
Exploiting Heterogeneous Systems: Keccak on OpenCL

Allan Mariano de Souza 1, Fábio Dacêncio Pereira 1, and Edward David Moreno 2

1 Department of Computer Science/ COMPSI
,University Center Euripides of Marília, Marília, Brazil
2Department of Computer Science/DCOMP, Federal University of Sergipe, Aracaju, Brazil

Abstract - Using graphics processing units (GPUs) in high-
performance parallel computing continues to become more
prevalent, often as part of a heterogeneous system. CUDA
and OpenCL are APIs and enables programmers to
developer GPGPU applications and softwares to massively
parallel processors. In October 2, 2012, NIST announced the
winner of its five-year competition to select a new
cryptographic hash algorithm, one of the fundamental tools
of modern information security. This work is proposed to
explore the winner algorithm of the SHA-3 competition, the
Keccak, and subsequently implement the propose
heterogeneous platform architecture on OpenCL with intuit
to obtain performance data. Finally, will be compared
OpenCL implementation of keccak with CPU and GPU
execution.

Keywords: GPGPU; OpenCL; Heterogeneous Systems;
SHA-3 Keccak;

1 Introduction
 I
n recent years, more and more multi-core/many-core
processors are superseding sequential ones. I
ncreasing
parallelism, rather than increasing clock rate, has become
the primary engine of processor performance growth, and
this trends likely to continue [1]. Particularly, today’s GPUs
(Graphic Processing Units), greatly outperforming CPUs in
arithmetic throughput and memory bandwidth, can use
hundreds of parallel processor cores to execute tens of
thousands of parallel threads [2]. Researchers and
developers are becoming increasingly interested in
harnessing this power for general purpose computing, an
effort known collectively as GPGPU (General-Purpose
computing on the GPU)[3], to rapidly solve large problems
with substantial inherent parallelism.

CUDA (Compute Unified Device Architecture) and
OpenCL (Open Computing Language) are API
s and enables
programmers to developer GPGPU applications and
softwares to massively parallel processors.

One of the methods to ensure information integrity is
the use of hash functions, which generates a stream of bytes
(hash) which must be unique. But most functions can no
longer prevent malicious attacks and ensure that the
information have just a hash. I
n order to solve this problem,
the National I
nstitute of Standards and Technology (NI
ST)
convened the scientific community through a competition to
create a new hash function standard, called SHA-3.

NI
ST received significant feedback from the
cryptographic community. Based on the public feedback and
internal reviews of the second-round candidates, NI
ST
selected five SHA-3 finalists - BLAKE, Grøstl, JH, Keccak,
and Skein to advance to the final round of the competition on
December 9, 2010, which ended the second round of the
competition[6].

I
n October 2, 2012, NI
ST announced the winner of the
SHA-3 competition and the winner was Keccak and now will
become official NI
ST’s SHA-3 hash algorithm.

I
n this context, this work aims to study the winner
SHA-3 algorithm, The keccak and then propose an
implementation for heterogeneous systems using OpenCL to
obtain performance data and comparison with CPU and GPU
execution.

2 CUDA vs OpenCL
CUDA and OpenCL are fast, and on GPU devices they

are much faster than the CPU for data-parallel codes, with
10X speedups commonly seen on data-parallel problems.
Both CUDA and OpenCL can fully utilize the hardware.
They are both entirely sufficient to extract all the
performance available in whatever hardware device

Both CUDA and OpenCL can fully utilize the
hardware. They are both entirely sufficient to extract all the
performance available in whatever hardware device. Both
OpenCL and CUDA provide a general-purpose model for
data parallelism as well as low-level access to hardware, but
only OpenCL provides an open, industry-standard
framework. As such, it has garnered support from nearly all
processor manufacturers including AMD, I
ntel, and
NVI
DI
A, as well as others that serve the mobile and
embedded computing markets. As a result, applications
developed in OpenCL are now portable across a variety of
GPUs and CPUs.

Spafford's ran ORNL's Scalable Heterogeneous
Computing Benchmark Suite (SHOC) that has been
optimized for both CUDA and OpenCL, and found that
OpenCL can match CUDA performance on most of the basic
math kernels[15].

GPU software maker AccelerEyes has seen CUDA and
OpenCL performance equalize. The company, which
recently released OpenCL-powered beta versions of their two
flagship software products, ArrayFire and Jacket, has found

that for most kernel codes, the two technologies now exhibit
similar performance[15].

