
Acceleration of Tandem Mass Spectrometry Analysis Software
CoCoozo using Multi-core CPUs and Graphics Processing Units

Yasufumi Obata1, Takashi Ishida2, Tohru Natsume3, and Yutaka Akiyama2

1Department of Computer Science, Faculty of Engineering, Tokyo Institute of Technology,
W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, JAPAN

2Department of Computer Science, Graduate School of Information Science and Engineering,
Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, JAPAN

3Molecular Profiling Research Center for Drug Discovery,
National Institute of Advanced Industrial Science and Technology,

2-4-7 Aomi, Koto-ku, Tokyo 135-0064, JAPAN

Abstract— Tandem mass spectrometry, a method involving
multiple steps of mass spectral selection, is widely used
in various biological fields. In recent years, steady im-
provements have been made with respect to speed, and
the number of protein databases available for analysis has
rapidly increased. Consequently, computational analysis has
become the bottleneck in tandem mass spectrometry.

To overcome this problem, we attempted to improve the
tandem mass spectrometry analysis software CoCoozo. To
accelerate the program, we improved the algorithm and also
incorporated utilization of multi-core CPU and GPGPU. As
a result of algorithm improvements, when all mass spectral
data files had precursor data, we achieved 8.9-fold speedups
compared with the original software. In addition, in the
case of no precursor data, by using a 12-core CPU and
a GPU card we achieved 18.1-fold speedups compared with
the original software.

Keywords: Mass Spectrometry, MS/MS, CoCoozo, Multi-
threading, GPGPU.

1. Introduction
Mass spectrometry is currently commonly used in pro-

teomics research, a field of study in which the entire set of
proteins expressed by a genome, cell tissue, or organism is
examined [1]. Although various mass spectrometry methods
have been developed, tandem mass spectrometry (MS/MS,
MS2) is the primary technique now used in many biological
investigations, including research on cancer biomarkers [2],
Alzheimer’s disease [3], and protein-protein interactions [4].

In mass spectrometry analysis, target sample proteins or
peptides are divided into several fragments whose masses are
measured by a mass analyzer, with an analyzer outputting
their spectra. Mass spectrometry analysis software is then
used to identify the sample peptides or proteins based on

Correspondence to: Yutaka Akiyama

these spectra. Tandem mass spectrometry, in which sample
masses are measured in two or more steps, is currently in
wide use. The advantage of tandem mass spectrometry is
enabling the analysis of mixed protein samples. In two-step
tandem mass spectrometry, the peptide ions fragmented from
sample proteins during the first step are called precursors,
and those fragmented from precursors during the second step
are called fragments. Two-step tandem mass spectrometry
generates mass spectral data for both precursors and frag-
ments, and identifies sample proteins using both spectra. The
mass spectral data contain mass-to-charge ratios (m/z) and
collateral intensities of fragments and, in most cases, the
precursor that is the source of the fragments.

Various software programs have been developed to an-
alyze mass spectra from tandem mass spectrometry. To
identify proteins in a sample, the software calculates the
similarity between the spectral data and that of a protein
in a database. MASCOT [5] is well known and widely
used, but other software programs, such as SEQUEST [6],
SpectraST [7], and CoCoozo have also been developed.
Each program employs a different algorithm for database
searching and similarity measurement, with each algorithm
having different advantages and disadvantages with respect
to speed and sensitivity. MASCOT, for example, uses a
statistical evaluation algorithm [5], whereas SEQUEST uses
a cross-correlation scoring algorithm [6]. For similarity
measurement, SpectraST utilizes an inner product algorithm
between measured and database mass spectral vectors [7].

CoCoozo is a mass spectrometry analysis software pack-
age developed at the National Institute of Advanced Indus-
trial Science and Technology (AIST) of Japan and the Tokyo
Institute of Technology. It features a unique error correction
function for analyzing mass spectra with high precision.
CoCoozo has performed consistently over the past several
years of use in AIST projects.

In recent years, the speed and sensitivity of tandem mass
spectrometry analyzers have steadily improved, with their
throughput continually increasing. In addition, the number



of reference protein databases has steadily increased. Con-
sequently, computational analysis is more time intensive than
ever, and has become a bottleneck in mass spectrometry.

