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Abstract— The orthogonal gd algorithm with shifts (oqds al-of the lower-tridiagonalization. The oqds algorithm for lower
gorithm), proposed by von Matt, is an algorithm for computingidiagonal matrices thus enables us to reduce the total compu-
the singular values of bidiagonal matrices. This algorithm itation time to obtain the singular values of general triangular
accurate in terms of relative error, and it is also applica-matrices.
ble to general triangular matrices. In particular, for lower For practical use, we should design good shift strategies
tridiagonal matrices, BLAS Level 2.5 routines are availabléor convergence acceleration and good convergence criteria
in preprocessing stage for this algorithm. BLAS Level 2for accurate computation. However, appropriate shift strate-
routines are faster than BLAS Level 2 routines widely usefles and convergence criteria for lower tridiagonal matrices
in preprocessing for bidiagonalization. Generally, it takefave not been proposed yet. In this paper, we propose a
O(n®) operations to reduce a full n-by-n matrix to a bandshift strategy consisting of the generalized Newton shift and
matrix such as bidiagonal or lower tridiagonal matrix. Onassociated two methods, Laguerre shift and Kato-Temple shift,
the other hand, computing the singular values of a bidiagonahd the well known Gerschgorin shift. Moreover, we design
or lower tridiagonal matrices takes only (67) operations. new convergence criteria for deflation and splitting required
Consequently, if we have an algorithm for computing thfer the implementation of the oqds algorithm. By the criteria,
singular values of lower tridiagonal matrices, we can expegte can do the convergence test for lower tridiagonal matrices.
that the total computation time including preprocessing tAt the end, we show some results of numerical experiments
obtain the singular values is reduced. to compare the oqds algorithms for bidiagonal matrices and
In this paper, we consider the oqgds algorithm for lowefor lower tridiagonal matrices.
tridiagonal matrices. We propose a shift strategy for lower

tridiagonal matrices to accelerate convergence and deri .
criteria for deflation or splitting. Vf Orthogonal QD Algorlthm for Lower

(This paper is submitted to PDPTA'13) Tridiagonal Matrix
Let
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singular value computation, orthogonal qd algorithm, lower B @
tridiagonal matrix, shift strategy, deflation, splitting. L=| 7 B2 a3 (1)
1. Introduction M-z Pri an

In 1997, von Matt proposed an algorithm, based dpe ann-by-n lower tridiagonal matrix. One step of Cholesky
Rutishauser’s qd algorithm [1], called orthogonal qd algorithfaR method [4] with shifto? transforms the lower tridiagonal
with shifts (oqds algorithm) for computing the singular valuedatrix L into the upper tridiagonal matri by

of bidiagonal matrices in which all the transformations consist LTL— o2l =UTU @)
of Givens rotations [2]. It is shown that the ogds algorithm is ’
also applicable to general triangular matrices [3]. Then, we set. := UT. By repeating this procedure iteratively,

In this paper, we shall consider the application of the ogdise diagonal elements of the mattixconverge to the singular
algorithm to lower tridiagonal matrices. It allows us to usealues of the matrixL and the non-diagonal elements get
lower-tridiagonalization as pre-processing instead of bidiagimto zero. It is known that the Cholesky decomposition is
nalization. The lower-tridiagonalization is less computationalumerically unstable; the Cholesky decomposition may col-
complexity than the bidiagonalization. Further, we can adofatpse even if the shift value- is zero. For resolving this
BLAS Level 2.5 routines with ficient cache reuse whichproblem, we use themplicit Cholesky decomposition [2].
are faster than BLAS Level 2 routines for implementatiohe implicit Cholesky decomposition is designed by using



Algorithm 1 Generalized Givens transformationgecomposition is a series of three orthogonal transformations:
(rotg2(xq, X2, 0, C, )

