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Abstract— Evaluating the reliability of estimated phyloge-
netic trees is of critical importance in the field of molecular
phylogenetics, and for other endeavors that depend on
accurate phylogenetic reconstruction. The bootstrap method
is a well-known computational approach to assessing phylo-
genetic trees, and more generally for assessing the reliability
of statistical models. However, it is known to be biased under
certain circumstances, calling into question the accuracy of
the method. Therefore, several advanced bootstrap methods
have been developed to achieve higher accuracy, one of
which is the speedy double bootstrap approach (sDBP-
method). In the phylogenetic tree selection problem, it has
been shown that the sDBP-method has comparable accu-
racy to the double bootstrap approach and is much more
computationally efficient. In this study, we thus develop an
R package named SDBP, which is an implementation of
our sDBP-method on a statistical software R to assesse
the reliability of phylogenetic trees. We are confident that
biologists will benefit from our sDBP-method and SDBP
package.
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1. Introduction
The analytical methods used in the field of molecular

phylogenetics are important basic tools for reconstruct-
ing the evolutionary history (phylogenetic relationships) of
molecules and organisms. Molecular phylogenetic methods
are primarily used in the context of biological systematics,
but they also find applications in a wide variety of other
fields as diverse as community ecology [1], biogeography
[2] and proteomics, including inference of the similarity of
protein-protein interactions [3]. Many methods for phyloge-
netic reconstruction have been developed and are in regular
use [4]. However, those based on maximum likelihood
estimation have proved most effective for reconstructing
phylogenies using molecular sequence data (DNA, protein,
etc.). Early work on this application of maximum likelihood
was conducted by [5], whose approach involved computing

the maximum likelihood value for many topologies and
selecting the topology with the highest likelihood (the max-
imum likelihood (ML) tree) as the most probable candidate
for the true topology.

It must be noted that maximum likelihood values are
dependent on the particular characteristics of a random
variable; that is, the molecular sequences that constitute
the underlying data for phylogenetic reconstruction. Thus,
some analysis of the statistical reliability of the estimated
ML tree or multiple alternative trees should be undertaken.
Statistical hypothesis testing is commonly used for this
purpose, and the ‘bootstrapping’ technique is a well-known
computational method for calculating reliability when a
simple mathematical formula is difficult to derive. Bootstrap-
ping is a resampling method that approximates a random
sample by creating a bootstrap sample, generated by random
sampling with replacement from the original single data set.
In the context of phylogenetic tree selection, Felsenstein
[6] proposed the use of bootstrapping to place confidence
intervals on phylogenies. He defined thep-value of a tree
according to a frequency called the bootstrap probability
(BP); the proportion of bootstrap pseudoreplicates of the
original data set in which the tree is found to be optimal.
However, it is known that under some circumstances the
naive bootstrap probability can be biased [7], [8]. Thus, some
advanced bootstrap methods have been proposed, to achieve
higher accuracy [9], [10], [11].

Among these, the double bootstrap method (DBP-method)
[9], [10] has been shown to be third-order accurate and is
potentially a useful measure of phylogenetic tree support.
However, the method has a huge computational cost. To
overcome the computational burden in the phylogenetic tree
selection problem, we have previously proposed a ‘speedy’
double bootstrap (sDBP-method) method to compute the
reliability of phylogenetic trees [12]. In the phylogenetic
tree selection problem, our previous work [12] has been
shown that the sDBP-method has comparable accuracy to the
DBP-method and is much more computationally efficient.
Because, it is well known that a good statistical method is
not in itself sufficient, we also need to develop an easy-to-



use computer tool. We thus develop the R package named
SDBP, which is an implementation of our sDBP-method on a
statistical software R to assess the reliability of phylogenetic
trees. We are confident that biologists, who may not have
advanced computer skills, will benefit from our sDBP-
method and SDBP package.

