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Abstract— The orthogonal qd algorithm with shifts (oqds al-
gorithm), proposed by von Matt, is an algorithm for computing
the singular values of bidiagonal matrices. This algorithm is
accurate in terms of relative error, and it is also applica-
ble to general triangular matrices. In particular, for lower
tridiagonal matrices, BLAS Level 2.5 routines are available
in preprocessing stage for this algorithm. BLAS Level 2.5
routines are faster than BLAS Level 2 routines widely used
in preprocessing for bidiagonalization. Generally, it takes
O(n3) operations to reduce a full n-by-n matrix to a band
matrix such as bidiagonal or lower tridiagonal matrix. On
the other hand, computing the singular values of a bidiagonal
or lower tridiagonal matrices takes only O(n2) operations.
Consequently, if we have an algorithm for computing the
singular values of lower tridiagonal matrices, we can expect
that the total computation time including preprocessing to
obtain the singular values is reduced.

In this paper, we consider the oqds algorithm for lower
tridiagonal matrices. We propose a shift strategy for lower
tridiagonal matrices to accelerate convergence and derive
criteria for deflation or splitting.

(This paper is submitted to PDPTA’13)
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1. Introduction
In 1997, von Matt proposed an algorithm, based on

Rutishauser’s qd algorithm [1], called orthogonal qd algorithm
with shifts (oqds algorithm) for computing the singular values
of bidiagonal matrices in which all the transformations consist
of Givens rotations [2]. It is shown that the oqds algorithm is
also applicable to general triangular matrices [3].

In this paper, we shall consider the application of the oqds
algorithm to lower tridiagonal matrices. It allows us to use
lower-tridiagonalization as pre-processing instead of bidiago-
nalization. The lower-tridiagonalization is less computational
complexity than the bidiagonalization. Further, we can adopt
BLAS Level 2.5 routines with efficient cache reuse which
are faster than BLAS Level 2 routines for implementation

of the lower-tridiagonalization. The oqds algorithm for lower
tridiagonal matrices thus enables us to reduce the total compu-
tation time to obtain the singular values of general triangular
matrices.

For practical use, we should design good shift strategies
for convergence acceleration and good convergence criteria
for accurate computation. However, appropriate shift strate-
gies and convergence criteria for lower tridiagonal matrices
have not been proposed yet. In this paper, we propose a
shift strategy consisting of the generalized Newton shift and
associated two methods, Laguerre shift and Kato-Temple shift,
and the well known Gerschgorin shift. Moreover, we design
new convergence criteria for deflation and splitting required
for the implementation of the oqds algorithm. By the criteria,
we can do the convergence test for lower tridiagonal matrices.
At the end, we show some results of numerical experiments
to compare the oqds algorithms for bidiagonal matrices and
for lower tridiagonal matrices.

2. Orthogonal QD Algorithm for Lower
Tridiagonal Matrix

Let

L =



α1

β1 α2

γ1 β2 α3

. . .
. . .

. . .

γn−2 βn−1 αn


(1)

be ann-by-n lower tridiagonal matrix. One step of Cholesky
LR method [4] with shiftσ2 transforms the lower tridiagonal
matrix L into the upper tridiagonal matrixU by

LT L − σ2I = UTU. (2)

Then, we setL := UT . By repeating this procedure iteratively,
the diagonal elements of the matrixL converge to the singular
values of the matrixL and the non-diagonal elements get
into zero. It is known that the Cholesky decomposition is
numerically unstable; the Cholesky decomposition may col-
lapse even if the shift valueσ is zero. For resolving this
problem, we use theimplicit Cholesky decomposition [2].
The implicit Cholesky decomposition is designed by using



Algorithm 1 Generalized Givens transformation
(rotg2(x1, x2, σ, c, s))

scale:= max(|x1| , |x2|)
if scale= 0 then

c := 1
s := 0

else
x1 := x1/scale
x2 := x2/scale
sig := σ/scale
norm2 := x2

1 + x2
2

r :=
√

norm2− sig2

c := (x1 × r + x2 × sig) /norm2
s := (x2 × r − x1 × sig) /norm2
x1 := scale× r
x2 := σ

end if

the generalized Givens transformation which is numerically
stable. The oqds algorithm is formulated as the iteration of
the implicit Cholesky LR step.

