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Abstract— Evaluating the reliability of estimated phyloge- the maximum likelihood value for many topologies and
netic trees is of critical importance in the field of molecular selecting the topology with the highest likelihood (the max-
phylogenetics, and for other endeavors that depend ommum likelihood (ML) tree) as the most probable candidate
accurate phylogenetic reconstruction. The bootstrap methotbr the true topology.
is a well-known computational approach to assessing phylo- It must be noted that maximum likelihood values are
genetic trees, and more generally for assessing the reliabilitgependent on the particular characteristics of a random
of statistical models. However, it is known to be biased undevariable; that is, the molecular sequences that constitute
certain circumstances, calling into question the accuracy othe underlying data for phylogenetic reconstruction. Thus,
the method. Therefore, several advanced bootstrap methodsme analysis of the statistical reliability of the estimated
have been developed to achieve higher accuracy, one oiL tree or multiple alternative trees should be undertaken.
which is the speedy double bootstrap approach (sDBPStatistical hypothesis testing is commonly used for this
method). In the phylogenetic tree selection problem, it hapurpose, and the ‘bootstrapping’ technique is a well-known
been shown that the sDBP-method has comparable acceomputational method for calculating reliability when a
racy to the double bootstrap approach and is much moresimple mathematical formula is difficult to derive. Bootstrap-
computationally efficient. In this study, we thus develop amping is a resampling method that approximates a random
R package named SDBP, which is an implementation afample by creating a bootstrap sample, generated by random
our sDBP-method on a statistical software R to assesssampling with replacement from the original single data set.
the reliability of phylogenetic trees. We are confident thatin the context of phylogenetic tree selection, Felsenstein
biologists will benefit from our sDBP-method and SDBP[6] proposed the use of bootstrapping to place confidence
package. intervals on phylogenies. He defined thevalue of a tree
according to a frequency called the bootstrap probability
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trees, Reliability, Rapid computation, R package original data set in which the tree is found to be optimal.
. However, it is known that under some circumstances the
1. Introduction naive bootstrap probability can be biased [7], [8]. Thus, some

The analytical methods used in the field of molecularadvanced bootstrap methods have been proposed, to achieve
phylogenetics are important basic tools for reconstructhigher accuracy [9], [10], [11].
ing the evolutionary history (phylogenetic relationships) of Among these, the double bootstrap method (DBP-method)
molecules and organisms. Molecular phylogenetic method®], [10] has been shown to be third-order accurate and is
are primarily used in the context of biological systematicspotentially a useful measure of phylogenetic tree support.
but they also find applications in a wide variety of otherHowever, the method has a huge computational cost. To
fields as diverse as community ecology [1], biogeographyvercome the computational burden in the phylogenetic tree
[2] and proteomics, including inference of the similarity of selection problem, we have previously proposed a ‘speedy’
protein-protein interactions [3]. Many methods for phyloge-double bootstrap (sDBP-method) method to compute the
netic reconstruction have been developed and are in regulegliability of phylogenetic trees [12]. In the phylogenetic
use [4]. However, those based on maximum likelihoodiree selection problem, our previous work [12] has been
estimation have proved most effective for reconstructingshown that the sDBP-method has comparable accuracy to the
phylogenies using molecular sequence data (DNA, proteirBP-method and is much more computationally efficient.
etc.). Early work on this application of maximum likelihood Because, it is well known that a good statistical method is
was conducted by [5], whose approach involved computingiot in itself sufficient, we also need to develop an easy-to-



use computer tool. We thus develop the R package namedheref(x;;0) = f(x1n, Tan, - , Tmn; 0) is the probability

