put into the local
memory, either at the program start-up time or by the
communication operations of previous supersteps. Therefore,
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Fig. 1: NVIDIA GeForce 8800 architecture

the communication operations of a process are independent
of other processes.

The BSP model is more realistic than the PRAM model
because it accounts for all overheads except for the paral-
lelism overhead for process management. The time for a
superstep is estimated by the sum

w+ gh+1 ()

This model is highly regarded and has formed the basis for
other parallel models, such as the parallel phase model [9].
However, its generality is its shortcoming when one attempts
to apply it to more specific architectures, such as that of
the GPU. Valiant recently extended his model to include
multi-core CPUs [10]. While this model is much more akin
to the architectural nature of the GPU, it still does not
take into consideration the complexities of the typical GPU
architecture. Thus we developed a parallel algorithm design
model for the GPU architecture which addresses these issues,
which we first presented here [11].

2. The GPU architecture and the Parallel
GPU Model

In this paper we will often refer to the machine containing
the GPU as the “host" and the GPU itself as the “device”.
The NVIDIA GeForce 8800 series is an example of a typ-
ical GPGPU (General Purpose GPU) device, which utilizes
NVIDIA’'s CUDA (Compute Unified Device Architecture
GPU design. The GeForce 8800 contains 16 multiprocessors,
each containing 8 semi-independent cores for a total of 128
processing units (see Figure 1). Each of the 128 processors
can run as many as 96 threads concurrently, for a maximum
of 12,288 threads executing in parallel.

The computing model is SIMD (Single Instruction Multi-
ple Data), and the memory model is NUMA (Non-Uniform



Memory Access) with a semi-shared address space. This
stands in contrast to a modern CPU, which is typically either
SISD (Single Instruction Single Data) or MIMD, in the case
of a multi-processor or multi-core machine. Additionally,
from the perspective of the programmer, all memory is
explicitly shared (in multi-threading environments) or explic-
itly separate (in multi-processing environments) on a desktop
machine.

3. Radiation Therapy

In this paper we consider two main radiation therapy
types: Intensity Modulated Radiation Therapy (IMRT), and
Volumetric Modulated Arc Therapy (VMAT). In the IMRT
method, beams of radiation calculated to be of a certain
shape and intensity are administered to a particular zarget,
which is typically a cancerous tumor [12]. The dosages are
delivered in a discrete step-wise succession, a ‘“‘step and
shoot” method, with the typical treatment averaging around
6 - 9 beam dosages [13].

The VMAT method is similar to the IMRT method,
however VMAT is a smoother, more contiguous method of
delivery [14]. VMAT allows for the same dosage amounts
as IMRT, but provides dosages in a pre-calculated arc of
delivery. This results in the dosages being delivered in a
continuous manner over a shorter span of time. Further
discussion of the details of these methods can be found
in [15], [16], and [17].

In both of these methods, a multi-leaf collimator or MLC
is used to shape the beam of radiation. The “leaves” of the
collimator can be moved back and forth to block parts of
the source beam. Effective treatment plans adjust the leaf
positions in such a way that they shield as much healthy
tissue as possible from radiation exposure while the source
beam is active.

4. Methods and Materials

We have developed a system which allows the visualiza-
tion of a given treatment plan from a variety of viewpoints,
allowing the physician to compare different treatment plans
and determine which is the best suited to a given patient.
Our system has the potential to simulate multi-beam IMRT
treatments as well as VMAT treatments. The intended users
of our software are medical students and physicians, with
the aim of providing training in developing higher quality
treatment plans as well as educating patients about the
benefits and risks of individual plans.

The simulation work-flow is as follows: the user is pre-
sented with an interface which allows the user to load, edit,
add, or remove a patient’s treatment record from a treatment
database. This database contains all of the necessary patient
treatment information and could be made available online,
allowing anyone with the proper permissions to access
patients’ treatment records.

Once a particular patient’s treatment file is identified, our
system can simulate potential treatments, allowing the physi-
cian to select the best of all possible treatments available.
This is primarily accomplished by simulating an intensity
map that maps levels of radiation absorbed by a section of
tissue to its physical location. Our system can provide real-
time simulations of a given treatment plan and present it
in a variety of granularities. The interface allows the user to
visualize a treatment from a variety of viewpoints, including
a MLC view, a beam’s-eye view of the target tumor, and a
general 3rd-person view of the intensity map. In addition,
the interface allows the user to switch between multiple
views within the individual quadrants while the simulation
is running. Perhaps the most useful feature of our system is
the ability to have all four quadrants display four different
treatment plans as intensity maps as they are running in real-
time, allowing the user to compare the plans in high detail.