2.1 Implicit Cholesky decomposition

The implicit Cholesky decomposition computes an upper
tridiagonal matrixU from L andσ by an orthogonal transfor-
mation

Q

[
L
0

]
=

[
U
σI

]
, (3)

whereQ is a 2n-by-2n orthogonal matrix. It is readily verified
that, for the sameL and σ, the sameU is obtained by (3)
as by the Cholesky LR method (2). The orthogonal matrixQ
is given by superposition of the Givens and the generalized
Givens transformations onR2.

Definition 2.1 (Generalized Givens transformation [2]). Let
σ be a real. The transformation onR2

G

[
x1

x2

]
=

[
r
σ

]
(4)

by a 2-by-2 orthogonal matrixG is called the generalized

Givens transformation ifr = ±
√

x2
1 + x2

2 − σ2 andσ2 < x2
1+x2

2.
Such a matrixG is uniquely determined by

G =

[
c s
−s c

]
, (5)

[
c
s

]
=

1

x2
1 + x2

2

[
x1 x2

x2 −x1

] [
r
σ

]
. (6)

It should be noted that the generalized Givens transforma-
tion is equal to the ordinary Givens transformation ifσ = 0.
The procedure of the generalized Givens transformation is
shown in Algorithm 1. The first step of the implicit Cholesky

decomposition is a series of three orthogonal transformations:

G1



α1

β1 α2

γ1 β2
. . .

γ2
. . .

. . .

0
0
. . .

0



=



α̃1

β1 α2

γ1 β2
. . .

γ2
. . .

. . .

σ
0
. . .

0



, (7)

G2



α̃1

β1 α2

γ1 β2
. . .

γ2
. . .

. . .

σ
0
. . .

0



=



˜̃α1 β̃1 0
0 α̃2

γ1 β2
. . .

γ2
. . .

. . .

σ
0
. . .

0



, (8)

and then

G3



˜̃α1 β̃1 0
0 α̃2

γ1 β2
. . .

γ2
. . .

. . .

σ
0
. . .

0



=



α̌1 β̌1 γ̌1

0 α̃2

0 β̃2
. . .

γ2
. . .

. . .

σ
0
. . .

0



. (9)

In the first column, the first transformation (7) byG1 generates
the lower diagonal elementσ. The second (8), the third (9) by
G2, G3 vanishβ1, γ1, respectively. Here,G1 is the generalized
Givens transformation for the first and the (n+ 1)th rows and
G2, G3 are Givens transformations for the first and the second
rows, the first and the third rows, respectively. After the three
transformations, we obtain the first column of the matrix on
the right hand side of equation (3). Applying similar operations
for second to nth columns successively, we obtain the upper
tridiagonal matrixU in the equation (3) and let the nextL be
UT to continue the algorithm. The operations are numerically
stable.

Algorithm 2 summarizes the above procedures. The subrou-
tines “rotg” and “rot” appeared in the Algorithm 2 are basic
BLAS routines. If we call the “rotg(x1, x2, c, s)”, the rotation
angle of the Givens transformation is stored in the argumentsc
ands with cos and sin forms. The subroutine “rot(x1, x2, c, s)”



applies the Givens transformation defined by the argumentsc
and s.