During the same time period, computer system perfor-
mance has also been materially improved. Current computer
systems have been enhanced by various acceleration tech-
nologies, including “multi-core CPU” and “General-Purpose
computing on Graphics Processing Units” (GPGPUs). A
graphics processing unit (GPU) was originally developed for
processing graphics in the 1980s. GPU computational per-
formance has increased dramatically over time, eventually
overtaking that of CPUs. Consequently, GPUs have come to
be used for general-purpose calculations rather than graphics
processing, and this technique is now called “GPGPU”. A
GPU has dozens or hundreds of streaming processors that
are activated in parallel for calculations. GPGPU programing
is difficult, requiring high parallel computing skills. To over-
come this problem, several platforms have been developed
to facilitate computational use of GPGPUs. At present,
NVIDIA’s CUDA is the most substantial platform, and is
widely used. Through the CUDA platform, programmers
can make use of GPUs without having knowledge of GPU
low-level instructions. As a result, GPGPU techniques have
already been used in various applications, such as for astro-
nomical calculations [8] and Fast Fourier Transform (FFT)
[9].

In this paper, we report attempted enhancement of the
computational speed of the tandem mass spectrometry anal-
ysis software package CoCoozo. To achieve this goal, we im-
proved the algorithm and also incorporated multi-threading
and the above-mentioned GPGPU-based acceleration tech-
nology at parts of similarity evaluation. As a result, when
all mass spectral data files had precursor data, we achieved
8.9-fold speedups compared with the original software. In
addition, in the case of no precursor data, by using a 12-
core CPU we achieved 15.9-fold speedups with the original
software. Moreover, by using a 12-core CPU and a GPU card
we achieved 18.1-fold speedups compared with the original
software.

2. CoCoozo
CoCoozo, which is mass spectrometry analysis software,

has been already developed and used in several research
fields. In this section, we briefly describe the algorithm of
CoCoozo and discuss about its bottlenecks.

A flowchart of CoCoozo main processes is shown in
Figure 1. For each precursor in a database, CoCoozo first
checks whether or not a query data file includes precursor
spectral data. If the query data file contains precursor spectral
data, CoCoozo then performs a “precursor matching” pro-
cess, which checks whether query precursor spectral data
correspond to database precursor spectral data. If so, a
“fragment matching” process is subsequently performed. If
a query data file does not include precursor spectral data,

Fig. 1: CoCoozo Main Process Flowchart (for a mass spec-
tral data)

the process goes directly to “fragment matching”, which
calculates a similarity score between query fragment spectral
data and fragment spectral data in a database. After fragment
matching, a database precursor data entry has an assigned
score based on the results of fragment matching. Finally,
all precursors are ranked by their scores, with the highest-
scoring precursors outputted as the analysis results.

During precursor and fragment matching processes, the
matching algorithm judges whether m/z of a precursor or a
fragment in a database matches, within a given tolerance,
that of a query. Because the measured data sometimes
includes error, the tolerance value is set based on the m/z
value and a tolerance ratio parameter. One of the differences
between precursor matching and fragment matching is the
tolerance ratio parameter. In precursor matching, the ratio
is fixed. In contrast, in fragment matching, the ratio varies
depending on query spectrum intensity. When there are mul-
tiple spectra within a tolerance during fragment matching,
the spectrum with the strongest intensity is judged as a
“match”. The precursor matching process is therefore faster



than fragment matching.
If a data file has no precursor spectrum, the matching

process takes much longer. This is because a large number
of fragment matchings are needed in proportion to the
number of precursor spectra in a database if a data file
has no precursor spectrum. If, however, a data file contains
a precursor spectrum, only a few fragment matchings are
required because most of the precursors have already been
filtered out based on the results of the precursor matching
process.

2.1 Bottlenecks in CoCoozo
We profiled CoCoozo to locate the bottlenecks for two

cases. The first case was one in which all mass spectral files
included precursor spectral data (case of complete precursor
data); the other case was one in which about 10% of mass
spectral files were lacking precursor spectral data (case of
incomplete precursor data).

The comparison between queries and database was found
to be the dominant process in the entire execution time
profile. This “matching” process targeting both precursors
and fragments is the main process of the CoCoozo search
algorithm. In addition, execution time was about 13 times
longer in the case of incomplete precursor data compared
with the case of complete precursor data. In the case of
complete precursor data, the precursor matching comparison
was the most dominant process in the entire execution time
profile. On the other hand, fragment matching comparison
was the most dominant process in the case of incomplete
precursor data.

3. Methods
In this section, we introduce our newly proposed to

accelerate the CoCoozo software using Multi-core CPUs and
Graphics Processing Units.

