
BlueHoc: Bluetooth Ad-Hoc Network Android Distributed
Computing

G. Hinojos, C. Tade, S. Park, D. Shires, and D. Bruno
Computational Sciences Division
U. S. Army Research Laboratory

Aberdeen Proving Ground, MD, USA

Abstract— Mobile devices are ubiquitous in everyday life
and are becoming valuable devices for today’s Soldiers
as part of a larger battlefield network. Due to the open
nature of the development platform, Android was recently
selected to be a supported operating system within this
evolving and maturing technology delivery paradigm. The
Army’s networks must operate in often hostile environments
and are mobile and ad hoc in nature; thus often rendering
communication links tenuous at best. Common, however, on
handheld device are low-power network capabilities such
as WiFi and Bluetooth. This work analyzes the use of
Bluetooth as a low-power network protocol for coupling
handhelds operating in a deployed setting. By aggregating
the capabilities of distributed handhelds through Bluetooth,
task and data parallelism can be achieved, thus providing
potentially faster solutions and reduced battery drain. This
paper discusses the performance of a preliminary scalable
boss-worker paradigm known as “BlueHoc” in the context
of a simplified test case with proposed extensions that will
provide greater capabilities to Soldiers operating at the
tactical edge.

Keywords: Mobile ad hoc networks, Bluetooth, distributed com-
puting, Android

1. Introduction
Computer networks are common in modern society and

span a wide range of wired (DSL, Ethernet) and wireless
(3G, 4G, WiFi) services. Military missions, particularly
those of the Army, do not have the luxury of a fixed
infrastructure with high capacity and low latency. Working
in hostile environments is common, and mobile ad hoc
networks (MANETs) will form the backbone of the deployed
forces. These networks can be hierarchical and complex with
widely varying data rates at all levels.

Typically the last hop to an edge node, such as a handheld
device, is the most costly of all. Cloud-based services in
well-covered network areas have extended capabilities to
streaming data rather than just guaranteed access to data.
Rapid processing of requests coming from handhelds, such
as that offered by Apple’s Siri service, is handled by of-
floading from handhelds to high capacity servers. Planning is
underway in Army MANET delivery to provide the required
bandwidth to the deployed network, but processing and data
delivery at deployed edge nodes will remain a critical need.

Of interest then is how to exploit capabilities inherent in
these devices should access to existing networks fail. Within
each device is preloaded applications and data. When paired
with other devices in close proximity, what new capabilities
can be afforded by the higher capacity if these devices
are coupled and aggregated? Synchronizing the computing
power in a way that limits overall battery drain is very
important to missions conducted on the battlefield.

This project discusses BlueHoc, a system that enables
distributed computation across mobile devices communicat-
ing wirelessly via Bluetooth. Mobile devices have become
highly utilized in recent years; due to the high demand,
advances in mobile technology occur every day. Mobile
devices are perhaps the most pervasive computing devices
available today. In the final quarter of 2010, smarthphone
sales surpassed global PC sales for the first time [1]. Mobile
cellular subscriptions worldwide are estimated to be around
6 billion as of 2011 [2]. The vast number of available mobile
devices presents computational resources that can be utilized
to solve a diversity of parallelizable computations. Mobile
device resources can be combined and leveraged to create
a distributed infrastructure that is able to perform parallel
computing for both mobile Soldiers and stationary operators
in a Tactical Operations Center (TOC).

By aggregating computing power, important questions,
such as “what computing capacity can I achieve from
many Army connected devices?” and “what new capabilities
can they bring to the Army operational domain?”, can
be answered. These questions are nontrivial and extremely
valuable for the Army as it is not always feasible to
build a single node High Performance Computing (HPC)
system in the field or ensure its connectivity at all times.
Furthermore, traditional cloud-based services will not always
be available at the tactical edge where Soldiers operate.
High throughput networks will not be available to off-load
computing requests, and methods to overcome this limitation
are only beginning to be explored [3]. This project attempts
to bring HPC closer to the Soldiers and make it possible to
build a HPC system from resources that are available and
underutilized.

In the following, Section 2 summarizes related work in
distributed computing using Bluetooth. Section 3 describes
the operational and testing environments that were selected
for this architecture and implementation. Preliminary results
of the performance of the system are given in Section
4. Finally, conclusions and possible future extensions are



briefly discussed in Section 5.