Algorithm 2 Implicit Cholesky Decomposition for ann-by-n
lower tridiagonal matrixL (icds(L))

U := 0
for i = 1 to n do
α̌i := αi

rotg2(α̌i ,0, σ, c, s)

*eliminate subdiagonal element
rotg(α̌i , βi , c, s)
rot(β̌i , βi , c, s)

*eliminate subsubdiagonal element
rotg(α̌i , γi , c, s)
rot(β̌i , βi , c, s)
rot(γ̌i , γi , c, s)

end for
return Ľ

3. Shift Strategy
In the implicit Cholesky decomposition, proper choice of

the shift valueσ significantly accelerates convergence of the
oqds algorithm. The shift valueσ must be smaller than the
minimum singular value of the matrixL to keep the positive-
definiteness ofUTU. Therefore, we need a method to estimate
the lower bound of the minimum singular value of the lower
tridiagonal matrixL or the minimum eigenvalue ofLT L.

In this section, we discuss four types of lower bounds of
the minimum singular value or eigenvalue and design shift
method using them.

3.1 Gerschgorin Shift
Theorem 3.1 (Gerschgorin [5]). For an n-by-n matrix A=(
ai j

)
, let us define

Ri :=
∑
k,i

|aik |. (10)

Then, for any eigenvalueλ of A, there exists an integer i such
as

|λ − aii | ≤ Ri . (11)

If the matrix A is positive-definite symmetric, min(aii − Ri)
gives a lower bound of the eigenvalues since all the eigenval-
ues ofA are positive real number.

3.2 Generalized Newton shift
For a positive-definite symmetric matrixA and an arbitrary

positive integerp, the value of (Tr(A−p))−1/p is a lower bound
of the eigenvalues ofA. Then, finding the value of Tr{(LT L)−p},
we get a lower bound of the singular values ofL. We consider
a method of computing the value of Tr{(LT L)−p} in this
subsection.

Algorithm 3 Gerschgorin shift (gerschgorin(L))

σ := α2
n−1 + β

2
n−2 + γ

2
n−3 − |αn−3γn−3| − |βn−3γn−3 + αn−2βn−2|

if σ ≤ 0 then
return 0

end if
tmp := α2

n−2+β
2
n−3+γ

2
n−4−|αn−4γn−4|−|βn−4γn−4 + αn−3βn−3|−

|βn−3γn−3 + αn−2βn−2|
if tmp≤ 0 then

return 0
else if tmp< σ then
σ := tmp

end if
for i = N - 2 to 3 do

tmp := α2
i + β

2
i−1 + γ

2
i−2 − |αi−2γi−2| − |βi−1γi−1 + αiβi | −

|βi−2γi−2 + αi−1βi−1| − |αiγi |
if tmp≤ 0 then

return 0
else if tmp< σ then
σ := tmp

end if
end for
tmp := α2

2 + β
2
1 − |α1β1| − |β1γ1 + α2β2| − |α2γ2|

if tmp≤ 0 then
return 0

else if tmp< σ then
σ := tmp

end if
tmp := α2

1 − |α1β1| − |α1γ1|
if tmp≤ 0 then

return 0
else if tmp< σ then
σ := tmp

end if

Let L̄ be ann-by-n lower tridiagonal matrix,

L̄ =



ᾱ1

β̄1 ᾱ2

γ̄1 β̄2 ᾱ3

. . .
. . .

. . .

γ̄n−2 β̄n−1 ᾱn


(12)

determined fromL with shift s by

L̄L̄T = LLT − sI. (13)

The relationships among elements are given by

ᾱ2
i + β̄

2
i−1 + γ̄

2
i−2 = α

2
i + β

2
i−1 + γ

2
i−2 − s, (14)

β̄i−2γ̄i−2 + ᾱi−1β̄i−1 = βi−2γi−2 + αi−1βi−1, (15)

ᾱi−2γ̄i−2 = αi−2γi−2. (16)

Differentiating equations (14)–(16) with respect tos, we obtain

2ᾱi ᾱ
′
i + 2β̄i−1β̄

′
i−1 + 2γ̄i−2γ̄

′
i−2 = −1, (17)

β̄′i−2γ̄i−2 + β̄i−2γ̄
′
i−2 + ᾱ

′
i−1β̄i−1 + ᾱi−1β̄

′
i−1 = 0, (18)