3.1 Improvement of Matching Algorithm and
Initialization Process

A similar matching algorithm is used for both precur-
sors and fragments. To improve the process, the data is
sorted that is replaced every comparison by m/z. In other
words, we sort the data that is compared with the tolerance.
Proteins are often diversely denatured, however, by post-
translational modification (PTM), leading to a change in
their masses. The way in which CoCoozo handles this PTM
complicates sorting by m/z. We thus modified the program
structure to improve the sorting. The new sorting algorithm
allows matching to terminate when the sorted data exceed
the tolerance upper limit. Because fragment matching has
variable tolerance, the sort termination is based on a pre-
defined maximum tolerance. In addition to early termination,
the number of comparisons is decreased during precursor
matching by skipping the data below the lower tolerance
limit. This skip is especially effective in precursor matching

because the number of comparisons with a given tolerance
range is larger than in fragment matching. On the other hand,
the skip is less effective in fragment matching because the
number of comparisons with a given tolerance range is small.

In addition, we improved initialization of the variable for
storing the score for each query. In the original initialization
process, all of the scores are initialized regardless of whether
or not they have changed. This guarantees that all scores are
initialized when an analysis begins. Because initialization of
all scores is redundant, scores that are unchanged since the
last initialization are omitted.

3.2 Multithreading
When mass spectral files without precursor spectral data

are included, the execution time materially increases. Based
on profiling, fragment matching occupies about 85% of the
entire execution time for the case of incomplete precursor
data. Consequently, we apply a multithreading technique
to fragment matching and scoring after fragment matching
in cases in which an analysis target mass spectral data
file lacks precursor spectral data. The two processes are
consecutive. The one-time process targets database frag-
ments created from the same precursor, and the consecutive
process independence from other continuative processes, so
the application of multithreading is relatively easy. In the
multithreading part, each thread is in charge of matching
fragments created from the same precursor and their scoring.

For multithreading implementation, we used the POSIX
threads (pthread) library, a part of POSIX.1 [10] standardized
by IEEE.

3.3 Acceleration by GPGPU
Even after improving the matching algorithm, fragment

matching in the case of incomplete precursor data still oc-
cupied about 70% of the entire execution time. We therefore
tried to introduce GPGPU to the fragment matching calcula-
tion. Each comparison between a fragment spectrum and one
of the database entries in the fragment matching process is
independent of the other comparisons, and each comparison
is computationally not very intensive. The processes that
follow the comparison are not independent, however, and
the results of these processes depend on the results of other
comparisons between database fragments created from the
same precursor and query fragments. These should therefore
be processed in serial, but serial processes are difficult to
effectively execute on a GPU.

Consequently, we only applied the GPGPU technique
to m/z and intensity comparisons. We parallelized each
comparison on GPUs. Variable tolerance is inefficient on
GPUs, however, because implementation of variable toler-
ance requires conditional statements, which results in CPU
utilization scarcely decreasing. Because of this, a fixed
tolerance based on maximum width ratio is used on the
GPUs. In other words, preliminary selection is performed



on the GPU, with remaining matching executed on the CPU
using results from the GPU.

In addition, we applied multithreading to the CPU pro-
cessing that follows the GPU processing. The CPU pro-
cessing corresponds to the original fragment matching and
scoring. The one-time process targets database fragments
created from the same precursor and the consecutive pro-
cess independence from other continuative processes, so the
application of multithreading is relatively easy.

For the GPGPU implementation, we used CUDA (Com-
pute Unified Device Architecture), a platform for GPGPU
provided by NVIDIA. Our software requires CUDA version
higher than 2.3, and we used CUDA version 4.1 for the
following experiments.

4. Results
4.1 Datasets and Database

We used 1,486 mass spectral data files as input queries.
The files were in PKL format and had already been fil-
tered. Because all of the files contained precursor spectrum
data, we also prepared another dataset for checking the
performance in the case of incomplete precursor data. In
the second dataset, precursor spectral data was deleted
from 149 randomly selected files, with the remaining 1,337
files identical to those in the original dataset. We used
a database containing 38,415 proteins, 857,298 precursors,
and 26,489,468 fragments, with lysyl endopeptidase (Lys-C)
used for dividing a protein into precursors.

We allowed CoCoozo to search monovalent and divalent
fragment ions, and to consider N-terminal acetylation.

4.2 Computing Environment
For this research, we used the TSUBAME2.0 supercom-

puter system at Tokyo Institute of Technology. Programs
were executed on a thin node of TSUBAME2.0 with 12
CPU cores. Node specifications are shown in Table 1.