R is a language and environment for statistical computing
and graphics. It is an open-source GNU project based on
the S language and environment developed at Bell Lab-
oratories (formerly AT&T, now Lucent Technologies) by
John Chambers and colleagues. We can summarize why we
implemented our method in R as follows. At first, R provides
a wide variety of statistical (linear and non-linear modeling,
classical statistical tests, time-series analysis, classification,
clustering, · · · ) and graphical techniques, and is highly
extensible. In addition, it is important that R is not only
applicable to statistical fields of research, but also to the
biological field. Genome analysis, including GneABEL [13],
and areas related to biotechnology also have a great many
applicable R packages. Finally, R is available under the terms
of the Free Software Foundation’s GNU General Public
License in source code form. It can be compiled and run
on a wide variety of UNIX platforms and similar systems
(including FreeBSD and Linux), Windows, and MacOS.

This paper is organized as follows. We first give some
background, and then briefly introduce the mathematical
theory of the sDBP-method and its algorithm for assessing
the reliability of phylogenetic trees. Next, we describe the
basic usage of our packageSDBPusing the mammalian mi-
tochondrial data from [14]. Finally, we describe the results.

2. Theory and Algorithm
2.1 The reliability of a phylogenetic tree

In this study, homologous sites of aligned molecular
sequence data are regarded as the units for sampling, and we
use DNA data as our example for the following methodologi-
cal descriptions. Suppose we havem homologous sequences,
each withn nucleotide sites. These data can be represented
as anm × n matrix X = {xjh} = {x1, · · · ,xn}, where
xh is the value of theh-th site andxjh is one of the four
deoxyribonucleotides (T, C, A, or G).

Species 1 : x11 x12 · · · x1n (1)

Species 2 : x21 x22 · · · x2n

...
...

Species m : xm1 xm2 · · · xmn

The log-likelihood can be expressed as

l(θ;X) =

n∑
h=1

logf(xh; θ), (2)

wheref(xh; θ) = f(x1h, x2h, · · · , xmh; θ) is the probability
that at a particular homologous site, species 1 has base
x1h, species 2 hasx2h and speciesm has xmh. The
vector θ denotes unknown parameters such as the edge
lengths (branch lengths) of a tree, and the base substitution
rates along these branches. Here we assume that the base
substitution rates have already been estimated, soθ denotes
only the unknown edge lengths. For a given tree topology,
θ is estimated by maximizing the log-likelihood, and the
maximum log-likelihood of any tree topologyi is given by

li(θ̂i;X) =
n∑

h=1

logfi(xh; θ̂i). (3)

The topology with the highest value ofl(θ̂;X) is the
maximum likelihood phylogeny (TML) for the data setX,
and is thus the most likely candidate for the true topology. To
define null hypotheses for performing model comparisons,
we must consider the true distribution for a random variable
x can be expressed as

q(x) (4)

And the expectation ofli(θ̂i;X), i = 1, · · · ,K with respect
to

(x1, · · · ,xn)
i.i.d.∼ q(·) (5)

can be expressed as

µi = Eq[li(θ̂i;X)] (6)

If we assume that treeT1 is the best topology, the null and
alternative hypotheses will then be

H1 : µ1 = maxi=1,··· ,K µi vs. HA
1 : others, (7)

and we must continue performing these comparisons as
many times as is necessary, assuming in turn that tree
Ti, i = 2, · · · ,K is the best topology. Note that the null
hypothesisH1 involves multiple comparisons with the “best"
topology [15]. As can be seen from equation (7), the null
containsK − 1 hypotheses such that

H1j : µ1 ≥ µj , j = 2, · · · ,K. (8)

The null hypothesisH1 is a polyhedral convex cone and
B(h1), which is the boundary ofH1, is nonsmooth at
the vertex as well as on the faces of dimension less than
K − 1. Shimodaira and Hasegawa [14] proposed a multiple
comparisons procedure (the SH-test) to testH1, but this was
shown to be overly conservative because they assumed that
the parameter configuration isµ1 = µ2 = · · · = µK , that is,
the least favorable configuration or the vertex ofB(h1) [16].
A different method (the AU-test), which uses a multiscale
bootstrap technique to obtain third-order accuratep-values
for testing the null hypothesis, has also been proposed [11].
In our previous work [12], we developed an algorithm using
an advanced bootstrap method [10] that was also able to



provide third-order accuratep-values to assess statistical
reliability of phylogenetic trees. We call it the speedy double
bootstrap method, which will be considered in the following
subsection.