2. Related Work
The use of mobile phones to form small clusters of

shared resources has not been well researched. Proposed
architectures, built on the Bluetooth standard, would enable
small mobile computers such as those found in robotics to
communicate. The DynaMP architecture achieves scalability
to larger networks through the formation of scatternets;
larger networks formed by dedicating one node per subnet
to communicate with another link node in another subnet
[4]. The BlueHoc design roughly mirrors the architecture
described in DynaMP and attempts to test the design in an
actual hardware and software system. Issues with the com-
munication protocols suggested in DynaMP are identified
and differing methods are employed in BlueHoc to perform
actual communication between nodes.

Gartrell et al. describe another architecture for Bluetooth
device communication known as BlueHydra [5]. BlueHydra
proposes methods for remote method invocation and uses
the Marge framework for remote device discovery. The
architecture is evaluated in terms of the Java Wireless Toolkit
emulation framework and hence does not use an actual
hardware and software device pairing. BlueHoc leverages
built-in Bluetooth chat clients to implement the network and
handle device communication under an Android operating
system. This allows for testing of performance on physical
ARM-based processors that would be commonly found in
handhelds. Rather than evaluate the system in emulation,
data rate tests of the Bluetooth network were performed
using PandaBoard platforms.

3. Operational and Testing Environment
Bluetooth technology provides for dynamically linked

mobile devices that can exploit the potential of wireless net-
works used in parallel computing. Bluetooth provides a low
power transmission mechanism that is commonly embedded
in most mobile devices nowadays. The widespread nature of
Bluetooth makes it an ideal technology for building ad hoc
networks to create a multiprocessor distributed infrastructure
from mobile devices. Bluetooth offers a great means of wire-
less communication for mobile devices: it offers low power
consumption, low cost, robustness, and ad hoc networking
protocol capabilities [6]. Bluetooth v4.0 was the most recent
version of the standard as this research was being conducted
and it significantly reduces energy consumption over prior
versions [7].

The target platform for this project is Android. Android
is an open source project and is the most popular mobile
platform in the market; 68.1% of mobile devices shipped
during the second quarter of 2012 use Android as their
operating system [8]. The prevalent and sophisticated nature
of Android allows for the creation of countless applications
with endless possibilities. Additionally, the Army is moving
towards utilizing Android as their main operating system for
mobile devices [9].

3.1 Android Parallel Computing Support
In the world of HPC, message passing (and the Mes-

sage Passing Interface [MPI]) is a widely used and tested
paradigm for parallelism. Following the Single Program-
Multiple Data (SPMD) paradigm, it can be useful for both
task and data parallelism. It has also been shown to be
effective in distributed memory systems [10]. MPI is a
library of routines for portable message passing programs in
parallel systems and thus the project’s initial investigation
evaluated MPI support for Android. Due to the fact that
Android deviates from the Linux kernel, Android does not
fully support common Linux applications and libraries. Con-
sequently, MPI was not successfully ported to Android. As
a result, an alternate approach to MPI was developed using
the radio frequency communication (RFCOMM) protocol
embedded in Bluetooth and fully supported by Android.

The difficulty of porting Linux applications to Android
lies in the two significant differences between the operating
systems. First, the Android operating system does not utilize
the standard Linux kernel. For example, Google chose to
branch off from the GNU kernel to create their own kernel
which gave them the flexibility to make changes that they felt
were necessary to increase efficiency on a low power device.
The Android kernel replaces the GNU libc with Bionic, a
lightweight libc library developed by Google to target low
power devices. The first of many differences between the
two libraries is that Bionic does not support the full C/C++
standard. It does not handle, throw, or pass C++ exceptions.
Since Android’s primary programming language is Java,
Google made the decision that all exceptions would be
handled at the Java run-time level. Additionally, Bionic does
not have the C++ Standard Template Library (STL). While
missing a few C++ libraries may not inhibit the porting
of many Linux libraries, additional differences between
Android and Linux certainly increases the difficulty.

The second difference between the Linux and Android
operating system is the degree to which they have imple-
mented additional libraries. When Google has a need for
certain functionality in the Android operating system that
another Linux library already provides, they choose, like
most programmers, to utilize the tried and tested Linux
library. That being said, Google forks their own version,
just like their kernel, and may only choose to support a
couple of functions in that library while leaving the others
undefined or unimplemented. In particular, the libpthread
library utilized by the Dalvik JVM has been stripped of a
few functions required by many of the libraries. Most of
the pthread library and functionality are still there, but it is
missing functions like pthread_cancel(); Google decided not
to support pthread_cancel() because doing this would involve
making the C library significantly larger for very little benefit
[11]. While many may argue that pthread_cancel() may be
required in certain scenarios and cannot or should not be
replaced by other pthread calls, ultimately, Google has the
choice of whether or not certain functionality is included
in its forked libraries. As such, the developer usually has to
build all required dependencies themselves should they wish



to port a Linux library to Android.