ᾱ′i−2γ̄i−2 + ᾱi−2γ̄
′
i−2 = 0. (19)

Note that theαi , βi , γi are independent ofs but theᾱi , β̄i , γ̄i

are not. Differentiating once more, we get

2ᾱ′2i + 2ᾱi ᾱ
′′
i + 2β̄′2i−1

+ 2β̄i−1β̄
′′
i−1 + 2γ̄′2i−2 + 2γ̄i−2γ̄

′′
i−2 = 0, (20)

ᾱ′′i−2γ̄i−2 + 2ᾱ′i−2γ̄
′
i−2 + ᾱi−2γ̄

′′
i−2 = 0, (21)

β̄′′i−2γ̄i−2 + 2β̄′i−2γ̄
′
i−2 + β̄i−2γ̄

′′
i−2

+ ᾱ′′i−1β̄i−1 + 2ᾱ′i−1β̄
′
i−1 + ᾱi−1β̄

′′
i−1 = 0. (22)

Let us write the eigenvalues of the matrixLLT by
λ1, λ2, · · · , λn. Then, the characteristic polynomial of the ma-
trix L̄L̄T

f (s) = det(LLT − sI)

= (λ1 − s)(λ2 − s) · · · (λn − s), (23)

because of the triangularity of the matrixL, is expressed by

f (s) = ᾱ1ᾱ2 · · · ᾱn. (24)

Let us define

g(s) := − f ′(s)
f (s)

= −2
ᾱ′1
ᾱ1
− 2
ᾱ′2
ᾱ2
− · · · − 2

ᾱ′n
ᾱn
, (25)

h(s) := g′(s)

= −2
ᾱ′′1 ᾱ1 − ᾱ′21
ᾱ2

1

− · · · − 2
ᾱ′′n ᾱn − ᾱ′2n
ᾱ2

n
(26)

so thatg(0) = Tr{(LT L)−1} and h(0) = Tr{(LT L)−2}. Each ᾱi

tends toαi as s → 0. Hence, we can calculate the value
of ᾱ′i , β̄

′
i , γ̄

′
i , ᾱ

′′
i , β̄′′i , γ̄′′i at s = 0 from αi , βi , γi by

using (17)–(22), and theng(0) and h(0) by (25) and (26).
It is clear by the definition ofg(0) and h(0) that the values
are always nonnegative without numerical error (in infinite-
precision arithmetic). The procedure of computation for the
traces of lower tridiagonal matrixL is shown in Algorithm 4.
The generalized Newton shift is value of 1/

√
tr2.

3.3 Laguerre Shift
If we already have the value of Tr{(LLT)−1} and Tr{(LLT)−2},

we could improve the sharpness of the shift byO(1) operation.
Laguerre shift is one of the methods to improve the shift value.

Theorem 3.2 (Laguerre [7]). For an n-by-n positive-definite
symmetric penta-diagonal matrix B= LLT , let θ be the
following value:

θ :=
n

Tr
(
B−1
)
+

√
(n− 1)

(
nTr
(
B−2
) − Tr

(
B−1
)2) .

Then, theθ is a lower bound of the eigenvalues of B which is
greater thanTr(B−1)

−1
and Tr(B−2)

−1/2
.

If the valuenTr
(
B−2
)
−Tr
(
B−1
)2

is negative, Laguerre shift
is useless. In that case, we adopt the generalized Newton shift.
Algorithm 5 shows a procedure of Laguerre method.