SDBP, which is an implementation of our sDBP-method on ahat at a particular homologous site, species 1 has base

statistical software R to assess the reliability of phylogenetia:y;,, species 2 hases;, and speciesm has z,,,. The

trees. We are confident that biologists, who may not haveector 6 denotes unknown parameters such as the edge

advanced computer skills, will benefit from our sDBP-lengths (branch lengths) of a tree, and the base substitution

method and SDBP package. rates along these branches. Here we assume that the base
R is a language and environment for statistical computingubstitution rates have already been estimated, denotes

and graphics. It is an open-source GNU project based oanly the unknown edge lengths. For a given tree topology,

the S language and environment developed at Bell Lab¥ is estimated by maximizing the log-likelihood, and the

oratories (formerly AT, now Lucent Technologies) by maximum log-likelihood of any tree topologyis given by

John Chambers and colleagues. We can summarize why we n

implemented our method in R as follows. At first, R provides 1i(6;:X) = Z log fi(xn; 0;). ©)

a wide variety of statistical (linear and non-linear modeling, h=1

classical statistical tests, time-series analysis, classificatior},he

clustering, ---) and graphical techniques, and is highly

extensible. In addition, it is important that R is not only

applicable to statistical fields of research, but also to th

biological field. Genome analysis, including GneABEL [13],

and areas related to biotechnology also have a great ma

applicable R packages. Finally, R is available under the term

topology with the highest value df(é;X) is the
maximum likelihood phylogenyT(y,;) for the data seiX,
gnd is thus the most likely candidate for the true topology. To
define null hypotheses for performing model comparisons,

must consider the true distribution for a random variable
iyecan be expressed as

of the Free Software Foundation’s GNU General Public 4(x) )
License in source code form. It can be compiled and rumnd the expectation of;(4;; X),i = 1,--- , K with respect
on a wide variety of UNIX platforms and similar systems to

(including FreeBSD and Linux), Windows, and MacOS. (x1, %) "= q() (5)

This paper is organized as follows. We first give some
background, and then briefly introduce the mathematicafan Pe expressed as
theory_of _the sDBP-method_ and its algorithm for assessing i = Eylli(05;X)] (6)
the reliability of phylogenetic trees. Next, we describe the
basic usage of our packa@® BPusing the mammalian mi-
tochondrial data from [14]. Finally, we describe the resultsIf we assume that tre@) is the best topology, the null and
alternative hypotheses will then be

2. Theory and Algorlthm Hy: g =maxi=1,... k [t US. Hf‘ : others, (7)

2.1 The reliability of a phylogenetic tree and we must continue performing these comparisons as

In this study, homologous sites of aligned molecularmany times as is necessary, assuming in turn that tree
sequence data are regarded as the units for sampling, and Wet = 2,---, K is the best topology. Note that the null
use DNA data as our example for the following methodologi-NyPothesis; involves multiple comparisons with the “best"
cal descriptions. Suppose we haxehomologous sequences, topology [15]. As can be seen from equation (7), the null
each withn nucleotide sites. These data can be representeégPhtainsi’ — 1 hypotheses such that

as anm x n matrix X = {a.vjh} = {xl',-u ,Xn}, Where Hyom > pg,j =2 K. 8)
xp, is the value of thehi-th site andz;;, is one of the four
deoxyribonucleotides (T, C, A, or G). The null hypothesisH; is a polyhedral convex cone and
B(hy), which is the boundary offf;, is nonsmooth at
Species 1 : 11 T2 - T, (1)  the vertex as well as on the faces of dimension less than
Species 2 i xo1 Tz - Top K — 1. Shimodaira and Hasegawa [14] proposed a multiple

comparisons procedure (the SH-test) to st but this was
shown to be overly conservative because they assumed that
Species m i Tgpm1 Tm2 0 Tmn the parameter configuration j§ = us = --- = ug, thatis,
the least favorable configuration or the vertexi{f:, ) [16].
A different method (the AU-test), which uses a multiscale
The log-likelihood can be expressed as bootstrap technique to obtain third-order accunatealues
n for testing the null hypothesis, has also been proposed [11].
1(6;X) = Z log f(xn;0), ) In our previous work [12], we developed an algorithm using
=1 an advanced bootstrap method [10] that was also able to



provide third-order accuratg-values to assess statistical that 1y = maz;=;.. x p; in Hy, under this restriction
reliability of phylogenetic trees. We call it the speedy doublethe restricted estimator for can be estimated using the
bootstrap method, which will be considered in the followingPAVA (pool adjacent violators algorithm) [19] method, and
subsection. is expressed as