4.1 Mapping Algorithm

The input of our mapping algorithm consists of CT scans
of the target at various time steps. We also require a data
file representing the list of all MLC leaf movements (in mm)
between times ¢; and t; + 1 for all ¢; of a specific treatment
plan X. We denote this file as the input array. We assume
that the MLC leaves begin in a closed position at %.

The region represented by the CT scan is discretized into
a grid of cells (Figure 2(a)). We equate each column on
the grid to a millimeter of leaf movement and each row
to a pair of opposing leaves in the MLC. The number of
rows and columns represents the granularity of the system,
as increasing the number of either rows or columns will
increase the detail of the resulting intensity map with respect
to the region in the CT scan image. Often these values
are restricted by the physical characteristics of the MLC
to be used, as different collimators may have different
numbers and sizes of leaves, as well as different leaf motion
parameters. In the examples below, we assume each leaf is
1 mm in width and moves 1 mm per unit of time to simplify
the grid representation. In practice, the width of the leaves
will be higher due to current manufacturing limitations.

Each cell in the grid is associated with a bar that represents
the total amount of radiation that has accumulated in the area
of the cell. The input array is parsed for every time step ¢
of the simulation, and the position of each leaf in the MLC
is updated by the appropriate amount. As each leaf moves
it either exposes or covers cells on the grid, affecting the
amount of radiation the cells receive and thus the growth
rate of the associated bars.

Every cell that is exposed receives one unit of radiation
intensity for every time step that the cell is exposed, in-
creasing the corresponding bar height by one as well as
changing the bar color based on the total amount of radiation
received. An example of this process is shown in Figure 3,
with numbers representing different intensity levels on the
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Fig. 2: (a) The intensity map bar grid overlaid on the CT
scan of the target at ¢yo. (b) The leaves positioned around
the target tumor to shield the surrounding tissue from the
radiation beam

grid cells. After the simulation has completed, the resulting
bar heights represent the total amount of dosage received
by each cell grid. Different colors provide an extra means
of visually processing the total dosage received at a cell.
Blue indicates little or no radiation, red and orange indi-
cates moderate amounts and bright yellow/white indicates
a high amount. The example shown assumes a constant
rate of radiation absorption, but in practice the dosage is
not constant due to the differences in density and radiation
absorption properties of different tissue types. We currently
use density as the only factor affecting radiation absorption
rates. The implementation identifies tissue density by the
average lightness value of the grayscale colors in the CT
scan image slice corresponding to a given grid cell. Brighter
colors are assumed to be more dense and more resilient to
radiation absorption, while darker colors are less dense and
absorb radiation quickly.

From a time-space complexity perspective, given m num-
ber of time steps, n number of leaves, and d number of
millimeters each leaf moves per time step, the run-time can
be expressed as O(mnd) for a serial implementation of the
algorithm.
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Fig. 3: A depiction of how the intensity values for each
exposed bar increase from time ¢; to time ¢;41.

4.2 Simulation Design Considerations

The basic flow of the system is the following: it first
obtains from the list of leaf positions which bar sections are
exposed to the beam, and which are not. Next it computes
the dosage values received at each cell, and adjusts the
height and color of the associated bar accordingly. The final
radiation dosage values can be concatenated to a string and
saved in a database, to be retrieved for later comparison
or use. As discussed above, each kind of tissue absorbs
radiation at a different rate, and so regions of the same tissue
will have similar intensity values.

The colors and heights of the bars at the conclusion of the
beam represent the total amount of radiation delivered to the
corresponding area on the target or surrounding tissue. The
user is able to toggle whether the bar heights are shown. With
the heights disabled, the bars are simply squares of different
colors overlaid onto the CT scan image and represent a
heat map corresponding to the radiation delivered at each
grid cell. The bars can also be made translucent, allowing
the CT scan below to be seen and permitting the user to
spatially visualize which tissue sections are receiving the
most radiation.

We implemented our algorithm on the following hardware:
we used a Dell desktop with a 2.99GH Intel Core 2 Duo
with 3GB of RAM. We also used an NVIDIA 9800 GTX+
graphics card with 512 MB of memory and 128 streaming
multiprocessors for the graphics duties. The fact that we
implemented and ran our algorithm using commodity or
“off the shelf" hardware indicates that our algorithm may
be employed by practically anyone in a related field.