Algorithm 4 Computation for the traces (trace(L))
α′1 := −1/(2α1)
β′1 := −α′1β1/α1

γ′1 := −α′1γ1/α1

α′2 := (−β1β
′
1 − 0.5)/α2

β′2 := −(γ′1β1 + γ1γ
′
1 + α

′
2β2)/α2

α′3 := −(1+ 2× γ1γ
′
1 + 2β2β

′
2)/(2α3)

α′′1 := −α′1
2/α1

β′′1 := −(α′′1β1 + 2α′1β
′
1)/α1

γ′′1 := −(α′′1γ1 + 2α′1γ
′
1)/α1

α′′2 := −(β′1
2 + β1β

′′
1 + α

′
2

2)/α2

β′′2 := −(γ′′1 β1 + 2γ′1β
′
1 + γ1β

′′
1 + α

′′
2β2 + 2α′2β

′
2)/α2

α′′3 := −(γ′1
2 + γ1γ

′′
1 + β

′
2

2 + β2β
′′
2 + α

′
3

2)/α3

for i = 4 to N do
γ′i−2 := −α′i−2γi−2/αi−2

β′i−1 := −(β′i−2γi−2 + βi−2γ
′
i−2 + α

′
i−1βi−1)/αi−1

α′i := −(1+ 2βi−1β
′
i−1 + 2γi−2γ

′
i−2)/(2αi)

γ′′i−2 := −(α′′i−2γi−2 + 2α′i−2γ
′
i−2)/αi−2

β′′i−1 := −(β′′i−2γi−2 + 2β′i−2γ
′
i−2

+βi−2γ
′′
i−2 + α

′′
i−1βi−1 + 2α′i−1β

′
i−1)/αi−1

α′′i := −(α′i
2 + β′i−1

2 + βi−1β
′′
i−1 + γ

′
i−2

2 + γi−2γ
′′
i−2)/αi

end for
tr1 := 0
for i = 1 to N do

tr1 := tr1− (2α′i /αi)
end for
tr2 := 0
for i = 1 to N do

tr2 := tr2− 2(α′′i αi − α′i
2)/α2

i
end for
return (tr1, tr2)

Algorithm 5 Laguerre shift (laguerre(tr1, tr2))
(tr1, tr2) := trace(L)
tmp := n× tr2− tr12

if tmp> 0 then
return n/(tr1+

√
(n− 1)× tmp)

else
return 0

end if

3.4 Kato-Temple Shift
There is another lowerbound, Kato-temple shift.

Theorem 3.3 (Kato-Temple [8]). For an n-by-n symmetric
matrix An, let An−1 denote the submatrix of An obtained by
deleting the last row and column. For any lower boundλ∗

of the eigenvalues of An−1, and for any x∈ Rn, ∥x∥ = 1, let
ρ = xT Ax. Then, ifρ < λ∗ , the value

ρ − ∥Anx− ρx∥2
λ∗ − ρ ≤ λmin (An)

gives a lower bound of the eigenvalues of An.

We choosex = (0, . . . ,0,1)T . The method requiresλ∗ which
is a lower bound for the submatrixAn−1, but the generalized
Newton method enables us to find the lower bound ofAn−1



in computation of the lower bound ofAn. Consequently, we
obtain one more improved shift value byO(1) operation.
Algorithm 6 shows a procedure of Kato-Temple method. The

Algorithm 6 Kato-Temple method

x := (0, . . . ,0,1)T

(tr1, tr2) := trace(Ln−1)
λ∗ := laguerre(tr1, tr2)
ρ := xT Ln−1x
if ρ < λ∗ then

return ρ − ∥Anx− ρx∥2/ (λ∗ − ρ)
else

return 0
end if

procedure of the proposed shift composed by the generalized
Newton, Laguerre and Kato-Temple is shown in Algorithm 7.
We adopt the largest value of them.

3.5 Applying Shift
Among the shifts discussed in this section, we cannot

determine which is the most effective. The sharpness of each
shift depends on the type of matrix, and the type of matrix is
unknown before computing. Laguerre shift often gives sharp

shift but if the value ofnTr
(
B−2
)
− Tr

(
B−1
)2

is negative,
we cannot adopt the shift. Besides, even if a shift value is
smaller than minimum singular value, iteration of the oqds
algorithm might fail. For example, ifσ > x2

1 + x2
2, we could

not apply the generalized Givens transformation. Gerschgorin
shift gives a sharp value if the subdiagonal and second-
subdiagonal elements are small. On the other hand, if non-
diagonal elements are too large, Gerschgorin shift gives useless
value such as zero or negative value. In such a case, we should
choose another shift. Generalized Newton shift always gives
usable value in the case other shifts failed.