L= ([ sy [ . 15
2.2 The theory of speedy double bootstrap fr= fux) (15)
method We then excise a subsét’ € {1,---,K}, including the

. . L i element 1, so that
In this subsection, it is necessary to review the theory

of the speedy double bootstrap method. For this, we start L Zjerj(éj)
by explaining the third-order accuraievalue. It was first pro= #W ’
proposed by [17] for the multivariate normal model, which f; = min(/lhlj(éj)), jef2,-- K} (16)

can be represented as
i The vectorji = (fi1,--- , fix) corresponds toj(y). Also,
Y R Ny(n, Iy). (9)  the covariance matrix of the vectdty, ls, - -- ,lx) can be

This normal model is a simplification of reality. L&t C estimated bys = (o3;), with o3; given as

R? be an arbitrarily-shaped region with smooth boundaries n o« R 1 < .
denoted byB(h). We want to calculate a-value p(y) for — > [logfi(xmai) - Zlogfi(xh;9i)] 17)
testing the null hypothesig € H. According to [17], when h=1 ’;:1
the true parametey is on the boundary surfacB(h), the « [logfj (Xn: éj) B % Z log ], (xn; éj)}
h=1

third-order accurate-value can be expressed as

ply) =1—@(d - ¢), (10)  We then need to calculate two other quantities corresponding
to d* andd in equation (12). To do this, we generaid,

where d is the signed distance frorg to 4(y), with a for example10000 bootstrap pseudoreplicates of the vector

positive or negative sign when is outside or insideH,

respectively. The pointi(y) is the closest point ta (in (/fizblﬁz"" ’ ’iﬁ2> mb 1egu1at|on 1(9115 )a.lreTr;Zmpslggc:c(r)oriﬁ'pllcates

Euclidean distance) on the surfagh), andc in equation (B3 fge ), bl =10 P

(10) is a quantity related to the curvature®fh) at the point O N R N e )T S

7(y). The speedy double bootstrap method of [10] (named i) elll iz frc) )(718)

later by [12]) begins with a bootstrap resampling from théyhere 7 represents the transpose, aids used as above.

multivariate normal model with distribution The vectors (mﬁ(m’ .. ’ﬂ;ébl)) constitute the first-order
v+ i Ny (7i(y), I). (11) (first-tier) bootstrap pseudoreplicates. No#; and d in

equation (12) can be written as
It then uses* to calculated*, which is the signed distance

" 5 (P1) 5 (PD)
from Y* to B(h). According to [10], the third-order accurate & = mazi, . k@l - (19)
p-value obtained by the sDBP-method can be expressed as d = mazjs,.. glj—1I.

1—®(d—c)=P(d* > d;i(y)) + O(n3/?). (12)  Next, we calculate the-value for H,, defined below and

. Iso denoted by DBP:
2.3 The algorithm for the speedy double boot- 20 denoted by

strap method for phylogenetic trees sDBP — #(d " > d) (20)

We now return to the problem of phylogenetic trees, as Bl
seen inH; and the vector(ls,--- ,lx). We describe the In exactly the same way as shown fHr, we can apply the
algorithm using the sDBP-method to calculate phealue of ~SPBP method to all other hypothesél, k = 2,--- , K.
H,. First, we find a vector correspondingiy) in equation 3 | | tati
(11). According to [18], the maximum log-likelihood vector “* mplementation
A A 3.1 Implementation in R
L= (1), 1x(0x)) (13) pler |
We have implemented the sDBP algorithm for phyloge-
asymptotically follows a multivariate normal distribution, the netic inference as a R package. Our package is nSh&P

mean vector of which is and calculates-values for phylogenetic trees. It can be used
= (i, i) (14) in combination with several other functions or packages in
1 yHK ). R