2.2 The theory of speedy double bootstrap
method

In this subsection, it is necessary to review the theory
of the speedy double bootstrap method. For this, we start
by explaining the third-order accuratep-value. It was first
proposed by [17] for the multivariate normal model, which
can be represented as

Y
i.i.d.∼ Nt(η, It). (9)

This normal model is a simplification of reality. LetH ⊂
Rt be an arbitrarily-shaped region with smooth boundaries
denoted byB(h). We want to calculate ap-value p(y) for
testing the null hypothesisη ∈ H. According to [17], when
the true parameterη is on the boundary surfaceB(h), the
third-order accuratep-value can be expressed as

p(y) = 1− Φ(d− c), (10)

where d is the signed distance fromy to η̂(y), with a
positive or negative sign wheny is outside or insideH,
respectively. The point̂η(y) is the closest point toy (in
Euclidean distance) on the surfaceB(h), andc in equation
(10) is a quantity related to the curvature ofB(h) at the point
η̂(y). The speedy double bootstrap method of [10] (named
later by [12]) begins with a bootstrap resampling from the
multivariate normal model with distribution

Y∗ i.i.d.∼ Nt(η̂(y), It). (11)

It then usesY ∗ to calculated∗, which is the signed distance
from Y ∗ toB(h). According to [10], the third-order accurate
p-value obtained by the sDBP-method can be expressed as

1− Φ(d− c) = P (d∗ > d; η̂(y)) +O(n−3/2). (12)

2.3 The algorithm for the speedy double boot-
strap method for phylogenetic trees

We now return to the problem of phylogenetic trees, as
seen inH1 and the vector(l1, · · · , lK). We describe the
algorithm using the sDBP-method to calculate thep-value of
H1. First, we find a vector corresponding toη̂(y) in equation
(11). According to [18], the maximum log-likelihood vector

l = (l1(θ̂1), · · · , lK(θ̂K)) (13)

asymptotically follows a multivariate normal distribution, the
mean vector of which is

µ = (µ1, · · · , µK). (14)

Note that the vectorl in equation (13) is an unrestricted
maximum likelihood estimate forµ. Because we assumed

that µ1 = maxi=1,··· ,K µi in H1, under this restriction
the restricted estimator forµ can be estimated using the
PAVA (pool adjacent violators algorithm) [19] method, and
is expressed as

µ̂ = (µ̂1, · · · , µ̂K). (15)

We then excise a subsetW ∈ {1, · · · ,K}, including the
element 1, so that

µ̂1 =

∑
j∈W lj(θ̂j)

#W
,

µ̂j = min(µ̂1, lj(θ̂j)), j ∈ {2, · · · ,K}. (16)

The vectorµ̂ = (µ̂1, · · · , µ̂K) corresponds tôη(y). Also,
the covariance matrix of the vector(l1, l2, · · · , lK) can be
estimated byΣ = (σij), with σij given as

n

n− 1

n∑
h=1

[
logfi(xh; θ̂i)−

1

n

n∑
h=1

logfi(xh; θ̂i)

]
(17)

×
[
logfj(xh; θ̂j)−

1

n

n∑
h=1

logfj(xh; θ̂j)

]
.

We then need to calculate two other quantities corresponding
to d∗ and d in equation (12). To do this, we generateB1,
for example10000 bootstrap pseudoreplicates of the vector
(µ̂1, µ̂2, · · · , µ̂K) in equation (15). The pseudoreplicates
(µ̂∗(b1)

1 , · · · , µ̂∗(b1)

K ), b1 = 1, · · · , B1 are sampled from

(µ̂∗(b1)

1 , · · · , µ̂∗(b1)

K )T
i.i.d.∼ NK((µ̂1, µ̂2, · · · , µ̂K)T ,Σ),

(18)
whereT represents the transpose, andΣ is used as above.
The vectors (µ̂∗(b1)

1 , · · · , µ̂∗(b1)

K ) constitute the first-order
(first-tier) bootstrap pseudoreplicates. Now,d∗ and d in
equation (12) can be written as

d∗(b1) = maxj=2,··· ,K µ̂∗(b1)

j − µ̂∗(b1)

1 , (19)

d = maxj=2,··· ,K lj − l1.