The Future Technology Group at Oak Ridge National
Lab (ORNL), has been benchmarking the two technologies
for some time and is now convinced that OpenCL
performance is now on par with that of CUDA. The figure
2.1 shows the results of the benchmarking.

Figure 2.1: Benchmarking of performance CUDA and
OpenCL [15]

Due to the high portability across a variety of GPUs and
CPUs, the high performance power and your growing of
OpenCL. This paper present an proposed implementation of
keccak's algorithm for a heterogeneous systems using
OpenCL.

3 OpenCL
OpenCL is an industry standard cross-platform and

parallel-computing for programming heterogeneous
applications that can be formed collection of CPUs, GPUs
and other computing devices organized into a single
platform. I
t's more than a language, OpenCL is an
framework for parallel programming and includes a
language, API
, libraries an runtime system to support
software development [4].

Single programs written on OpenCL can run on a wide
range of systems, from cell phones, to laptops, to nodes in
massive super-computers. No other parallel programming
standard has such a wide reach [5].

The core idea behind OpenCL can be describe using
follow hierarchy models. Platform model(3.1), execution
model(3.2), memory model(3.3) and programming
model(3.4).

3.1 Platform Model

The platform model consists of a host that are connected
to one or more OpenCL devices (CPUs, GPUs, PDAs), The
OpenCL devices are divided into one ore more compute units
(CUs) which are further divided into one or more processing
elements (PEs). The computations that are executed on
OpenCL devices occur within the processing elements [4].

The figure 3.1 illustrate the OpenCL platform model that
was described.

Figure 3.1: OpenCL Platform Model [5].

3.2 Platform Model

Execution of an OpenCL program occurs in two parts:
kernels that are parallel parts or functions executed on one or
more OpenCL devices and a host program serial parts
executed on the host. The host program defines the context
and parameters for kernels and manages their execution [4].

The core of the OpenCL execution is defined by how
kernels are executed. When the host program submits a
kernel for execution an index space are defined called
NDRange, where these index can be one dimensional (1D),
tow dimensional (2D) or three dimensional (3D). Each point
in these index space are called work-item and each work-
item are an instance of the kernel and each work-item has
index (global I
D) to compute memory addresses and make
control decisions.

Work-items are organized into work-groups. The work-
groups provide a more coarse-grained decomposition of the
index space. Work-groups are assigned a unique work-group
I
D with the same dimensionality as the index space used for
the work-items. Work-items are assigned a unique local I
D
within a work-group so that a single work-item can be
uniquely identified by its global I
D or by a combination of its
local I
D and work-group I
D. The work-items in a given
work-group execute concurrently on the processing elements
of a single compute unit [4].

The figure 3.2 are an example of how the global I
Ds,
local I
Ds, and work-groups indices are related for a two-
dimensional NDRange. Other parameters of the index space
are defined in the figure. The shaded block has a global I
D of
(gx, g y) = (6, 5) and a work-group plus local I
D of (wx, w y)
= (1, 1) and (lx, ly) =(2, 1).

Figure 3.2: OpenCL Execution Model [5].

3.3 Memory Model

Work-items executing a kernel have access a five distinct
memory regions [5].

• Host memory: This memory region is visible only
to the host. As with most details concerning the
host, OpenCL defines only how the host memory
interacts with OpenCL objects and constructs.

• Global Memory: This memory region permits
read/write access to all work-items in all work-
groups. Work-items can read from or write to any
element of a memory object. Reads and writes to
global memory may be cached depending on the
capabilities of the device.

• Constant memory: This memory region of global
memory remains constant during the execution of a
kernel. The host allocates and initializes memory
objects placed into constant memory. Work-items
have read-only access to these objects.

• Local memory: This memory region is local to a
work-group. This memory region can be used to
allocate variables that are shared by all work-items
in that work-group. I
t may be implemented as
dedicated regions of memory on the OpenCL device.
Alternatively, the local memory region may be
mapped onto sections of the global memory.

• Private memory: This region of memory is private
to a work-item. Variables defined in one work-
item’s private memory are not visible to other work-
items.

The figure 3.3 shows a summary of the memory model in
OpenCL and how the different memory regions interact with
the platform model.

Figure 3.3: OpenCL Memory Model [5].

