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Abstract— Protein-protein interactions (PPIs) play
various important roles in living organisms. Hence,
many efforts have been made to investigate and predict
PPIs. Analysis of strengths of PPIs is important as
well as PPIs because such strengths are involved in
functionality of proteins. In this paper, we propose
several feature space mappings from protein pairs,
which make use of protein domain information, and
perform five-fold cross-validation for data obtained
from biological experiments. The result of average
root mean square error (RMSE) using support vector
regression (SVR) with our proposed feature was better
than that by the best existing method, APM proposed
by Chen et al.
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1. Introduction
Many investigations and analyses have been done for

protein-protein interactions (PPIs) due to their impor-
tance in cellular systems. In addition, many prediction
methods have been developed. As well as studies
of PPIs, analyses of strengths of PPIs are important
because such strengths are involved in functionality of
proteins. In terms of transcription factor complexes,
if a member protein has a weak binding affinity,
target genes may not be transcribed depending on
intracellular circumstance. For example, it is known
that multi-subunit complex NuA3 in Saccharomyces
Cerevisiae consists of five proteins, Sas3, Nto1, Yng1,
Eaf6, and Taf30, acetylates lysine 14 of histone H3, and
activates gene transcription. However, Yng1 and Nto1
are often found in the complex, and interactions with
other member proteins are difficult to be observed by

biological experiments. Hence, Byrum et al. proposed
a biological methodology for identifying transient and
unstable protein interactions recently [1].

Although many biological experiments have been
conducted for protein-protein interactions [2], [3],
strengths of PPIs have not been always provided. Ito et
al. conducted large-scale yeast two-hybrid experiments
for whole yeast proteins. In their experiments, yeast
two-hybrid experiments were conducted for each pro-
tein pair multiple times, and the number of experiments
that interactions were observed, or the number of
interaction sequence tags (ISTs), was counted. Con-
sequently, they decided that protein pairs having three
or more ISTs should interact, and reported interacting
protein pairs.

The ratio of the number of ISTs to the total number
of experiments for a protein pair can be regarded as
the interaction strength between their proteins. On the
basis of this consideration, several prediction methods
for strengths of PPIs have been developed. LPNM [4]
is a linear programming-based method, and ASNM [4]
is a modified method from the association method [5]
for predicting PPIs. Chen et al. proposed association
probabilistic method (APM) [6], which is the best
existing method for predicting strengths of PPIs as
far as we know. These methods make use of protein
domain information. Domains are known as structural
and functional units in proteins, and are stored in
several databases such as Pfam [7] and InterPro [8].
The same domain can be identified in several differ-
ent proteins. In these prediction methods, interaction
strengths between domains are estimated from known
interaction strengths between proteins, and interaction
strengths for target protein pairs are predicted from
estimated strengths of domain-domain interactions.
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Fig. 1: Illustration of protein-protein interaction model
based on domain-domain interactions

In this paper, we also make use of domain infor-
mation, and propose several feature space mappings
from protein pairs. We use support vector regression
(SVR), perform five-fold cross-validation for data from
biological experiments by Ito et al. [3] and WI-PHI
dataset [9], and take the average root mean square error
(RMSE). The average RMSE by our proposed method
was smaller than that by the best existing method, APM
[6].

2. Method
In this section, we briefly review a probabilistic

model and related methods, the association method [5],
ASNM (association method for numerical interaction
data) [4], APM (association probabilistic method) [6],
and propose several feature space mappings using
domain information.

2.1 Probabilistic Model of Protein-Protein In-
teractions Based on Domain-Domain Interac-
tions

Many strength prediction methods are based on
the probabilistic model of protein-protein interactions
proposed by Deng et al. [10]. This model utilizes
domain-domain interactions, and assumes that two
proteins interact with each other if and only if at
least one pair of domains contained in the respective
proteins interacts. Fig. 1 illustrates this interaction
model between two proteins P1 and P2, which consist
of domains D1, D2, D3, and domains D2, D4, D5,
respectively. As in this case, two proteins can contain
the same domain. According to this model, if P1 and P2

interact, at least one pair among (D1, D2), (D1, D4),
(D1, D5), (D2, D2), (D2, D4), (D2, D5), (D3, D2),

(D3, D4), and (D3, D5) interacts. Conversely, if a pair,
for instance (D3, D4), interacts, P1 and P2 interact.

From the assumption of this model, we can derive
the following simple probability that two proteins Pi

and Pj interact with each other.