Note that the vectol in equation (13) is an unrestricted The package was written in the S language using the S3
maximum likelihood estimate for.. Because we assumed object system, and consists of a number of user-level objects:



sdbp , sdbpk , bpk, bp, dbpk , andmam20 The following  And then, read the data named mam15.mt.
subsections describe how to use these user-level objects. The...4 scaleboot for reading .mt files
SDBP provides three types gfvalue: the sDBP (speedy > |ibrary(scaleboot)

double bootstrap probability), the DBP (double bootstrap> dat<-read.mt(mam15.mt)

probability), and the BP (bootstrap probability). > dim(dat)# dat matrix demation

[1] 3414 15
3.2 Usage — Using the mammalian mitochon- cajculating the sDBP-value for each tree requires the following
drial protein sequences line. Thus our package is as easy-to-use as R package.

In this subsection, we explain how to use SDBP with the> result <- sdbp.default(dat)
mammalian mitochondrial protein sequences data from [14]; result
This data set included in file maml5-files, which can bewe performed this on a personal computer with the following
download from scaleboot Home Page. specifications: 2.50 GHz CPU (Core (TM) i5-2520M CPU) and
http://www.is.titech.ac.jp/"shimo/prog/scaleboot/index.html 8:00 GB RAM. The results are output in decreasing order of log-
Scaleboot also is an R package. The mammalian proteiwe"ho‘)d'
data set includes sequences of n = 3414 amino acids fro@all:
six mammalian species (human, seal, cow, rabbit, mous&dbp.default(dat = dat)
and opossum). The proteins coded for in the mammaliagpeedy double bootstrap probabilities:
mitochondrial genome are ND1, ND2, COX1, COX2, ATP8,11 t3 t2 t5 t6 t7
ATP6, COX3, ND3, ND4L, ND4, ND5, and CYTB. The 0.5828 0.3905 0.2237 0.1191 0.1109 0.0681 ...
clade{seal, cow} was significantly supported in preliminary Calculating the stand error for each value, we can use the command
analyses, so only the 15 unrooted trees (see Table 1) thatmmary.
included this clade were considered in our comparisons (the summary(result)
opossum is the outgroup). Now, the number of tr&eis 15,
and the sample size is 3414. HypothesisH; denotes that
H1 = mazx;=1,... 15 H;. OUr aim is to calculate thg-values Call:
for hypothesisH, as well asH;,i =2,--- ,15. speedy.default(dat = dat)
In advance, we used the software package PAML [20], stdErr p.value
to calcu_latg th_e site-wise log-likelihood for each tree. 'I'_het1 0.0049 05717
output file is file mam15.Inf. The format of mam15.Inf is t3 0.0049 0.3928
not available for our package, so the format was changet® 0.0041 0.2173
using CONSEL [21] by executing the command “seqmtt> 0.0032 0.1136
——paml mam15.Inf". Thus we obtain the site-wise Iog-é&r( "class")
likelihood matrix saved in the file mam15.mt for each treeél] "'summary.sdbp"
The file mam15.mt obtained by CONSEL should be place
in the R work directory. Tha5 “Tee t0p0|09|.es Is in the file 1 in the topology file mam15.tpl, using the algorithm in subsection
mam15.tpl, that can bg four_1d in mamlS—ﬂIgs. 2.3. Also, for testing hypothese; : 11, — mazs_i.... 15tk i —
Our SDBP package is built under R version 3.0.0. Theres, ... 15 for tree 2,- - -, tree 15 in the topology file mam15.tpl,
fore, this R version (or later) is needed to install our packagewe repeatedly use the algorithm in subsection 2.3. However, the
For Windows OS, after booting R, choose the Rdtkages algorithm for testing one of the hypothedis of Hi,i = 2,---, 15

; _ is a little different from the algorithm for testing hypothedis .
:cn the .upgltler tool par ap]d SelﬁCt the rt]tm;ta" PaCka.g?.fS) The difference is that we calculate the projectipof the maximum
rom zip files option, then ¢ oose thEDBP_1.0.zip lle log-likelihood vectorl = (I1,--- ,L15) for each hypothesis and
downloaded from CRAN, the official R package archive. the signed distances. For example, the projection veetof the