scale:= max(|xy|, |Xa|) Zl o ;1 o
if scale= 0 then ron2 1o
c=1 y1 B2 Y1 B
s:=0 .
else Y2 - Y2
X = Xi/scale G, = , @)
X2 1= Xp/scale
sig:= o/scale 0 o
norn2 := X% + X3 0 0
r:= {/norm2 — sig? , )
C:= (Xg XTI + X2 X sig) /norm2 0 0
S:= (X X I — Xy X Sig) /norm2 ) S )
il : scalex r [y 1 1 &4 [31 0
2.=0 a 0 «a
end if P2 _ ?
Y1 B2 - 7 B2
Y2 Y2
the generalized Givens transformation which is numerically . .
stable. The oqds algorithm is formulated as the iteration of G2 : = ) G
the implicit Cholesky LR step.
(on g
0 0
2.1 Implicit Cholesky decomposition
The implicit Cholesky decomposition computes an upper 0 0
tridiagonal matrixU from L ando by an orthogonal transfor- and then
mation (&1 B O 1 [d& B %
L U 0 a 0 a
Q5 |-| o] ® | ;
Y1 B2 - 0 B
whereQ is a 2r-by-2n orthogonal matrix. It is readily verified vo oo v2
that, for the samd. and o, the sameU is obtained by (3) . .
as by the Cholesky LR method (2). The orthogonal ma@ix Gs : = ) )
is given by superposition of the Givens and the generalized
Givens transformations oR?. g 0 T 0
Definition 2.1 (Generalized Givens transformation [2])et )
o be a real. The transformation @?f 0 : 0
il = [ r ] (4) Inthe first column, the first transformation (7) B4 generates
2 7 the lower diagonal element. The second (8), the third (9) by

by a 2-by-2 orthogonal matri is called the generalized G2: G3 vanishpi, y1, respectively. HereG; is the generalized
Givens transformation for the first and the+ 1)th rows and

G,, G3 are Givens transformations for the first and the second
rows, the first and the third rows, respectively. After the three

c s transformations, we obtain the first column of the matrix on
e-| 5 ¢

Givens transformation if = + \/x2 + X2 — o2 ando? < X2+x3.
Such a matrixG is uniquely determined by

(5) the right hand side of equation (3). Applying similar operations
for second to nth columns successively, we obtain the upper
tridiagonal matrixU in the equation (3) and let the nektbe

c|_ 1 X1 X r UT to continue the algorithm. The operations are numerically

[ S ] - m X2 —X1 H ] ®)  stable.

Algorithm 2 summarizes the above procedures. The subrou-
It should be noted that the generalized Givens transformties “rotg” and “rot” appeared in the Algorithm 2 are basic
tion is equal to the ordinary Givens transformationrit= 0. BLAS routines. If we call the “rotg{, xo, c, )", the rotation

The procedure of the generalized Givens transformation @sgle of the Givens transformation is stored in the arguments

shown in Algorithm 1. The first step of the implicit Choleskyand s with cos and sin forms. The subroutine “not(X», C, )"

-S C

a



applies the Givens transformation defined by the argumentélgorithm 3 Gerschgorin shift (gerschgorin))

ands. o=k + B2+ Y2 g~ lan-ayn-3l — Bn-3¥n-3 + @n-2Bn2l
. _ _ if o <0then
Algorithm 2 Implicit Cholesky Decomposition for an-by-n return 0
lower tridiagonal matrix_ (icds()) end if
U : 0 tmp:= a’ﬁ_z +,3ﬁ_3+7r21_4_|a'n—47n—4|_|ﬁn—4)’n—4 + an-3Bn-3l—
fori=1tondo |Bn-3Yn-3 + @n-28n-2|
aj =« if tmp< 0 then
rotg2(@;,0,0,c, ) return 0O
else iftmp < o then
*eliminate subdiagonal element o =tmp
rotg(ai, Bi, C, s) end if
rot(3i, B, c, ) fori =N-2to 3do
o . tmp = a? + B2, +v2, — l@i_2vical — Biryics + @il —
*eliminate subsubdiagonal element |Bi—2yi—2 + @i_1Bi_1] — |aivil
rotg(@, i, C, S) if tmp< 0 then
rot(3i, Bi, c, S) return O
rot(yi, vi, C, S) else iftmp< o then
end for o =tmp
return L end if
end for

tmp:= a5 + B3 — |1l - [Bry1 + azBal — lazya|
) if tmp< 0 then

3. Sh|ft Strategy return O

In the implicit Cholesky decomposition, proper choice of else iftmp< o then
the shift valueo significantly accelerates convergence of the o =tmp
oqds algorithm. The shift value must be smaller than the end if
minimum singular value of the matrix to keep the positive-  tmp:= af — |a1B1| — ey
definiteness o) TU. Therefore, we need a method to estimate if tmp< 0 then
the lower bound of the minimum singular value of the lower return 0O
tridiagonal matrixL or the minimum eigenvalue dfTL. else iftmp< o then

In this section, we discuss four types of lower bounds of o =tmp
the minimum singular value or eigenvalue and design shiftend if
method using them.