5. Application of the Parallel GPU
Model

While the simulation that we have presented above can
provide much in the way of designing and implementing
highly effective radiation therapy treatments, the initial im-
plementation of this system in a serial, CPU-based manner
had its limitations. Particularly, the most critical part of
our system (the intensity mapping algorithm visualization),
suffered considerable lag when we attempted to apply it to
higher detailed images. Specifically, we wanted the ability
to view a given treatment in real-time, at various levels
of detail, all the way to the millimeter level. Our experi-
mentation proved that this was not possible with a serial
implementation of our algorithm, given the hardware we had



Fig. 4: This is the main interface of our visualization system
as implemented strictly on the CPU in serial. Note that
the various quadrants display differing views of a given
treatment. Clockwise from the top-left: the first quadrant
displays the position MLC leaves at time ¢;; the second
quadrant provides a view of the position of the gantry about
the patient at ¢;; the third quadrant displays accumulation of
radiation dosages as a height map (before implementation on
the GPU); and finally the fourth quadrant displays dosage
accumulation as a heat map from a beam’s eye view.

available. Consequently, this algorithm seemed to be a prime
candidate for the application of our PGM.

We began applying our PGM to this problem by first
developing the serial, CPU, brute-force version of our al-
gorithm. This is the version that we had been using initially,
which resulted in the performance lag identified earlier.
Following the recommendations of the model, we then
implemented an optimized version of this algorithm using
OpenMP.

Again following the PGM model, we implemented a néive
version of the intensity mapping algorithm by simply porting
the algorithm to the GPU architecture, meaning we sent all
of the data to the GPU and let the GPU kernels operate
on the data, allowing the GPU thread scheduler to handle
data distribution and thread allocation and management. We
then went a step further in the model and considered data
dependencies and preprocessing. This led to the optimized
version of our algorithm, which includes preprocessing steps
in which we import all of the necessary data from the
database and convert it into simple arrays and image files
before sending it to the GPU for computation and rendering.
We have also off-loaded other preprocessing calculations to
the CPU, including initial dosage calculations for each bar
per each beam step, and total overall growth for each bar
per each beam step. These results are temporarily stored in
the host’s RAM until this data is transferred to the device
for real-time calculation and rendering.

Following with another aspect of our model, we consid-
ered the various types of GPU memory that we had access to,
and distributed our data accordingly. It is not difficult to see
that certain data elements of our system are read only (i.e.
the treatment planning input, including the MLC movements
and the CT scans), which according to the PGM should be
loaded into the GPU’s texture memory.

Finally, in following with the final step of the PGM, we
fine-tuned our GPU-accelerated intensity mapping algorithm
by adjusting it to suit the physical nature of our particular
GPU. Knowing that our GPU (NVIDIA’s 9800 GTX+) had
128 cores, with 512 MB global memory and 16K shared
local memory for each SM, we broke down all computations
so that they were allocated in groups of 32, aligning with
the GPU’s preferred warp format. However, considering that
there were more available cores than there were calculations
to be performed, even the use of memory coalescing and
warp-filling does not result in a truly optimal use of the
GPU structure, as a GPU operates the most efficiently when
all of its threads are occupied.

6. Results and Discussion

By initializing the radiation levels at each cell to zero and
applying our mapping algorithm and the leaf motions from
the input array, we can generate the quad-view simulation of
a given treatment plan as shown in Figure 4. This allows the
user to select any quad and examine it in great detail. Each
bar in the intensity map accumulates the dosage delivered
over each beam in the treatment plan giving the physician
or student a clear indication of how much radiation has been
delivered to a given area of a target or the surrounding tissue.

This allows medical professionals to plan treatments of
higher quality that minimize the exposure of healthy tissue
to radiation while maximizing the dosage delivered to the
target. Medical students studying radiology can use our
system to simulate and visualize hypothetical treatment
plans. Students receive feedback by comparing the resulting
intensity maps of plans of their own design by observing the
total amount of radiation delivered to the tumor versus the
amount delivered to healthy tissues. This feedback assists in
fostering an intuitive sense of what goes into planning an
optimal treatment and therefore has the potential to improve
the quality of the future real world treatment plans designed
by the student. Moreover, the student or teacher may design
example plans or exercises that highlight specific treatment
complications and special situations. This has the effect of
revealing to the student the best techniques for optimizing
the plan under specific constraints.