3.2 Bluetooth Technology Networks
The context of field operations assumes a zero network

infrastructure where dependence shifts to ad hoc networks.
An example MANET at the tactical edge could be a
collection of wireless mobile devices that can configure
to form a network without any preexisting infrastructure.
MANETs are robust, dynamic networks that can be rapidly
deployed and reconfigured, making them ideal for military
applications. Since they are extremely important parameters,
the Bluetooth standard is adopted to address the challenges
related to power consumption and battery life. Bluetooth
operates within the 2.4 GHz ISM band and hops over 79
channels (2 through 80) at a rate of 1600 hops per second
using the Time Division Duplex (TDD) scheme [12].

The BlueHoc system architecture is boss-worker, where
the boss can connect with a maximum of seven workers in a
piconet. A piconet is an ad hoc network connecting wireless
devices using the Bluetooth protocol. Because piconets have
a 3-bit address space notation, the maximum number of
devices is limited to 23 = 8, or eight devices composed of
one boss and seven workers. To expand the physical size
of the piconet network, two or more piconets can share
a common Bluetooth device acting as a bridge between
piconets to form a larger network known as scatternet. A
scatternet is formed in an ad hoc fashion when two or
more independent piconets overlap where a member of one
piconet, either a boss or a worker, elects to participate in a
scatternet. In a scatternet, a Bluetooth device can participate
as a worker in several piconets, but can only be a boss in
one piconet [13]. Figure 1 depicts an example configuration
of a scatternet consisting of three piconets.

Fig. 1: A scatternet configuration composed of three pi-
conets.

The current architecture of BlueHoc is static, meaning
that the workers are required to join the network and remain
connected throughout the work interval. For this preliminary
implementation, the boss waits for the workers to connect to
the network. After all the workers have completed the join
process, the boss is able to issue job requests. Job requests
are distributed among the workers as tasks by the boss and
the computed results are sent back by the workers to the

boss for the final result calculation. More elaborate protocols
for scatter-gather-broadcast could also be substituted into
this basic communication configuration. Figure 2 illustrates
the data flow of job requests and computed results of the
BlueHoc system architecture.

Fig. 2: BlueHoc architecture data exchange.

3.3 Network Performance
Latency and throughput tests are executed within an

Android application developed for the project. BlueHoc is
built upon an existing Bluetooth chat client provided as an
example for Bluetooth connectivity by the Android SDK.
The application delivers a very basic user interface (UI) that
provides the user with a text entry box and button to send
streams of text between boss and worker devices. There
is an option menu that allows for device connection and
enabling device discovery as well as a browser to select
from files to send. Device names are added and removed
from a “connected devices” list as each device enters/exits
the network. A series of performance tests were conducted to
determine the overall speed of transmission throughput and
latency of the network. The tests were performed between
two PandaBoards in close proximity running BlueHoc.

The ping utility (l2ping for Bluetooth devices) was not
functional for the Ice Cream Sandwich Android OS build
for PandaBoard. Therefore, the latency tests were conducted
programmatically. The latency was determined by transmit-
ting a small stream of data (44 bytes) and recording the
round trip time (RTT). The clock times were taken from
a single device to avoid synchronization between device
clocks. The latency was found to be about 37.8 ms taken
from an average of 500 recorded RTTs. As seen in Figure 3
the latency tends to stay between the 30 ms to 50 ms range.
Values were recorded periodically throughout a 30 minute
time window.

Next, the throughput tests were conducted for this Blue-
tooth network setup. An increasing range of file sizes was
transferred via data stream buffers over open Bluetooth
sockets between two PandaBoards. The process was repeated



Fig. 3: PandaBoard Bluetooth latency test results.

for multiple iterations to develop an average transfer time.
The ratio of file sizes to transmission time was recorded
and plotted. As seen in Figure 4, the throughput is very
low for less-than-one kilobyte of data. This speed steadily
increases until the file size exceeds five kilobytes at which
point transfer rate levels off at around 0.9 mbps. Considering
the bandwidth of the Bluetooth module on the PandaBoard
ES is rated at 2.1 mbps, the results suggest an achieved
throughput of roughly half the theoretical data rate. Per-
formance reduction can be justified by the application and
network overhead (e.g. broadcast traffic, packet collisions,
routing protocols, OS jitter).

Fig. 4: PandaBoard Bluetooth throughput test results.