3.1 Gerschgorin Shift Let L be ann-by-n lower tridiagonal matrix,

Theorem 3.1 (Gerschgorin [5]) For an n-by-n matrix A=
(a”), let us define X2

1 P2 a3 (12)
R = lawl. (10) L

ki
Then, for any eigenvalue of A, there exists an integer i such

’?n—z ﬂn—l 67n

determined fromL with shift s by

as
LLT = LLT - sl. 13
|- ail <R. (11) (13)
If the matrix A is positive-definite symmetric, mi@a; — R}) The relationships among elements are given by

gives a lower bound of the eigenvalues since all the eigenval- AP +y =+ v, —S (14)

ues of A are positive real number. B B
Bi-2Yi-2 + @i-1Bi-1 = fi-2Yi-2 + @i-1Bi-1, (15)

3.2 Generalized Newton shift o
Qi-2Yi-2 = @i-2Yi-2. (16)

For a positive-definite symmetric matr& and an arbitrary
positive integerp, the value of (TrA™P))*'P is a lower bound Differentiating equations (14)—(16) with respecstove obtain
of the eigenvalues ok. Then, finding the value of TELTL) ™"}, — =S - -
we get a lower bound of the singular valuesLofWe consider 2010} + 2Bi1fi_y + 2vi-2Yi o = -1, (17)
a method of computing the value of {Tt"L)™"} in this _— — _ - = _ -
subsection. Bi_oYi-2 + Bi-2Yi_p + @i_1fi-1 + i1, = 0, (18)



@_yYi2 + @i-2y|_5 = 0. (19) Algorithm 4 Computation for the traces (tratgy

. e =-1m)
Note that thew;, Bi, vi are independent of but thea;, 8i, vi B = —a/Bi/ar
are not. Diferentiating once more, we get y/l - _a,lyl/al
1 1
207" + 2 + 28 e

- = o, By = —(yifr + y1v) + afe) /a2
+ 2848y + 2725 + 2yi27} , = 0, (20) = —(1+ 2% 174 + 2B285)/(23)
. ’2
& Yo + 20y, + @2y, =0, 21 @y = —ayt/ay
i—2Yi-2 i—2Yi-2 i-2Yi—2 ( ) ;]_’ : _(a'a_’ﬁl + 2a/§|_ﬁ;|_)/al

o o 7 n T Y1 = _(CY”'YJ_ + 20’”}”)/&1
BiloYiee + 285, +ﬁ_i—27i—2 B _ a}z’ -— _(ﬁiz +’31’8,1,1+la,22)/az
+ o Bic1+20]_ B+ @i, =0. (22) By = —(y’l’,fl +2y\8) + %/1,8’1’ +aj B J; 2,3,/ a2
Let us write the eigenvalues of the matrikL" by %3r .i:—_ytlo ;7&13/1 TPy + Bofy + a5l s
A1, A2, - -+, An. Then, the characteristic polynomial of the ma- .. ,
trix EET Yi—2 -= _ai_zyi—z/a’i—z
Bi_y = =B _yYi2 + Bi2y{_, + a]_fi-1) /i1
f(s) = detLL" - sl) a 1= —(1+ 281118, + 2yi—2y/_,)/ ()
= (- 92— 9 (-9, (23) Vo = (oY + 200 5y o) [@ia
. . - Bl =-Blyyi2+ 287,
because of the triangularity of the matiix is expressed by . +ﬁi—227{i ,+al B+ gaif_lﬁif_l) /i1
f(s) = a1z - - an. (24) @ = —(a{" + B+ BBy + ¥ +vicay! L) ai
end for
Let us define trl:=0
f’(s) o, _al a fori=1toN do
9(9) = - = 2= -2=2 ... 2=, (25) trl = trl - (22 /ai)
f(s) ai a2 an i
end for
tr2:=0
h(s) :=d'(s .
S g(_?/_ —» —— —p for i=1toN do
_ N T % 5@~ dn (26) tr2 = tr2-2(a'e; - &/%)/a?
a? a? end for

1 2 _ return (trl,tr2)
so thatg(0) = Tr{(L"L) "} and h(0) = Tr{(L"L) “}. Eacha;

tends toe; as s — 0. Hence, we can calculate the value : :
of &, B, ¥, a’, B/, ¥’ at's = 0O from aj, Bi, v by Algorithm 5 Laguerre shift (laguerrée(l, tr2))
using (17)—(22), and theg(0) and h(0) by (25) and (26). (trltr2) :=trace()