Pr(Pij = 1)

= 1−
∏

Dm∈Pi,Dn∈Pj

(1− Pr(Dmn = 1)), (1)

where Pij = 1 indicates the event that proteins Pi

and Pj interact (otherwise Pij = 0), Dmn = 1
indicates the event that domains Dm and Dn interact
(otherwise Dmn = 0), Pi and Pj also represent the
sets of domains contained in Pi and Pj , respectively.
Deng et al. applied the EM (expectation maximization)
algorithm to the problem of maximizing log-likelihood
functions, estimated probabilities that two domains
interact, Pr(Dmn = 1), and proposed a method for
predicting PPIs using the estimated probabilities of
domain-domain interactions [10]. Actually, they cal-
culated Pr(Pij = 1) using Eq. (1), and determined
whether or not Pi and Pj interact by introducing a
threshold θ, that is, Pi and Pj interact if Pr(Pij =
1) ≥ θ, otherwise the proteins do not interact. Since
interacting sites may not be always included in some
known domain region, it can cause the decrease of
prediction accuracy in this framework.

2.2 Association Method
Let P be a set of protein pairs that have been

observed to interact or not to interact. The association
method [5] gives the following simple score for two
domains Dm and Dn using proteins that include the
domains.

ASSOC(Dm, Dn) =

|{(Pi, Pj) ∈ P|Dm ∈ Pi, Dn ∈ Pj , Pij = 1}|
|{(Pi, Pj) ∈ P|Dm ∈ Pi, Dn ∈ Pj}|

, (2)

where |S| indicates the number of elements contained
in the set S. This score represents the ratio of the
number of interacting protein pairs including Dm and
Dn to the total number of protein pairs including Dm

and Dn. Hence, it can be considered as the probability
that Dm and Dn interact.

2.3 Association Method for Numerical Interac-
tion Data (ASNM)

The association method for numerical interaction
data (ASNM) [4] is a modified method for predicting



strengths of PPIs from the original association method
[5]. This method takes strengths of PPIs as input data.
Let ρij represent the interaction strength between Pi

and Pj , and we suppose that ρij is defined for all
(Pi, Pj) ∈ P . Then, the ASNM score for domains Dm

and Dn is defined as the average strength over protein
pairs including Dm and Dn by

ASNM(Dm, Dn)

=

∑
{(Pi,Pj)∈P|Dm∈Pi,Dn∈Pj}

ρij

|{(Pi, Pj) ∈ P|Dm ∈ Pi, Dn ∈ Pj}|
. (3)

If ρij always takes only 0 or 1, ASNM(Dm, Dn)
becomes ASSOC(Dm, Dn).

2.4 Association Probabilistic Method (APM)
Although ASNM is a simple average of strengths

of PPIs, Chen et al. proposed the association proba-
bilistic method (APM) by replacing the strength with
an improved strength [6]. It is based on the idea that
the contribution of one domain pair to the strength
of a PPI should vary depending on the number of
domain pairs included in a protein pair. They assumed
that the interaction probability of each domain pair is
equivalent in a protein pair, and transformed Eq. (1) as
follows:

Pr(Dmn = 1) = 1− (1− Pr(Pij = 1))
1

|Pi||Pj | .(4)

Thus, by substituting the numerator of ASNM, APM
is defined by

APM(Dm, Dn) =∑
{(Pi,Pj)∈P|Dm∈Pi,Dn∈Pj}

(1− (1− ρij)
1

|Pi||Pj | )

|{(Pi, Pj) ∈ P|Dm ∈ Pi, Dn ∈ Pj}|
. (5)

They conducted some computational experiments, and
reported that APM outperforms existing prediction
methods such as ASNM and LPNM.

2.5 Feature Based on Number of Domains (DN)
We propose a feature space mapping based on the

number of domains (DN) from two proteins. It can
be considered that the probability that two proteins
interact increases with a larger number of domains
included in the proteins. Thus, the feature vector of
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Fig. 2: Illustration of restricting an amino acid se-
quence to which the spectrum kernel is applied to the
domain regions

DN for two proteins Pi and Pj is defined by

f
(m)
ij = M(Dm, Pi) (for Dm ∈ Pi), (6)

f
(T+n)
ij = M(Dn, Pj) (for Dn ∈ Pj), (7)

f
(l)
ij = 0 (for Dl /∈ Pi ∪ Pj), (8)

where T indicates the total number of domains over
all proteins, and M(Dm, Pi) indicates the number of
domains identified as Dm in protein Pi.

2.6 Feature by Restriction of Spectrum Kernel
to Domain Region (SPD)

Furthermore, we propose a feature space mapping
by restricting the application of the spectrum kernel
[11] to domain regions (SPD). Let A be the set of
alphabets representing twenty types of amino acids.
Then, Ak (k ≥ 1) means the set of all strings with
length k generated from A. The k-spectrum kernel for
sequences x and y is defined by

Kk(x, y) = ⟨Φk(x),Φk(y)⟩, (9)

where Φk(x) = (ϕs(x))s∈Ak and ϕs(x) indicates the
number of times that s occurs in x.