4. Application and Performance
The Monte Carlo method for π estimation served as

a experimental application for distributed computing with
Android devices. Leveraging Bluetooth wireless technol-
ogy to establish a low power ad hoc network, multiple
mobile systems can collaborate in performing a collective
computation. The method used to estimate π followed the
implementation of the popular random darts method [14].
This method allows for an approximation of π to be cal-
culated by throwing darts randomly at a hypothetical dart
board. Imagine a unit circle circumscribed by a square. By
randomly throwing darts, hits inside the circle and square
will be proportional to the respective area of each part, which

can be written as

ndc

nds
=

ac

as
=

πr2

4r2
, (1)

where ndc is the number of darts in the circle, nds is the
number of darts in the square, ac is the area of the circle,
as is the area of the square, and r is the radius of the circle.

After substituting the number of darts in the square with
the total number of throws, solving for π leads to the
following equation:

π = 4× ndc

nt
, (2)

where nt is the number of dart throws. For this Monte Carlo
method, the value of π becomes more precise as the iteration
count increases.

A simple block scheduling algorithm handled the work-
load distribution across the multiple devices. The total num-
ber of iterations is evenly divided by the number of available
devices for computation. For the cases where the number
of devices fails to evenly divide the number of iterations,
the ceiling value of the division is issued to workers. Each
device is then initialized to compute their assigned number
of iterations for the problem. At this beginning stage of
Android distributed computing evaluation, the scheduling
technique ignores differences in performance characteristics
of a heterogeneous network of mobile devices. For example,
given twenty million iterations and five worker devices, each
device would compute four million iterations individually. In
the current implementation, the designated boss node does
not perform any dart throws, but gathers the results from
the connected nodes and performs the final calculation from
collected data.

Table 1: Specifications of Android devices.
Android Device Processor Android OS version
PandaBoard ES Cortex-A9 1.2 GHz Ice Cream Sandwich
Nexus 7 Tegra 3 1.3 GHz Jelly Bean
Samsung Galaxy SII Cortex-A9 1.2 GHz Ice Cream Sandwich
Asus Transformer Tegra 3 1.2 GHz Jelly Bean
Motorola Xoom Tegra 2 1 GHZ Honeycomb

The π application was analyzed on five different Android
platforms. Details regarding hardware specification and oper-
ating system setup are organized in Table 1. Non-distributed,
base performance measurements of a single device for differ-
ent Android devices are summarized in Figure 5. Regarding
the unexpected result of the Samsung Galaxy SII, running
background user applications adversely affected its execution
time (being an actively utilized smartphone). Consequently,
compared to the other Android devices under examination,
the Galaxy SII had a multitude of user applications installed
and loaded, taking a noticeable toll on the algorithm’s
performance.

The experimental test setup analyzed both homogeneous
and heterogeneous Bluetooth device networks. For this
exercise with block scheduling, the results obtained for
uniform device networks outperformed the mixed Android



Fig. 5: Single device execution times for various Android
platforms.

device network since the workload distribution was opti-
mal. Recorded execution times for PandaBoard networks
are presented in Table 2. To test a non-uniform Android
devices network, a heterogeneous network was formed by
using PandaBoard, Nexus 7, Samsung Galaxy, and Asus
Transformer. This simulates a scenario where Soldiers have
different types of mobile devices with different characteris-
tics at their disposal. Table 3 provides the execution times
for a Bluetooth network setup composed of different Android
devices as the number of iterations is increased to 108. A
graphical representation of the performance measurements
achieved is presented in Figure 6.

For the π estimation algorithm, parallel computing via
work distribution across multiple Android devices unequiv-
ocally reduces overall time to solution. As expected, a net-
work with a homogeneous makeup of devices shows superior
scalability as the overall time to result is bounded by the
slowest device (and hence inefficiencies for processors that
are spinning idle). Regardless of iterations or network type,
leveraging four Android devices for this computationally
intensive task decreased execution time to less than one
third of its original time in the worst case. The execution
time reduction exhibits the potential advantage of distributed
computing with Bluetooth networked Android devices.

Table 2: Execution times for homogeneous networks con-
sisting of PandaBoards.

PandaBoards (sec)
Iterations (millions) 1 2 3 4

10 8.11 4.15 3.09 2.12
25 20.21 10.16 7.39 5.20
50 40.08 20.14 15.18 10.33
75 65.00 30.52 22.59 15.47

100 84.34 41.74 33.00 20.83

5. Conclusion and Future Work
The capacity and capabilities of handheld devices continue

to improve with processing power and the creativity of
application developers. One of the biggest advances of these
devices is how they allow for geospatial awareness; the
user’s location can bring a wealth of information and be
an important filter to the vast number of queries these
devices process daily. By subscribing to the larger cloud,
these handhelds also become important sensors in the field.