It is clear by the definition of(0) andh(0) that the values tmp:i=nxtr2—tr1?

are always nonnegative without numerical error (in infinite- if tmp> 0 then

precision arithmetic). The procedure of computation for the return n/(trl+ /(n—1)xtmp)

traces of lower tridiagonal matrik is shown in Algorithm 4.  else

The generalized Newton shift is value of ¥tr2. return O
end if

3.3 Laguerre Shift

If we already have the value of {ELT) "} and TH(LLT) ), 3.4 Kato-Temple Shift
we could improve the sharpness of the shift®l) operation.
Laguerre shift is one of the methods to improve the shift value.
Theorem 3.3 (Kato-Temple [8]) For an n-by-n symmetric
matrix A, let A,-1 denote the submatrix of.Aobtained by
deleting the last row and column. For any lower bound
of the eigenvalues of A, and for any xe R", ||X|| = 1, let

There is another lowerbound, Kato-temple shift.

Theorem 3.2 (Laguerre [7]) For an n-by-n positive-definite
symmetric penta-diagonal matrix B= LLT, let 6 be the
following value:

0= n _ p = X'Ax. Then, ifp < 2* , the value
-1 _ -2) _ -1)2
Tr(B9) + |/(n-1)(nTr(B2) - Tr(B-1)) Aot
- T 3 - = min
Then, the is a Ioweg bound of thelgigenvalues of B which is A=
greater thanTr(B-%)~* and Tr(B-2) /%, gives a lower bound of the eigenvalues gf A

If the vaIuenTr(B*z) —Tr(B*l)2 is negative, Laguerre shift We choosex = (0,...,0,1)". The method require$* which
is useless. In that case, we adopt the generalized Newton slisfta lower bound for the submatriX,_1, but the generalized
Algorithm 5 shows a procedure of Laguerre method. Newton method enables us to find the lower boundAgf;



in computation of the lower bound d%,. Consequently, we
obtain one more improved shift value b9(1) operation.
Algorithm 6 shows a procedure of Kato-Temple method. The

Algorithm 6 Kato-Temple method

Algorithm 7 Proposed shift (algshift()

x:=(0,...,0,1)7 r—
(tr1, tr2) = trace(n_1) g,l = _i,/ézc/yé)
A* := laguerre(r1, tr2) )/,1 i a’lyi/ai

T 11— ™%
oS e = (i~ 0z

- 2 By = =(¥iB1 + y1yy + a@yf2)/az
. Sfgtum p = 1Aax = pX|I?/ (A" = p) ay = —(1+2x y1y] + 282B5)/ (2a3)
af = —-aay

return 0 1 1 o

end if 1= (B + 20By) [ an

vy ==y + 200y))/aa

"o , 2 17 ,2
, . = - + +
procedure of the proposed shift composed by the generahzegﬁ o —((5’1’,81 flz'[i},ﬁ, izy)ll/gc,y,i A
Newton, Laguerre and Kato-Temple is shown in Algorithm 7. " %, "~ _(y%z iy 73 +1’3,2 +}3zguia,2)/a§ 2
We adopt the largest value of them. for i =4 o N dlol 2 273

. . Vi = = _yYic2/ai2

3.5 Applying Shift Bi_y = =B _yYi2 + Bi2y{_, + a]_fi-1)/ai1

Among the shifts discussed in this section, we cannot ¢ :=—(1+ 2.1 | + 2yi-2¥|_,)/(2x)
determine which is the mostfective. The sharpness of each ¥, := —(o]" yyi—2 + 20]_,¥{ ,)/@i-2
shift depends on the type of matrix, and the type of matrix is 83", := (8] ,¥i—2 + 2B{_,¥{_,
unknown before computing. Laguerre shift often gives sharp Bi2y, + @i B + 20 B 1)/ @i
shift but if the value ofnTr(B2) — Tr(B*l)2 is negative, @ = (@ + B 4 BBy + Y+ iy )
we cannot adopt the shift. Besides, even'if a shift value is€nd for
smaller than minimum singular value, iteration of the oqds 1 :=0
algorithm might fail. For example, if- > X2 + x3, we could fori=1toN-1do
not apply the generalized Givens transformation. Gerschgorin  tr1 = trl—(2a{/a)
shift gives a sharp value if the subdiagonal and second-end for
subdiagonal elements are small. On the other hand, if nondf2 =0
diagonal elements are too large, Gerschgorin shift gives useles®r i=1toN-1do
value such as zero or negative value. In such a case, we should tr2 = tr2 - 2({’ai — /%) /a?
choose another shift. Generalized Newton shift always givesend for
usable value in the case other shifts failed. A" = 1/sqri(tr2)