For those reasons, we should design a proper shift strategy.
Generally, non-diagonal elements converge to zero in the oqds
algorithm, and after deflation or splitting, the eigenvalues of
the matrixA become more clustered. Therefore, we adopt the
largest value of generalized Newton, Laguerre, Kato-Temple
shift first, and if the generalized Givens transformation failed,
then we move to the Gerschgorin shift. Then, one step of
the oqds algorithm works as Algorithm 8. The subroutine
“gerschgorin(L)” returns the value of Gerschgorin shift of
matrix L.

4. Convergence Criteria
It is nontrivial how to assess a series of matrices generated

by the iterative process of the oqds algorithm converges
sufficiently.Besides, in the implementation of this algorithm,
deflation and splitting are required for activating the shift
method. In this section, we consider the situation that deflation
or splitting is available where the values of subdiagonal and
second-subdiagonal elements are so small.

Let us write

L̂ := L − βkek+1ek
T

Algorithm 7 Proposed shift (algshift(L))
α′1 := −1/(2α1)
β′1 := −α′1β1/α1

γ′1 := −α′1γ1/α1

α′2 := (−β1β
′
1 − 0.5)/α2

β′2 := −(γ′1β1 + γ1γ
′
1 + α

′
2β2)/α2

α′3 := −(1+ 2× γ1γ
′
1 + 2β2β

′
2)/(2α3)

α′′1 := −α′1
2/α1

β′′1 := −(α′′1β1 + 2α′1β
′
1)/α1

γ′′1 := −(α′′1γ1 + 2α′1γ
′
1)/α1

α′′2 := −(β′1
2 + β1β

′′
1 + α

′
2

2)/α2

β′′2 := −(γ′′1 β1 + 2γ′1β
′
1 + γ1β

′′
1 + α

′′
2β2 + 2α′2β

′
2)/α2

α′′3 := −(γ′1
2 + γ1γ

′′
1 + β

′
2

2 + β2β
′′
2 + α

′
3

2)/α3

for i = 4 to N do
γ′i−2 := −α′i−2γi−2/αi−2

β′i−1 := −(β′i−2γi−2 + βi−2γ
′
i−2 + α

′
i−1βi−1)/αi−1

α′i := −(1+ 2βi−1β
′
i−1 + 2γi−2γ

′
i−2)/(2αi)

γ′′i−2 := −(α′′i−2γi−2 + 2α′i−2γ
′
i−2)/αi−2

β′′i−1 := −(β′′i−2γi−2 + 2β′i−2γ
′
i−2

+βi−2γ
′′
i−2 + α

′′
i−1βi−1 + 2α′i−1β

′
i−1)/αi−1

α′′i := −(α′i
2 + β′i−1

2 + βi−1β
′′
i−1 + γ

′
i−2

2 + γi−2γ
′′
i−2)/αi

end for
tr1 := 0
for i = 1 to N − 1 do

tr1 := tr1− (2α′i /αi)
end for
tr2 := 0
for i = 1 to N − 1 do

tr2 := tr2− 2(α′′i αi − α′i
2)/α2

i
end for
λ∗ := 1/sqrt(tr2)
tmp := n× tr2− tr12

if tmp> 0 then
λ∗ := max(λ∗,n/(tr1+

√
(n− 1)× tmp))

end if
tr1 := tr1− (2α′N/αN)
tr2 := tr2− 2(α′′NαN − α′N

2)/α2
N

shi f t := 1/sqrt(tr2)
x := (0, . . . ,0,1)T

ρ := xT Ln−1x
if ρ < λ∗ then

shi f t := max(shi f t, ρ − ∥Anx− ρx∥2/ (λ∗ − ρ))
end if
tmp := n× tr2− tr12

if tmp> 0 then
shi f t := max(shi f t,n/(tr1+

√
(n− 1)× tmp))