3.4 Programming Model

OpenCL includes an language based on C99 to write the
kernel code, and the host program can be written in some
other languages such as: C/C++, Java and Python. The
OpenCL programming model supports data parallel and task
parallel programming models, as well as supporting hybrids
of these tow models.

4 Keccak Algorithm
The design philosophy of Keccak is the hermetic

sponge strategy [7]. I
t uses the sponge construction for
having provable security against all generic attacks. I
t calls a
permutation that should not have structural properties with
the exception of a compact description[8].

Keccak is a family of hash functions that is based on the
sponge construction, and hence is a sponge function family.
I
n Keccak, the underlying function is a permutation chosen
in a set of seven Keccak-f permutations, denoted Keccak-f[b],
where b ∈ {25, 50, 100, 200, 400, 800, 1600} is the width of
the permutation. The width of the permutation is also the
width of the state in the sponge construction[9].

The state is organized as an array of 5×5 lanes, each of
length w ∈ {1, 2, 4, 8, 16, 32, 64} (b=25w). When
implemented on a 64-bit processor, a lane of Keccak-f[1600]
can be represented as a 64-bit CPU word. For obtain the
Keccak[r,c] sponge function, with parameters capacity c and
bitrate r, if we apply the sponge construction to Keccak-f[r+c]
and by applying a specific padding to the message input.

All the operations on the indices are done modulo 5. A
denotes the complete permutation state array, and A[x,y]
denotes a particular lane in that state. B[x,y], C[x],D[x] are
intermediate variables. The constants r[x,y] are the rotation
offsets, while RC[i] are the round constants. rot(W,r) is the
usual bitwise cyclic shift operation, moving bit at position I

into position i+r (modulo the lane size). The constants r[x,
y] are the cyclic shift offsets and are specified in the table I
.

TABLE I
 - CONSTANTS R[X,Y] – KECCAK ALGORI
THM

The constants RC[i] (see Table I
I
) are the round
constants. The following table specifies their values in
hexadecimal notation for lane size 64. For smaller sizes they
must be truncated.

TABLE I
I
 - CONSTANTS RC[I
]- – KECCAK ALGORI
THM

The keccak first start with the description of Keccak-f in
the pseudo-code below. The number of rounds nr depends on
the permutation width, and is given by nr = 12+2l, where 2l
= w. This gives 24 rounds for Keccak-f[1600].

Round[b](A,RC) {

θ step

C[x] = A[x,0] xor A[x,1] xor A[x,2]

 xor A[x,3] xor A[x,4],

D[x] = C[x-1] xor rot(C[x+1],1),

A[x,y] = A[x,y] xor D[x],

ρ and π steps

B[y,2*x+3*y] = rot(A[x,y], r[x,y]),

χ step

 A[x,y] = B[x,y] xor ((not B[x+1,y])
and B[x+2,y]),

ι step

A[0,0] = A[0,0] xor RC

return A

}

The four steps (Θ,ρπ,χ,ι) of hash function keccak have
data dependency of first level, ie, the current step depends
only of the outcome of the previous step. This feature allows
exploring techniques of parallelism in heterogeneous
systems. I
n this context, this paper presents a proposed
architecture that exploits the parallelism using OpenCL.

5 Keccak Implementations

Pierre-Louis Cayrel[11] present an implementation of the
Keccak hash function family on graphics cards, using
NVI
DI
A’s CUDA framework. That implementation allows to
choose one function out of the hash function family and hash
arbitrary documents. I
n addition he presents the first ready-
to-use implementation of the tree mode of Keccak which is
even more suitable for parallelization.

Guillaume Sevestre[12] presents a Graphics Processing
Unit implementation of Keccak cryptographic hash function,
in a parallel tree hash mode to exploit the parallel compute
capacity of the graphics cards using CUDA.

I
n your work Xu Guo[10] describe a consistent and
systematic approach to move a SHA-3 hardware benchmark
process from FPGA prototyping to ASI
C implementation,
and we present our latest results for ASI
C evaluation of the
14 second round SHA-3 candidates.

Perreira [13] present an keccak's implementation on FPGA
using pipeline architecture with intuit to obtain performance
data.