For those reasons, we should design a proper shift strategylMpP:=Nxr2 - tr1?
Generally, non-diagonal elements converge to zero in the oqdéf tmp> 0 then
algorithm, and after deflation or splitting, the eigenvalues of 4" = max@",n/(trl + y/(n—1)x tmp)
the matrixA become more clustered. Therefore, we adopt the€nd if
largest value of generalized Newton, Laguerre, Kato-Templetrl = trl— (2o /an)
shift first, and if the generalized Givens transformation failed, tr2 = tr2 — 2(ajjan — a})/a%
then we move to the Gerschgorin shift. Then, one step ofshift:=1/sqrt(tr2)
the oqds algorithm works as Algorithm 8. The subroutine X:= (0,...,0,1)T
“gerschgorinl)” returns the value of Gerschgorin shift of 0= XTLp 1X

matrix L. if p <A then
shift:= max@hift p — [|AsX — pX|[2/ (1* = p))
4. Convergence Criteria end if

. . _ _ tmp:=nxtr2 —tr1?
It is nontrivial how to assess a series of matrices generateds tmp> O then

by the iterative process of the oqds algorithm converges gshjft:= max(shift n/(trl+ /(n— 1) x tmp))
suficiently.Besides, in the implementation of this algorithm, gng if
deflation and splitting are required for activating the shift yaturn  shift

method. In this section, we consider the situation that deflatien
or splitting is available where the values of subdiagonal and
second-subdiagonal elements are so small.

Let us write

L= L - Bracied’



Algorithm 8 oqds step(oqdg( shift))

flag:=0
if flag= 0 then
o .= algshiftl)

else if flag := 1 then
o := gerschgorinl()

else
o:=0
end if
if o+ shift= shiftthen
L :=icds(, 0)
L:=L
else
L :=icds(, o)
if @ # a then
flag := flag+ 1
else
shift:= shift+ o
L:=L
end if
end if

which is the matrix equal tb except for zero atk+ 1, k)-entry.
Then

L'L=L"(+E,, (27)
LLT =0T+ E, (28)
hold, where
Ex1:=fPad + ai1bi (et + ey
B (Bcrel + el ). (29)
Ez := f?0c18c1" + axBi(ac16f + &l )
+BKYk (Q<+1e;<r + Q<e;<r+1) : (30)

Theorem 4.1 (Weyl's monotonicity theorem [9], [10]) For

an n-by-n positive-definite matrix A, lgf (A) denote the i-th
largest eigenvalue of A. Then, there exist realsnd v such
that

A (LT L) Ai (ET |:) + Ui [[Eally
A (LLT) = 4 (CLT) + vilIE2lly

(31)
(32)
where|u| < 1, |vi| < 1.

From the definitions (29) and (30) &; and E,, we have

IE1ll; = lIE1lleo = 1Bkl (lakeal + 1Bkl + lyi-1l) » (33)
IE2lly = IE2llee = 1Bkl (lakl + Bkl + y«l) - (34)

Similarly, we get the numerical criterion for neglecting a
second-subdiagonal elemept On the setting of

L= L - y@ced .
the perturbation matrices are given by
Ef = YPee + akeovk (6c2€) + &l,o)
+Bk+1Yk (emle;(r + e&eLl) >
ra_ A2 T U U
E) = Y6262 + ok (28] + &gy ,)
+Biv (16f + &l 4 )

Then, by evaluating the 1- ang-norms of these matrices,
we obtain the criterion for neglecting a second-subdiagonal
elementyy as follows:

o + Iyl (vl + min (a2l + Bieal s lawd + 1Bkl)) = o (36)

For the matrices in iteration, we perform deflation and splitting
as follows:

1) If Bn-1 @andy,_2 in the last row satisfy the criteria (35)
and (36), then we deflate the matrix by deleting the last
row and column.

2) If Bk_1, k-1 andyy_» satisfy the criteria (35) and (36),
then we split the matrix into two submatrices formed by
rows and columns 1 t&— 1 andk to n, respectively.