Table 1: Computing Environment
CPU Intel Xeon 2.93 [GHz] (6 cores) x 2

Memory 54 [GB]
OS SUSE Linux Enterprise Server 11 SP1

GPU NVIDIA Tesla M2050
Compiler gcc 4.3.4

MPI OpenMPI 1.4.2
CUDA CUDA 4.1 (64bit)
Profiler Intel VTune Amplifier XE 2011

We used the UNIX “time ” command to measure exe-
cution times and Intel VTune Amplifier XE 2011 for more
detailed profiling.

4.3 Improvement of Matching Algorithm and
Initialization Process

Figure 2 shows execution time results when all of the
mass spectral data files include precursor spectral data (case

Fig. 2: Result of “Improvement of Matching Algorithm
and Initialization Process” (execution time) in the case of
complete precursor data.

Table 2: Results of Improvements in the case of complete
precursor data

times [sec] speedup
Original 609.23
- Precursor-matching 443.0
- Fragment-matching 27.61
- Score Initialization 72.46

Improvement of Algorithm 68.80 8.9-fold
- Precursor-matching 6.63 65.3-fold
- Fragment-matching 11.08 2.5-fold
- Score Initialization 0.15 483.1-fold

of complete precursor data). CoCoozo with the improved
algorithm is approximately 8.9-fold faster than the original
version. In particular, a precursor-matching step is about
65.3-fold faster than that of the original, and a fragment-
matching step is approximately 2.5-fold faster. With respect
to score initialization, the improved version is approximately
483.1-fold faster than the original, equivalent to other short
processes.

These results demonstrate the magnitude of the improve-
ments arising from the revised algorithm in the case of
complete precursor data. Table 2 summarizes the results of
improvements in the case of complete precursor data.

4.4 Multithreading
Figure 3 shows execution time as a function of number

of threads when about 10% of mass spectral data files lack
precursor spectra (case of incomplete precursor data). As
seen in the figure, even in the one-thread case, execution
is much faster than in the original version, because the
multi-threaded version used an improved matching algo-
rithm. CoCoozo with 12 threads is approximately 5.3-fold
faster than CoCoozo with 1 thread; the increased speed is
less than 12-fold because multi-threaded processing is only
applicable to certain parts of the entire program. Another
reason is concurrency of threads. As measured by Intel
Vtune Amplifier, the peak concurrency is 6 threads even on



Fig. 3: Result of “Multithreading” (execution time) in the
case of incomplete precursor data.

Fig. 4: Result of “Acceleration by GPGPU” (execution time)
in the case of incomplete precursor data.

a 12 CPU core system: 12 threads cannot be simultaneously
used, and several threads are often idle.

Finally, compared with the original version, CoCoozo
with the improved matching algorithm and running with 12
threads is approximately 15.9-fold faster.

4.5 Acceleration by GPGPU
Figure 4 shows CoCoozo execution time with GPGPU

for the case of incomplete precursor data. In the figure,
the data represented by bars labeled “CPU” is the same as
in Figure 3. CoCoozo with GPGPU is approximately 2.0-
fold faster than CoCoozo with the improved algorithm but
without GPGPU, and approximately 6.0-fold faster than the
original version. In particular, a fragment-matching step with
GPGPU is approximately 13.8-fold faster than that with the
improved matching algorithm. CoCoozo with GPGPU and
12 threads is approximately 3.0-fold faster than CoCoozo
with GPGPU and 1 thread. The reason for the low efficiency

Table 3: Results of Improvements in the case of incomplete
precursor data

times [sec] speedup
Original 7752.82
Improvement of Algorithm 2589.52 3.0-fold
Multithreading (12-thread) 488.30 15.9-fold
GPGPU 1302.57 6.0-fold
Multithreading (12-thread) & GPGPU 427.97 18.1-fold

gain is the same as above. When concurrency is measured
with Vtune Amplifier, peak concurrency is 3 threads, and
with parallel execution is scarcely over 9 threads. The
deterioration of concurrency is caused by the use of GPGPU,
as it assists in fragment matching comparisons. Because
there is less opportunity for multithreading processes when
using GPGPU, more threads are idle. Finally, CoCoozo with
GPGPU and 12 threads is about 18.1-fold faster than the
original version.

Table 3 summarizes the results of improvements in the
case of incomplete precursor data.