The output is

This command is for testing hypothedif in equation (7) for tree

For using the command line on UNIX platforms to install maximum log-likelihood vectot = (i1, - - - , l15) under hypothesis
the source version packagg@DBP_1.0.tar.gzdownloaded H> is obtained using the following equations.
from CRAN, just write the following command: 1. (6.
ﬂQZMﬂ':min(ﬂQZ'(é')) je{1,3,---,15}
R CMD INSTALL SDBP_1.0.tar.gz #W, PN ok
; ; ; where W is subset of the number§l,--- , 15} including the
and boot R via the command line using the command. element 2. For details of the implementation of the PAVA method,
R see our R source code in sdbp.R in SDBP. The signed distances
are
Then, the following on th&k consolecommand line to load By o)
*(b1) A~ % A~k

our package (the following command can be typed on botld =mazj=13,.-15f; —H2 ,d=mazj=13,.. 15l;—la.

Unix and regular Windows machines): T . .
9 ) The similarity between testingf;,7 = 2,--- ,15 and H; is the
> library("SDBP")# load our package covariance matriXz in equation (17).



R Table 1 Comparison of four differenp-values from analyses of
When we want to calculate the reliability for one tree, for fifteen mammalian trees, based on protein sequence data from [14].
example tree 2, we can use the commadtpk , with the output  The p-values that are NOT significant at= 0.05 are emphasized

shown below. This command corresponds to testing hypothesi§ bold type.
Hy : po = maxk=1,2,.. 154k for tree 2 in the topology file

mam15.tpl. Tree® Al; BP?  DBP¢ sDBFY AU¢  Tree fornd

1 27 0579 0607 0576 0.789 (((1(23))4)56)
> resultl <- sdbpk(dat,2) 2 27 0312 0458 0401 0516 ((1((23)4))56)
> resultl 3 74 0036 0167 0.235 0.114 (((14)(23))56)

4 176  0.013 0.041 0.116 0.075 ((1(23))(45)6)
Call: 5 189 0.035 0.082 0.110 0.128 (1((23)(45))6)
sdbpk(dat = dat, k = 2) 6 20.1 0.005 0.031 0.069 0.029  (1(((23)4)5)6)

7 20.6 0.017 0.056 0.084 0.101 ((1(45))(23)6)
2 8 222 0.001 0.007 0.042 0.009  ((15)((23)4)6)

9 254 0.000 0.002 0.022 0.000  (((1(23))5)46)
0.2237 10 26.3 0.003 0011 0.023 0.028  (((15)4)(23)6)

11 28.9 0.000 0.003 0.013 0.003 14)5)(23)6
Then, calculating the bootstrap probability can use the commandi2 31.6 0.000 0001 0.004 0.001 §Eﬁl5§(2)(3))36§
bp, again shown with the output. 13 317 0.000 0.002 0.005 0.001  (1(((23)5)4)6)

14 347 0.000 0.003 0.001 0.005  ((14)((23)5)6)
> result2 <- bp(dat) 15 36.2 0.000 0.001 0.000 0.002  ((1((23)5))46)
> result2 ) ]

“Trees are numbered by increasing order of
Call: Al; = mazjzil; — 1;, the difference between the log-likelihood
bp(dat = dat) value for a given tree and the largest value among all other trees.

P Bootstrap probability, calculated from 10000 pseudoreplicates

Bootstrap probabilifles: ® . (from Shimodaira (2002)).

“Double bootstrap probability, calculated from 25 million
0.5794 0.3213 0.0342 0.0124 0.0279 0.0057 ... pseudoreplicates (B1 = 51000 B2 — 5 x 1000).
4. Result 4Speedy double bootstrap probability, calculated from 10000

pseudoreplicates (B1 = 10000).
; ; ; ; _ “Multiscale bootstrap probability, calculated from 100000
4'_1 AnalyS|s of mammalian mitochondrial pro pseudoreplicates (AU-test; from Shimodaira (2002)).
tein sequences fTaxon labels: 1 = human, 2 = seal, 3 = cow, 4 = rabbit, 5 =
Table 1 presents the results of our sDBP value calculation§0use, 6 = opossum.
for the 15 phylogenetic trees analyzed in this study, along with
values reported by [11] for traditional BP analyses and the AU-test.