TABLE I
I
I
. KECCAK'S I
MPLEMENTATI
ONS

Authors Title Implementation
 [11] GPU I
mplementation of the

Keccak Hash Function
Family

NVI
DI
A GTX 295 GPU

 [12] I
mplementation of Keccak
hash function in Tree mode
on Nvidia GPU

Core i5-750 2.6 Ghz Nvidia
GTS 250

[13] Pipeline architecture Virtex 5

[10]
Fair and Comprehensive
Performance Evaluation of
14 Second Round SHA-3
ASI
C implementation

FPGA implementation

ASI
C implementation

6 Keccak on OpenCL
I
n this section the approach to the parallelization of

Keccak will be presented. We made two implementations to
try to reduce the time needed to the hash computation by
simultaneously execution the keccak's algorithm. The first
implementation, the host program was written in python and
to execute the kernel we utilized a unique work-group with
the same size of NDRange specified where all work-items in

the NDRange space computate the keccak's algorithm. The
second implementation we written the host program in C
language to make some tests with AMD CodeXL, and the
NDRange space was divided in work-groups of 256 work-
items, than we compare if has any difference between C and
python's implementation.

The original Keccak structure have been almost
completely maintained in this solution, even thought some
adjustments have been made to maximize the performance on
GPU.

The OpenCL architecture supports thousands of work-
items in hardware. The host program of our implementation
was written in python and kernel function on OpenCL. We
utilize different sizes of NDRange and use all work-items in
the NDRange to execute the four steps (Θ,ρπ,χ,ι) of keccak
algorithm. To execute the tests we started with 25 work-items
executed se same round of keccak and ended with 1 bilion of
work-items executing the algorithm. The tests on GPU was
made in an AMD/ATI
 Radeon HD 6400M series that has 160
Stream Processing Units, and the CPU's tests was made in a
I
ntel Core I
5. To calculate the time of the execution's kernel
we got the time before the submission of the kernel to
execution (T1) and the time after to kernel's execution (T2)
and the result of time is the difference of T2 and T1 (T2 –
T1).

The figure 6.1 shows an OpenCL kernel pseudo-code to
demonstrate the execution of the first test with 25 work-
items. Each work-item will instantiate the kernel function
and execute completely the code.

Figure 6.1: OpenCL keccak's kernel

Lines one and two shows the definition and parameters of
the kernel that will be executed per all work-items. The first
parameter is the input state (matrix A 5x5), and the second
parameter is the out of state after keccak-f permutation. The
variable id defined in line four receive the global_I
D of each
work-item.

Line 6 to 8 indicates the core execution of keccak but just
will be executed per work-items that have id less than 25.
Finally line 10 represents the attribution of the variable out
that will receive the result of keccak permutation and will be
transfered to the host program.

Table I
V shows the python's implementation with the
numbers of work-items and the time that all work-items led
to execute the algorithm. The results was compared with
GPU and CPU execution.

TABLE I
V. KECCAK'S I
MPLEMENTATI
ON I
N PYTHON + OPENCL

No. Work-
items

Time in seconds

CPU I
ntel core I
5 GPU AMD Radeon HD
6400M

25 0.0001890659332 0.0013608932495
50 0.0002439022064 0.0007479190826
100 0.0002799034118 0.0017559528350
500 0.0008549690259 0.0007867813110
1000 0.0019378662110 0.0018019676208
50000 0.0698390007019 0.0070748329163
100000 0.130648136139 0.0138649940491
500000 0.6393702030 0.06292104721
1000000 1.29261088371 0.123764038086
50000000 62.931710 6.18758797
100000000 125.824690104 12.0365948677
500000000 628.15016818 60.4733588
1000000000 1258.75649595 119.857429981

The results of this first implementation shows that GPU
execution is approximately 10 times faster than CPU
execution.

AMD CodeXL is a comprehensive tool suite that enables
developers to harness the benefits of AMD CPUs, GPUs and
APUs. I
t includes powerful GPU debugging, comprehensive
GPU and CPU profiling, and static OpenCL kernel analysis
capabilities, enhancing accessibility for software developers
to enter the era of heterogeneous computing. AMD CodeXL
is available both as a Visual Studio extension and a
standalone user interface application for Windows and
Linux[14].

To make some tests with CodeXL we have to written the
host program to C language and we make some changes in
the kernel to collect more informations of the execution.

Figure 6.2 shows details of the kernel execution, and some
additional information such as, duration of kernel's
execution, global size and local size, kernel occupancy and
others. the results were collected with AMD CodeXL.

Figure 6.2: Results colected with CodeXL.