Table 3: Execution times for heterogeneous networks con-
sisting of a mixture of Android devices.

PandaBoard
PandaBoard Nexus 7

PandaBoard Nexus 7 Asus Trans
Iterations PandaBoard Nexus 7 Asus Trans Galaxy SII
(millions) (sec) (sec) (sec) (sec)

10 8.11 4.75 3.19 2.49
25 20.21 11.16 7.49 6.22
50 40.08 22.14 17.28 12.06
75 65.00 33.52 24.39 18.30

100 84.34 43.74 34.05 24.09

Fig. 6: Mixed Android devices networks execution times.

From reporting weather, restaurant reviews, or traffic speeds,
important and often temporal data can be broadcast to a
wider user community.

However, making data and processing available when the
network connectivity of the cloud is not guaranteed is only
beginning to be investigated. By pooling the resources of
deployed mobile devices, one can envision scenarios where
data can be preloaded and distributed amongst devices where
the internal storage of one device would be insufficient.
Additionally, these devices can be brokered and shared,
thus providing either a faster time to solution, or a shared
workload to conserve battery life, or some combination of
the two. All of this can be accomplished using common
communication protocols, such as Bluetooth on the Android-
based devices described in this paper. This framework pro-
vides an important capability for a small group of friendly
forces geospatially co-located, and has been evidenced in the
small test study described in this paper.

As with other past research being conducted on mobile
networks using Bluetooth, BlueHoc is at its infancy. Fur-
ther advances are being planned, such as improvements in
scheduling to allow for device drop-out and drop-in along
with better load balancing. Discovery protocols will need to
incorporate host processor types and expected performance,
possibly coupled with scheduling approaches such as guided
self scheduling, to achieve optimal workload distribution.

6. Acknowledgments

This work was supported in part by the Army High Perfor-
mance Computing Research Center (AHPCRC) cooperative
agreement.



References
[1] “Industry first: Smartphones pass PCs in

sales,” http://tech.fortune.cnn.com/2011/02/07/
idc-smartphone-shipment-numbers-passed-pc-in-q4-2010/, 2011.

[2] “Measuring the information society,” http://www.itu.int/dms_pub/
itu-d/opb/ind/D-IND-ICTOI-2012-SUM-PDF-E.pdf, 2012, interna-
tional Telecommunication Union.

[3] D. Shires, B. Henz, S. Park, and J. Clarke, “Cloudlet seeding: Spatial
deployment for high performance tactical clouds.” Parallel and
Distributed Processing Techniques and Applications, 2012.

[4] R. Shepherd, J. Story, and S. Mansoor, “Parallel computation in
mobile systems using bluetooth scatternets and java,” in Parallel and
Distributed Computing and Networks, 2004, pp. 159–164.

[5] M. Gartrell, J. Kelly, and S. Razgulin, “Bluehydra: Distributed com-
puting on mobile bluetooth-enabled devices,” University of Colorado
at Boulder, Tech. Rep., 2008.

[6] “About the bluetooth sig: Overview,” http://www.bluetooth.org/About/
bluetooth_sig.htm.

[7] “Specification of the bluetooth system,” Bluetooth Special Interest
Group, Tech. Rep., June 2010, covered Core Package version: 4.0.

[8] D. Reisinger, “Android smartphone share quadruples iOS
in Q2,” http://news.cnet.com/8301-1035_3-57488926-94/
android-smartphone-share-quadruples-ios-in-q2/, August 2012.

[9] E. Montalbano, “Army selects android for mobile battlefield
network,” http://www.informationweek.com/government/mobile/
army-selects-android-for-mobile-battlefi/229402123, April 2011.

[10] P. S. Pacheco, Parallel programming with MPI. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1996.

[11] “Bionic C library overview,” http://github.com/android/platform_
bionic/blob/master/libc/docs/OVERVIEW.TXT, 2009.

[12] T. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[13] “Scatternet - part 1,” Ericsson, Tech. Rep., June 2004, baseband vs.
Host Stack Implementation.

[14] “Monte carlo methods,” in Statistics Applied to Clinical Trials,
T. Cleophas, A. Zwinderman, T. Cleophas, and E. Cleophas,
Eds. Springer Netherlands, 2009, pp. 479–486. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4020-9523-8_41