Next, we calculate thep-value for H1, defined below and
also denoted bysDBP :

sDBP =
#(d∗(b1) > d)

B1
. (20)

In exactly the same way as shown forH1, we can apply the
sDBP method to all other hypothesesHk, k = 2, · · · ,K.

3. Implementation
3.1 Implementation in R

We have implemented the sDBP algorithm for phyloge-
netic inference as a R package. Our package is namedSDBP,
and calculatesp-values for phylogenetic trees. It can be used
in combination with several other functions or packages in
R.

The package was written in the S language using the S3
object system, and consists of a number of user-level objects:



sdbp , sdbpk , bpk , bp , dbpk , andmam20. The following
subsections describe how to use these user-level objects. The
SDBP provides three types ofp-value: the sDBP (speedy
double bootstrap probability), the DBP (double bootstrap
probability), and the BP (bootstrap probability).

3.2 Usage – Using the mammalian mitochon-
drial protein sequences

In this subsection, we explain how to use SDBP with the
mammalian mitochondrial protein sequences data from [14].
This data set included in file mam15-files, which can be
download from scaleboot Home Page.
http://www.is.titech.ac.jp/˜shimo/prog/scaleboot/index.html
Scaleboot also is an R package. The mammalian protein
data set includes sequences of n = 3414 amino acids from
six mammalian species (human, seal, cow, rabbit, mouse,
and opossum). The proteins coded for in the mammalian
mitochondrial genome are ND1, ND2, COX1, COX2, ATP8,
ATP6, COX3, ND3, ND4L, ND4, ND5, and CYTB. The
clade{seal, cow} was significantly supported in preliminary
analyses, so only the 15 unrooted trees (see Table 1) that
included this clade were considered in our comparisons (the
opossum is the outgroup). Now, the number of treesK is 15,
and the sample sizen is 3414. HypothesisH1 denotes that
µ1 = maxi=1,··· ,15 µi. Our aim is to calculate thep-values
for hypothesisH1 as well asHi, i = 2, · · · , 15.

In advance, we used the software package PAML [20],
to calculate the site-wise log-likelihood for each tree. The
output file is file mam15.lnf. The format of mam15.lnf is
not available for our package, so the format was changed
using CONSEL [21] by executing the command “seqmt
−−paml mam15.lnf". Thus we obtain the site-wise log-
likelihood matrix saved in the file mam15.mt for each tree.
The file mam15.mt obtained by CONSEL should be placed
in the R work directory. The15 tree topologies is in the file
mam15.tpl, that can be found in mam15-files.

Our SDBP package is built under R version 3.0.0. There-
fore, this R version (or later) is needed to install our package.
For Windows OS, after booting R, choose the tabPackages
in the upper tool-bar and select the tabInstall Package(s)
from zip files option, then choose theSDBP_1.0.zipfile
downloaded from CRAN, the official R package archive.

For using the command line on UNIX platforms to install
the source version packageSDBP_1.0.tar.gzdownloaded
from CRAN, just write the following command:

R CMD INSTALL SDBP_1.0.tar.gz

and boot R via the command line using the command.

R

Then, the following on theR consolecommand line to load
our package (the following command can be typed on both
Unix and regular Windows machines):

> library("SDBP")# load our package

And then, read the data named mam15.mt.

# read scaleboot for reading .mt files
> library(scaleboot)
> dat<-read.mt(mam15.mt)
> dim(dat)# dat matrix demation
[1] 3414 15

Calculating the sDBP-value for each tree requires the following
line. Thus our package is as easy-to-use as R package.

> result <- sdbp.default(dat)
> result

We performed this on a personal computer with the following
specifications: 2.50 GHz CPU (Core (TM) i5-2520M CPU) and
8.00 GB RAM. The results are output in decreasing order of log-
likelihood.

Call:
sdbp.default(dat = dat)

Speedy double bootstrap probabilities:
t1 t3 t2 t5 t6 t7
0.5828 0.3905 0.2237 0.1191 0.1109 0.0681 ...

Calculating the stand error for each value, we can use the command
summary.