To make use of domain information, we restrict an
amino acid sequence to which the k-spectrum kernel
is applied to the domain regions. Fig. 2 illustrates
the restriction. In this example, the protein consists
of domains D1, D2, D3, and each domain region is
surrounded by a square. Then, the subsequence in each
domain is extracted, and all the subsequences in the
protein are concatenated in the same order as domains.
We apply the k-spectrum kernel to the concatenated
sequence. Let ϕ

(r)
s (x) be the number of times that

string s occurs in the sequence restricted to the domain
regions in protein x in the above manner. The feature



vector of SPD for proteins Pi and Pj is defined by

f
(l)
ij = ϕ(r)

sl (Pi) (for sl ∈ Ak), (10)

f
(20k+l)
ij = ϕ(r)

sl (Pj) (for sl ∈ Ak). (11)

It should be noted that ϕ
(r)
s for proteins having the

same composition of domains can vary depending on
the amino acid sequences of their proteins. That is,
even if Pi and Pj have the same compositions as Pk

and Pl, respectively, and the feature vector of DN for
Pi and Pj is the same as that for Pk and Pl, then the
feature vector of SPD for Pi and Pj can be different
from that for Pk and Pl.

2.7 Support Vector Regression (SVR)
We employ support vector regression (SVR) [12]

with our proposed features to predict strengths of PPIs.
In the case of linear functions, SVR finds parameters
w and b for f(x) = ⟨w, x⟩+b by solving the following
optimization problem.

minimize 1
2 ||w||

2 + C
∑

i(ξi + ξ′i),
subject to yi − ⟨w, xi⟩ − b ≤ ϵ+ ξi,

yi − ⟨w, xi⟩ − b ≥ −ϵ− ξ′i,
ξi ≥ 0, ξ′i ≥ 0,

where C and ϵ are positive constants, and (xi, yi) is
a training data. Here, the penalty is added only if the
difference between f(xi) and yi is larger than ϵ. In
our problem, xi means a protein pair, and yi means
the corresponding interaction strength.

3. Computational Experiments
To evaluate our proposed features, DN and SPD, we

conducted computational experiments, and compared
them with the existing method, APM.

3.1 Data and Implementation
It is difficult to directly measure actual strengths of

PPIs for many protein pairs by biological and physical
experiments. Hence, we used Ito’s yeast two-hybrid
data with 1586 interacting protein pairs [3] and WI-
PHI dataset with 50000 protein pairs [9]. For each
protein-protein interaction, WI-PHI contains a weight
that is considered to represent some reliability of the
PPI, and is calculated from several different kinds of
PPI datasets in some statistical manner. As strengths of
PPIs, we used the value dividing the number of ISTs
by the total number of yeast two-hybrid experiments
for Ito’s data, and used the value dividing the weight of

Table 1: Results of the average RMSE by SVR with
our proposed features, DN and SPD (k = 1, 2), and by
the existing method, APM, for training and test data

method RMSE for training RMSE for test
SVR with DN 0.0927 0.0831
SVR with SPD (k=1) 0.0289 0.0516
SVR with SPD (k=2) 0.0242 0.0282
APM 0.0265 0.0331

PPI by the maximum weight for WI-PHI. Since these
datasets do not include protein pairs with interaction
strength 0, we randomly selected 100 protein pairs that
were not included in the datasets, and added them as
protein pairs with strength 0. We used UniProt database
[13] to get amino acid sequences and information of
domain compositions and domain regions in proteins.
We used SVM light [14] for executing support vector
regression, and used the polynomial kernel K(x, y) =
(s⟨x, y⟩+ c)d.

3.2 Root Mean Square Error (RMSE)
The root mean square error (RMSE) is a measure of

differences between predicted values ŷi and actually
observed values yi, and is defined by

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2, (12)

where N is the number of test data.

3.3 Result
We conducted five-fold cross-validation, and calcu-

lated the average RMSE. We examined various values
of parameters of the polynomial kernel in the range
of 1 ≤ s, c, d ≤ 50. Table 1 shows the results of the
average RMSE by SVR with our proposed features,
DN and SPD of k = 1, 2, and by APM [6], for
training and test data, where parameters (s, c, d) for
the polynomial kernel were (1, 1, 3) in DN, (28, 7, 17)
in SPD of k = 1, and (19, 4, 23) in SPD of k = 2.
Although the average RMSEs by SVR with DN and
by SVR with SPD of k = 1 were larger than those
by APM for both training and test data, those by SVR
with SPD of k = 2 were smaller than those by APM.

4. Conclusion
We proposed feature space mappings, DN and SPD,

for predicting strengths of protein-protein interactions.



DN is based on the number of domains in a pro-
tein. SPD is based on the spectrum kernel, and is
defined using the amino acid subsequences in domain
regions. We employed support vector regression (SVR)
with polynomial kernel, and conducted five-fold cross-
validation using Ito’s yeast two-hybrid data and WI-
PHI dataset. For both training and test data, the average
RMSEs by SVR with SPD of k = 2 were smaller than
those by APM, which is the best existing method. It
implies that the use of amino acid sequences in domain
regions enhanced the prediction accuracy comparing
with only information of domain compositions.

It is desired that additional datasets of accurate
interaction strengths for many proteins are provided.
However, to further enhance the prediction accuracy,
we can improve kernel functions combining physical
characteristics of domains and amino acids.
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