end if
return shi f t



Algorithm 8 oqds step(oqds(L, shi f t))
f lag := 0
if f lag = 0 then
σ := algshift(L)

else if f lag := 1 then
σ := gerschgorin(L)

else
σ := 0

end if
if σ + shi f t= shi f t then

Ľ := icds(L,0)
L := Ľ

else
Ľ := icds(L, σ)
if α̌ , α̌ then

f lag := f lag+ 1
else

shi f t := shi f t+ σ
L := Ľ

end if
end if

which is the matrix equal toL except for zero at (k+1, k)-entry.
Then

LT L = L̂T L̂ + E1, (27)

LLT = L̂L̂T + E2 (28)

hold, where

E1 := β2ekek
T + αk+1βk

(
ekeT

k+1 + ek+1eT
k

)
+βkγk−1

(
ek−1eT

k + ekeT
k−1

)
, (29)

E2 := β2ek+1ek+1
T + αkβk

(
ek−1eT

k + ekeT
k−1

)
+βkγk

(
ek+1eT

k + ekeT
k+1

)
. (30)

Theorem 4.1 (Weyl’s monotonicity theorem [9], [10]). For
an n-by-n positive-definite matrix A, letλi (A) denote the i-th
largest eigenvalue of A. Then, there exist reals ui and vi such
that

λi

(
LT L
)
= λi

(
L̂T L̂
)
+ ui ∥E1∥1 , (31)

λi

(
LLT
)
= λi

(
L̂L̂T
)
+ vi ∥E2∥1 (32)

where |ui | ≤ 1, |vi | ≤ 1.

From the definitions (29) and (30) ofE1 and E2, we have

∥E1∥1 = ∥E1∥∞ = |βk| (|αk+1| + |βk| + |γk−1|) , (33)

∥E2∥1 = ∥E2∥∞ = |βk| (|αk| + |βk| + |γk|) . (34)

By Weyl’s monotonicity theorem, we thus get the numerical
deflation or splitting criterion to neglect a subdiagonal element
βk:

σ2 + |βk| (|βk| +min(|αk+1| + |γk−1| , |αk| + |γk|)) ≃ σ2, (35)

where ‘≃’ means that the left-hand side and the right-hand
side are numerically equal. We assume thatβk is so small and
negligible provided that (35) holds numerically.

Similarly, we get the numerical criterion for neglecting a
second-subdiagonal elementγk. On the setting of

L̂ := L − γkek+2ek
T ,

the perturbation matrices are given by

E′1 := γ2ekek
T + αk+2γk

(
ek+2eT

k + ekeT
k+2

)
+βk+1γk

(
ek+1eT

k + ekeT
k+1

)
,

E′2 := γ2ek+2ek+2
T + αkγk

(
ek−2eT

k + ekeT
k−2

)
+βkγk

(
ek−1eT

k + ekeT
k−1

)
.

Then, by evaluating the 1- and∞-norms of these matrices,
we obtain the criterion for neglecting a second-subdiagonal
elementγk as follows:

σ2 + |γk| (|γk| +min(|αk+2| + |βk+1| , |αk| + |βk|)) ≃ σ2. (36)

For the matrices in iteration, we perform deflation and splitting
as follows:

1) If βn−1 andγn−2 in the last row satisfy the criteria (35)
and (36), then we deflate the matrix by deleting the last
row and column.

2) If βk−1, γk−1 andγk−2 satisfy the criteria (35) and (36),
then we split the matrix into two submatrices formed by
rows and columns 1 tok− 1 andk to n, respectively.