> summary(result)

The output is

Call:
speedy.default(dat = dat)

stdErr p.value
t1 0.0049 0.5717
t3 0.0049 0.3928
t2 0.0041 0.2173
t5 0.0032 0.1136
...
attr(,"class")
[1] "summary.sdbp"

This command is for testing hypothesisH1 in equation (7) for tree
1 in the topology file mam15.tpl, using the algorithm in subsection
2.3. Also, for testing hypothesesHi : µi = maxk=1,··· ,15µk, i =
2, · · · , 15 for tree 2,· · · , tree 15 in the topology file mam15.tpl,
we repeatedly use the algorithm in subsection 2.3. However, the
algorithm for testing one of the hypothesisHi of Hi, i = 2, · · · , 15
is a little different from the algorithm for testing hypothesisH1.
The difference is that we calculate the projectionµ̂ of the maximum
log-likelihood vectorl = (l1, · · · , l15) for each hypothesis and
the signed distances. For example, the projection vectorµ̂ of the
maximum log-likelihood vectorl = (l1, · · · , l15) under hypothesis
H2 is obtained using the following equations.

µ̂2 =

∑
j∈W2

lj(θ̂j)

#W2
, µ̂j = min(µ̂2, lj(θ̂j)), j ∈ {1, 3, · · · , 15},

where W2 is subset of the numbers{1, · · · , 15} including the
element 2. For details of the implementation of the PAVA method,
see our R source code in sdbp.R in SDBP. The signed distances
are

d∗
(b1)

= maxj=1,3,··· ,15µ̂
∗(b1)
j −µ̂∗(b1)

2 , d = maxj=1,3,··· ,15lj−l2.

The similarity between testingHi, i = 2, · · · , 15 and H1 is the
covariance matrixΣ in equation (17).



When we want to calculate the reliability for one tree, for
example tree 2, we can use the commandsdbpk , with the output
shown below. This command corresponds to testing hypothesis
H2 : µ2 = maxk=1,2,··· ,15µk for tree 2 in the topology file
mam15.tpl.

> result1 <- sdbpk(dat,2)
> result1

Call:
sdbpk(dat = dat, k = 2)

t2
0.2237

Then, calculating the bootstrap probability can use the command
bp , again shown with the output.

> result2 <- bp(dat)
> result2

Call:
bp(dat = dat)

Bootstrap probabilities:
t1 t3 t2 t5 t6 t7
0.5794 0.3213 0.0342 0.0124 0.0279 0.0057 ...

4. Result
4.1 Analysis of mammalian mitochondrial pro-
tein sequences

Table 1 presents the results of our sDBP value calculations
for the 15 phylogenetic trees analyzed in this study, along with
values reported by [11] for traditional BP analyses and the AU-test.
We also developed an algorithm for the regular double bootstrap
approach for phylogenetic trees [12], although in this paper we
have omitted the description of how the DBP were calculated. In
Table 1, the original tree number in the file mam15.tpl is renamed
in decreasing order of log-likelihood. The confidence sets of trees
obtained by the sDBP algorithm and the DBP algorithm atα =
0.05 were{1, 2, 3, 4, 5, 6, 7} and{1, 2, 3, 5, 7}, respectively (Table
1). The sDBP tree set was thus slightly larger than the set selected
by DBP. Tree 7 is the most strongly supported asTML by recent
analyses incorporating additional sequence data [22], [23], [24],
and our results for this tree indicate that sDBP=0.084>0.05 and
DBP=0.056> 0.05. Our conclusions are thus not in contradiction
with the latest data. For a confidence set of models, our sDBP
algorithm gives a confidence set of candidate trees, and includes
the “best" topologymaxi=1,··· ,15 µi, with an error rate below the
0.05 level. Thus, our sDBP tree set does not immediately give the
work for straightly gives the “best" topology.

4.2 Comparison of computational speed
For the sDBP algorithm, the DBP algorithm, the AU-test and

the BP-test, we measured the time taken to calculate ap-value for
tree 7 (see Table 1), based on the site-wise log-likelihood data. We
used the RELL approximation method [18] with the BP-test, and
conducted two separate sets of analyses. In the first set, we applied
the sDBP algorithm withB1 = 103 pseudoreplicates, the DBP
algorithm withB1 = 103 andB2 = 103 pseudoreplicates, and the
BP-test with103 pseudoreplicates. In the second set, we applied
the sDBP algorithm withB1 = 5×103 pseudoreplicates, the DBP
algorithm withB1 = 5×103 andB2 = 5×103 pseudoreplicates,
and the BP-test with5 × 103 pseudoreplicates. The results of the
two sets are shown in Table 2. This time, we used the command

Table 1 Comparison of four differentp-values from analyses of
fifteen mammalian trees, based on protein sequence data from [14].
Thep-values that are NOT significant atα = 0.05 are emphasized
in bold type.