 The C implementation shows the same results of the
python's implementation, the GPU execution is
approximately 10 times faster than CPU execution. The table
V shows some results of C implementation.

TABLE V. KECCAK'S I
MPLEMENTATI
ON I
N C + OPENCL

No. work-items
Time in seconds

CPU I
ntel
core I
5

GPU AMD Radeon HD
6400M

2560 0.00544497 0.00247133

256000 0.343549 0.0292091

256000000 295.781 29.3051

7 Conclusions
This article presented an overview on the use of GPU to

accelerate processing algorithms dedicated as keccak. Were
presented CUDA and OpenCL platforms and a study
showing that OpenCL is improving with each generation.

I
n the sequence was described the main module of
architecture OpenCL and structure of the keccak algorithm.
Keccak implementations on different technologies were
presented. This algorithm is in evidence, as was recently
selected as the new standard SHA-3 hash functions.

The objective of this work was not to develop the best
implementation of keccak in GPU, but the use of OpenCL as
an alternative for high performance applications.

For this, two implementations were coded. The first
implementation, the host program was written in python and
the second in C language to make some tests with AMD
CodeXL: a comprehensive tool suite that enables developers
to harness the benefits of AMD CPUs, GPUs and APUs.

The results shows a speedup of approximately 10 times
between the CPU and GPU implementation. This gain can be

further enhanced with other techniques of parallelism, such
as pipeline and distribution of items running on tree model.
However the aim was achieved showing that a basic
implementation can achieve good level of performance.

8 References
[1] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J.
Hardwick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov,
“Parallel Computing Experiences with CUDA,” I
EEE Micro,
vol. 28, pp. 13–27, July 2008.

[2] J. Nickolls and W. J. Dally, “The GPU Computing Era,”
I
EEE Micro, vol. 30, pp. 56–69, March 2010. 2. Oxford:
Clarendon, 1892, pp.68-73.

[3] Jianbin Fang, Ana Lucia Varbanescu and Henk Sips, “A
Comprehensive Performance Comparison of CUDA and
OpenCL”, I
nternational Conference on Parallel Processing ,
2011

[4] Khronos OpenCL Working Group, The OpenCL
Specification, 2011.

[5] Aaftab Munshi, et al. OpenCL Programming Guide,
2011.

[6]FI
PS 180-3, Secure Hash Standard, Cryptographic Hash
Algorithm Competition, , available from
http://csrc.nist.gov/groups/ST/ hash/sha-3/index.html, 2011

[7] Daemen, J. et al. “Sponge Functions”. 2011, available
from http://sponge.noekeon.org/Sponge Functions.pdf

[8] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche,
The Keccak reference, 2011.

[9] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche,
The Keccak SHA-3 submission, 2011.

[10]X. Guo, S. Huang, L. Nazhandali and P. Schaumont,
Fair and Comprehensive Performance Evaluation of 14
Second Round SHA-3 ASI
C I
mplementations, Second SHA-3
Candidate Conference, 2010

[11]Pierre-Louis Cayrel, Gerhard Hoffmann, Michael
Schneider, GPU I
mplementation of the Keccak Hash
Function Family, SERSC I
nternational Journal of Security
and I
ts Applications Vol. 5 No 4, October, 2011.

[12]Guillaune Sevestre, I
mplementation of Keccak hash
function in Tree mode on Nvidia GPU, 2011

[13]Pereira, F. D. ; Ordonez, E. D. M.; Sakai, I
. D. Hash
function keccak: exploring parallelism with pipeline. I
n:
PDCS- Parallel and Distributed Computing and Systems,
2011.

[14]AMD Developer Central, AMD CodeXL: comprehensive
debugging profiling and analysis tool for CPU, GPU and
APU. Available from http://developer.amd.com/tools/heterogeneous-
computing/codexl, 2012

[15] Michael Feldman, OpenCL Gains Ground On CUDA,
available from: http://www.hpcwire.com/hpcwire/2012-02-
28/opencl_gains_ground_on_cuda.html

	1 Introduction
	2 CUDA vs OpenCL
	3 OpenCL
	3.1 Platform Model
	3.2 Platform Model
	3.3 Memory Model
	3.4 Programming Model

	4 Keccak Algorithm
	5 Keccak Implementations
	6 Keccak on OpenCL
	7 Conclusions
	8 References