5. Numerical Experiments
Some numerical experiments were performed for the oqds

algorithms for bidiagonal matrices and for lower tridiagonal
matrices. The singular values of square random matrices were
computed by the oqds algorithm for bidiagonal matrices by
von Matt and by the oqds algorithm for lower tridiagonal
matrices which we propose. It should be noted that: The oqds
for bidiagonal matrices were applied to random bidiagonal
matrices and the proposed oqds algorithm for lower tridiagonal
matrices were applied to random lower tridiagonal matrix.
The numerical experiments were performed on a Linux PC
with Intel Core i7 920 (Nehalem) 2.66GHz and DDR3-1066
12GB memory. Table 1 shows the computation time of each
algorithm. The first row shows the size of matrices. The
second and the third rows show the computation time taken
by the oqds algorithm for bidiagonal matrices and for lower
tridiagonal matrices, respectively.

Table 1

Computation time (seconds)

matrix size 10000 20000 30000
oqds for bidiagonal 11.764 43.243 93.080

proposed oqds for lower tridiagonal 27.089 100.013 210.225

5.1 Discussion
Hence, in order to compute the eigenvalues of matrices

of the same size, the oqds algorithm for lower tridiagonal
matrices is expected to take a longer computation time than the
oqds for bidiagonal matrices. From Table 1, we observe that
the computation time in the former algorithm is not extremely



longer than the latter algorithm: the former is two or three
times slower than the latter.

This observation demonstrates that the oqds algorithm for
lower tridiagonal matrices is practically useful for the general
dense matrices. Commonly, the computation of the singular
values of a dense matrix is twofold:

1) preprocess of reducing into a sparse band matrix.
2) singular computation of the sparse band matrix.

The computation time for preprocess is estimatedO(n3) while
for the singular value computationO(n2). Hence, a vast amount
of the computation time is consumed by the preprocess. On
the preprocess for dense matrices, it is reported in [11] that
the reduction into a lower tridiagonal matrix is about 50%
faster than that into bidiagonal matrices. Therefore, the total
time of preprocess into a lower tridiagonal matrix and the
oqds for lower tridiagonal matrices is much faster than the
time of preprocess into bidiagonal matrices and the oqds for
bidiagonal matrices.

6. Conclusions
We proposed the oqds algorithm for lower tridiagonal

matrices. Though computing singular values of lower tridi-
agonal matrices takes longer time than bidiagonal matrices,
preprocess reducing dense matrices into lower tridiagonal
matrices takes less time than into bidiagonal matrices. Not only
simple reduction of computational complexity, we can apply
the BLAS Level 2.5 routines to lower tridiagonalization. The
BLAS Level 2.5 routines are more cache efficient than BLAS
Level 2 routines commonly applied to bidiagonalization. A
cache efficient algorithm saves a number of memory accesses
which waste a big time. The computation time for preprocess
is estimatedO(n3) while for the singular value computation
O(n2), hence, a vast amount of the computation time is
consumed by the preprocess. Therefore, if we can compute the
singular values of lower tridiagonal matrices not so longer than
for bidiagonal matrices, it is expected that total computation
time decreases extremely.

For an implementation of this algorithm, we proposed a new
shift strategy consisting of the generalized Newton shift and
associated two methods, Laguerre shift and Kato-Temple shift,
and the well known Gerschgorin shift. Moreover, we design
new convergence criteria for deflation and splitting required
for the implementation of the oqds algorithm. By the criteria,
we can do the convergence test for lower tridiagonal matrices.

As a result, the algorithm computes the singular values of
a lower tridiagonal matrix withinO(n2) computation time.
Although it takes about two or three times as long time for
tridiagonal matrices as for bidiagonal matrices, proposed algo-
rithm is expected to be faster than the conventional methods
since the preprocessing requiresO(n3) operations and takes
much larger time than the oqds algorithm.

As a future work, we have to perform more experiment to
compare the computation time including preprocessing. Fur-
thermore, exact error analysis should be made and we ought
to check out the accuracy of the algorithm after improving the
implementation and setting proper test matrices which have
known eigenvalues.
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