Treea △li BPb
i DBPc

i sDBPdi AUe
i Tree formf

1 -2.7 0.579 0.607 0.576 0.789 (((1(23))4)56)
2 2.7 0.312 0.458 0.401 0.516 ((1((23)4))56)
3 7.4 0.036 0.167 0.235 0.114 (((14)(23))56)
4 17.6 0.013 0.041 0.116 0.075 ((1(23))(45)6)
5 18.9 0.035 0.082 0.110 0.128 (1((23)(45))6)
6 20.1 0.005 0.031 0.069 0.029 (1(((23)4)5)6)
7 20.6 0.017 0.056 0.084 0.101 ((1(45))(23)6)
8 22.2 0.001 0.007 0.042 0.009 ((15)((23)4)6)
9 25.4 0.000 0.002 0.022 0.000 (((1(23))5)46)
10 26.3 0.003 0.011 0.023 0.028 (((15)4)(23)6)
11 28.9 0.000 0.003 0.013 0.003 (((14)5)(23)6)
12 31.6 0.000 0.001 0.004 0.001 (((15)(23))46)
13 31.7 0.000 0.002 0.005 0.001 (1(((23)5)4)6)
14 34.7 0.000 0.003 0.001 0.005 ((14)((23)5)6)
15 36.2 0.000 0.001 0.000 0.002 ((1((23)5))46)

aTrees are numbered by increasing order of
△li = maxj ̸=ilj − li, the difference between the log-likelihood
value for a given tree and the largest value among all other trees.
bBootstrap probability, calculated from 10000 pseudoreplicates

(from Shimodaira (2002)).
cDouble bootstrap probability, calculated from 25 million

pseudoreplicates (B1 = 5×1000, B2 = 5× 1000).
dSpeedy double bootstrap probability, calculated from 10000

pseudoreplicates (B1 = 10000).
eMultiscale bootstrap probability, calculated from 100000

pseudoreplicates (AU-test; from Shimodaira (2002)).
fTaxon labels: 1 = human, 2 = seal, 3 = cow, 4 = rabbit, 5 =

mouse, 6 = opossum.

sdbpk , bpk anddbpk to measure the time. For measuring time
of AU-test, we used the commandrelltest from R package
scaleboot. For both sets, the BP-test was the fastest, followed by
the sDBP algorithm, the AU-test then the DBP algorithm. For the
first set of calculations (lower numbers of pseudoreplicates) the
sDBP algorithm was 1021-fold faster than the DBP algorithm, and
this advantage improved substantially for the second set (higher
pseudoreplication), with the sDBP algorithm being 5076-fold faster
than the DBP algorithm.

Table 2 Comparison of the BP, DBP, sDBP and AU methods,
regarding their speed for computing ap-value for tree-7.

BP DBP sDBP AU Speed increase (sDBP/DBP)

Time (secs)a 0.69 715 0.73 3.72 1021-fold
Time (secs)b 3.52 17921 3.53 14.39 5076-fold
a Case ofB1 = 103, B2 = 103 pseudoreplicates
b Case ofB1 = 5× 103, B2 = 5× 103 pseudoreplicates

5. Conclusion
As shown in the result section, the sDBP algorithm has compara-

ble accuracy to the DBP algorithm and is much more computation-
ally efficient for phylogenetic tree selection problem. For allowing
researchers to apply the sDBP algorithm easily, we have developed
an easy to use R package. We think this implementation of sDBP
algorithm will be of further utilities to assessing the reliability of
phylogenetic trees.
Availablity



The program is freely distributed under GNU General Public
License (GPL) and can directly installed from CRAN,
http://cran.r.-project.org/
the official R package archive. The instruction and program source
code are avaliable at
http://www.bi.cs.titech.ac.jp/sdbp/
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