5. Discussion
Although analysis results are almost unchanged following

improvements, a subtle difference was noted: the values of
some scores are different. This difference does not affect
the substance of the results, and thus the results after im-
plementation of improvements are not distinguishable from
the original ones. The difference is caused by results from
fragment matching changing slightly because of data sorting,
but this only appears when some peaks having the exactly
same intensities are sorted and the matching order of the
peaks change from the original order. We believe this change
seldom occurs and has little or no effect.

In the case of complete precursor data, database initial-
ization dominates program execution time, representing over
50% of the entire elapsed time. Because initialization is only
executed once at the beginning of the program, however, it
is not a very serious problem, even when very large query
data files are inputted.

6. Conclusions
We have enhanced the tandem mass spectrometry anal-

ysis software CoCoozo in three ways: through improved
matching and initialization algorithms, multithreading, and
GPGPU. When mass spectral data files all contain precur-
sor spectrum data, CoCoozo with the improved algorithm
achieves an 8.9-fold speedup compared with the original
version. In cases where 10% of mass spectral data files
lack precursor spectrum data, CoCoozo with the improved
algorithm is 3.0-fold faster than the original. In addition,
the multithreading version of CoCoozo with 12 CPU cores
achieves a 15.9-fold speedup, and the GPGPU version of



CoCoozo with 1 GPU and 12 CPU cores is 18.1-fold faster
than the original.

In this research, we applied multithreading programming
and GPGPU only to the case of incomplete precursor data.
The case of incomplete precursor data does not often occur
in practice, however. Consequently, the application of mul-
tithreading programing and GPGPU to the case of complete
precursor data is an important focus of future work.

Acknowledgements
We are deeply grateful to Mr. Katsuyuki Koike, Mr. Hideo

Kusano, Mr. Tomohisa Hatta, the members of the developing
team of original version of CoCoozo, for their insightful
comments and suggestions. We also thank Mr. Yasuhiro
Fujihara, a main programming staff of the original version
of CoCoozo, for his generous support.

References
[1] W. P. Blackstock, M. P. Weir, “Proteomics: quantitative and physical

mapping of cellular proteins.”,Trends Biotechnol., vol. 17, No. 3,
pp. 121-127, 1999.

[2] E. P. Diamandis, “Mass spectrometry as a diagnostic and a cancer
biomarker discovery tool: opportunities and potential limitations.”,Mol
Cell Proteomics., vol. 3, no. 4, pp. 367-378, 2004.

[3] D. C. German, P. Gurnani, A. Nandi, H. R. Garner, W. Fisher, R. Diaz-
Arrastia, P. O’Suilleabhain, K. P. Rosenblatt: “Serum biomarkers for
Alzheimer’s disease: proteomic discovery.”,Biomed Pharmacother.,
vol. 61 no. 7, pp. 383-389, 2007.

[4] A. C. Gavin, K. Maeda, S. Kühner, “Recent advances in chart-
ing protein-protein interaction: mass spectrometry-based approaches.”,
Curr Opin Biotechnol., vol. 22 no. 1, pp. 42-49, 2011.

[5] D. N. Perkins, D. J. Pappin, D. M. Creasy, J. S. Cottrell, “Probability-
based protein identification by searching sequence databases using mass
spectrometry data”,Electrophoresis., vol. 20, no. 18, pp. 3551-3567,
1999.

[6] J. K. Eng, A. L. McCormack, J. R. Yates, III, “An Approach to
Correlate Tandem Mass Spectral Data of Peptides with Amono Acid
Sequences in a Protein Database”,J. Am. Soc. Mass Spectrom, vol. 5,
no. 11, pp. 976-989, 1994.

[7] H. Lam, E. W. Deutsch, J. S. Eddes, J. K. Eng, N. King, S. E. Stein,
R. Aebersold, “Development and validation of a spectral library search-
ing method for peptide identification from MS/MS”,Proteomics, vol. 7,
no. 5, pp. 655-667, 2007.

[8] Hubert Nguyen,GPU Gems 3, Boston, U.S.A.: Addison-Wesley
Professional, 2007.

[9] N. K. Govindaraju, B. Lloyed, Y. Dotsenko, B. Smith, J. Manferdelli,
“High Performance Discrete Fourier Transforms on Graphics Proces-
sors”, the 2008 ACM/IEEE conference on supercomputing, pp. 1-12,
2008.

[10] Information Technology - Portable Operating System Interface
(POSIX) - Part1 : System Application Program Interface (API) [C
Language], IEEE, Inc., 1996.