As mentioned previously, patient education is another
potential application. Doctors and radiologists can use our
simulation to visually demonstrate the treatment process and
explain exactly what the patient should expect. Treatment
plans can be compared and contrasted for the patient using
the multi-view interface mode, and the potential risks and



benefits of each can be explained and visualized in greater
detail. This has the potential to increase patient understand-
ing of and comfort with the therapy procedure.

In Table 1 we list the overall averaged run times and
memory copy times for the different versions of our intensity
mapping algorithm that were employed, including the ndive
CPU version, the optimal CPU version, the ndive GPU
version, and the optimal GPU version over 100 trials.

Table 1: Run time and data copy time for the Intensity
Mapping algorithm, as represented for a nidive CPU imple-
mentation, an optimized CPU implementation, a ndive GPU
implementation, and an optimized GPU implementation. All
times are in milliseconds.

Run Time  Copy Time

192173.96  N/A
82186.34 N/A
2007.12 197.78
199.94 2.04

Niive CPU Intensity Mapping
Optimized CPU Intensity Mapping
Niive GPU Intensity Mapping
Optimized GPU Intensity Mapping

As the table shows, optimizing the serial version of our
algorithm using OpenMP did not show a significant increase
in performance (approximately 2x speedup). This is due to
the fact that we were using a dual core CPU, so considering
the data transfer required between the two cores along with
the synchronization step, the performance increase was fairly
minimal (see Table 1).

When we simply ported our algorithm to the GPU archi-
tecture, our nidive implementation resulted in a significant
speedup (greater than an order of magnitude).

Regarding the optimized GPU version of the algorithm,
we were able to reduce the overall runtime of the algorithm
significantly by off-loading all of the necessarily serial work
onto the CPU and only employing the GPU to do the parallel
computation, specifically that of computing the values of
each bar, as well as the overall accumulated values for each
bar, at each cycle. This allows for optimal access speed as
well as making this data available for the largest number of
threads possible, resulting in a speedup of approximately an
order of magnitude over the ndive GPU implementation.

Regarding the visual performance of the Intensity Map
(the calculations described above combined with the render-
ing), all implementations of the algorithm except the original
ndive CPU implementation allow the mapping to run in real-
time. The GPU versions, however, allow the visualization to
run in “hyper" real-time, at a variety of speeds, which should
insure that the overall simulation can run in real-time or
better regardless of the tasks it is performing, as shown in
in Figure 5.

As shown above, we were able to provide a significant
speedup in performance of our Intensity Mapping algorithm
utilizing the high performance computing power of the GPU.
Furthermore, we did so by applying our PGM to the problem

Fig. 5: The 3D rendering which shows the GPU implemen-
tation of how the radiation dosage will be delivered to the
various areas of the target at time t¢,,, along with the total
accumulated dosage (represented by the “heat scale" color
gradation), according to this particular treatment plan.

of optimizing our Intensity Mapping algorithm, resulting in
a significant speedup (a couple of orders of magnitude) over
the original serial implementation.

7. Conclusion and Future Work

As presented in the previous sections, our visualization
system offers a fast and inexpensive option for simulating ra-
diation treatment plans in a real-time, multi-grained manner.
This allows physicians and students the ability to quickly
and easily compare multiple treatment plans to determine
the optimal plan with considerable accuracy. We have then
augmented this ability by applying our Parallel GPU Model
to parallelize the computation being done on the intensity
mapping aspect of our simulation, making it possible to
now display a given treatment at a very fine-grained level
of detail, in a fully navigable environment and in real-time,
making it possible to view and compare multiple treatments
as they would actually be delivered.

Based upon the the success of this application of our
PGM, our future work with this system involves applying
our model to the other aspects of the simulation to see
which may also benefit from parallelization on the GPU.
We will also be mindful to apply the same to any additional
functionalities which we may include in future versions of
our software.

In addition, the current version of our simulation handles
single beam IMRT treatments. Future implementations will
be able to handle multi-beam treatments as well as the
continuous motion of the MLC during VMAT treatments.
Another addition planned is to implement a module that
automatically computes a radiation treatment plan. Although
this treatment plan may not be optimal it can be made as



close to optimal as possible with computational methods.
Such a module would allow users to easily obtain a baseline
treatment plan to which they can compare the treatment
plans they develop themselves, providing an extra mode of
feedback and evaluation.
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