5. Numerical Experiments

Some numerical experiments were performed for the oqds
algorithms for bidiagonal matrices and for lower tridiagonal
matrices. The singular values of square random matrices were
computed by the oqds algorithm for bidiagonal matrices by
von Matt and by the oqds algorithm for lower tridiagonal
matrices which we propose. It should be noted that: The oqds
for bidiagonal matrices were applied to random bidiagonal
matrices and the proposed oqds algorithm for lower tridiagonal
matrices were applied to random lower tridiagonal matrix.
The numerical experiments were performed on a Linux PC
with Intel Core i7 920 (Nehalem) 2.66GHz and DDR3-1066
12GB memory. Table 1 shows the computation time of each
algorithm. The first row shows the size of matrices. The
second and the third rows show the computation time taken
by the oqds algorithm for bidiagonal matrices and for lower
tridiagonal matrices, respectively.

Table 1
COMPUTATION TIME (SECONDS)
matrix size 10000 20000 30000
oqds for bidiagonal 11.764  43.243 93.080
proposed oqds for lower tridiagonal 27.089  100.013  210.225

By Weyl's monotonicity theorem, we thus get the numerical
deflation or splitting criterion to neglect a subdiagonal element

B

o + 1Bl (1Bl + min (lewe 1l + yial s lawd + ) = o2, (35)

where ~
side are numerically equal. We assume fhais so small and
negligible provided that (35) holds numerically.

5.1 Discussion

Hence, in order to compute the eigenvalues of matrices
of the same size, the oqds algorithm for lower tridiagonal

means that the left-hand side and the right-hanahatrices is expected to take a longer computation time than the

oqds for bidiagonal matrices. From Table 1, we observe that
the computation time in the former algorithm is not extremely



longer than the latter algorithm: the former is two or threé\cknowledgments

times slower than the latter.

The authors would like to express a sincere gratitude to

This observation demonstrates that the ogds algorithm fefgtessor Shuhei Kamioka and Mr. Kazuki Maeda for valuable

lower tridiagonal matrices is practically useful for the genergliscussions and comments. This work was supported by JSPS
dense matrices. Commonly, the computation of the sinQURAKENHI Grant Number 24360038.

values of a dense matrix is twofold:

1) preprocess of reducing into a sparse band matrix.
2) singular computation of the sparse band matrix.

The computation time for preprocess is estima®d®) while [
for the singular value computati@n?). Hence, a vast amount 2]
of the computation time is consumed by the preprocess. On
the preprocess for dense matrices, it is reported in [11] th&¥!
the reduction into a lower tridiagonal matrix is about 50%y,
faster than that into bidiagonal matrices. Therefore, the total
time of preprocess into a lower tridiagonal matrix and the
oqds for lower tridiagonal matrices is much faster than thg’]
time of preprocess into bidiagonal matrices and the oqds fqs]
bidiagonal matrices.

(7]

6. Conclusions -

We proposed the oqds algorithm for lower tridiagonal
matrices. Though computing singular values of lower tridid
agonal matrices takes longer time than bidiagonal matrices)
preprocess reducing dense matrices into lower tridiagonal
matrices takes less time than into bidiagonal matrices. Not or[\Jr)}
simple reduction of computational complexity, we can apply
the BLAS Level 2.5 routines to lower tridiagonalization. The
BLAS Level 2.5 routines are more cach@&@ent than BLAS
Level 2 routines commonly applied to bidiagonalization. A
cache éicient algorithm saves a number of memory accesses
which waste a big time. The computation time for preprocess
is estimatedO(n®) while for the singular value computation
O(n?), hence, a vast amount of the computation time is
consumed by the preprocess. Therefore, if we can compute the
singular values of lower tridiagonal matrices not so longer than
for bidiagonal matrices, it is expected that total computation
time decreases extremely.

For an implementation of this algorithm, we proposed a new
shift strategy consisting of the generalized Newton shift and
associated two methods, Laguerre shift and Kato-Temple shift,
and the well known Gerschgorin shift. Moreover, we design
new convergence criteria for deflation and splitting required
for the implementation of the oqds algorithm. By the criteria,
we can do the convergence test for lower tridiagonal matrices.

As a result, the algorithm computes the singular values of
a lower tridiagonal matrix withinO(n®) computation time.
Although it takes about two or three times as long time for
tridiagonal matrices as for bidiagonal matrices, proposed algo-
rithm is expected to be faster than the conventional methods
since the preprocessing requir€$n®) operations and takes
much larger time than the oqds algorithm.

As a future work, we have to perform more experiment to
compare the computation time including preprocessing. Fur-
thermore, exact error analysis should be made and we ought
to check out the accuracy of the algorithm after improving the
implementation and setting proper test matrices which have
known eigenvalues.

] H. Rutishauser,
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