We also developed an algorithm for the regular double bootstragghpk | bpk anddbpk to measure the time. For measuring time
approach for phylogenetic trees [12], although in this paper we;t Au-test, we used the commarntdiitest ~ from R package
have omitted the description of how the DBP were calculated. Inscajehoot. For both sets, the BP-test was the fastest, followed by
Table 1, the original tree number in the file mam15.tpl is renameghe sDBP algorithm, the AU-test then the DBP algorithm. For the
in decreasing order of log-likelihood. The confidence sets of treefist set of calculations (lower numbers of pseudoreplicates) the
obtained by the sDBP algorithm and the DBP algorithmuat — spgp algorithm was 1021-fold faster than the DBP algorithm, and
0.05 were{l,2,3,4,5,6,7} and{1,2,3,5, 7}, respectively (Table this advantage improved substantially for the second set (higher
1). The sDBP tree set was thus slightly larger than the set selectgfbedoreplication), with the sDBP algorithm being 5076-fold faster
by DBP. Tree 7 is the most strongly supportediags;, by recent  than the DBP algorithm.

analyses incorporating additional sequence data [22], [23], [24],

and our results for this tree indicate that SDBP=08845 and  rp6 > comparison of the BP, DBP, sDBP and AU methods
DBP=0.056> 0.05. Our conclusions are thus not in contradictionregarding their speed for computingpavalue for tree-7. '
with the latest data. For a confidence set of models, our sDBP

algorithm gives a confidence set of candidate trees, and includes

the “best" topologymax;—1.... .15 pt;, With an error rate below the BP  DBP  sDBP AU Speed increase (sDBP/DBP)
0.05 level. Thus, our sDBP tree set does not immediately give the Time (secsj 0.69 715 0.73 372  1021-fold
work for straightly gives the “best" topology. Time (sec§) 352 17921 353  14.39  5076-fold
) ) @ Case ofB1 = 10°, B2 = 10® pseudoreplicates
4.2 Comparison of computational speed b Case of Bl = 5 x 103, B2 = 5 x 10° pseudoreplicates

For the sDBP algorithm, the DBP algorithm, the AU-test and
the BP-test, we measured the time taken to calculateraue for
tree 7 (see Table 1), based on the site-wise log-likelihood data. V(\jls ;
used the RELL approximation method [18] with the BP-test, and™* Conclusion
conducted two separate sets of analyses. In the first set, we appliedAs shown in the result section, the sDBP algorithm has compara-
the sDBP algorithm withB1 = 10° pseudoreplicates, the DBP ble accuracy to the DBP algorithm and is much more computation-
algorithm with B1 = 10® and B2 = 10°® pseudoreplicates, and the ally efficient for phylogenetic tree selection problem. For allowing
BP-test with10® pseudoreplicates. In the second set, we appliedesearchers to apply the sDBP algorithm easily, we have developed
the sDBP algorithm withB1 = 5 x 10° pseudoreplicates, the DBP an easy to use R package. We think this implementation of SDBP
algorithm with B1 = 5 x 10®> and B2 = 5 x 10® pseudoreplicates, algorithm will be of further utilities to assessing the reliability of
and the BP-test witl5 x 10> pseudoreplicates. The results of the phylogenetic trees.
two sets are shown in Table 2. This time, we used the commanAvailablity



The program is freely distributed under GNU General Public[23] O. Madsen, M. Scally, C. Douady, D. Kao, R. DeBry, R. Adkins,
License (GPL) and can directly installed from CRAN,
http://cran.r.-project.org/

the official R package archive. The instruction and program sourc
code are avaliable at

http://www.bi.cs.titech.ac.jp/sdbp/
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