Low-Powered Self-Timed Pipeline with Variable-Grain Power Gating and Suspend-Free Voltage Scaling

Kei MIYAGI¹, Shuji SANNOMIYA², Makoto IWATA¹, and Hiroaki NISHIKAWA²

¹School of Information, Kochi University of Technology, Kami, Kochi, Japan
²Department of Computer Science, Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba Science City, Ibaraki, Japan

Abstract—This paper describes a variable-grain power gating and suspend-free voltage scaling scheme based on the self-timed pipeline (STP) circuits. The STP operates with its local hand-shake signal so that it does not require the global clock distribution, i.e., centralized control. Therefore, various power supply control for the STP can be naturally localized in both spatial and temporal domains without stopping its effective data transfer, e.g., program execution in case of microprocessors. As a result, the power supply scheme proposed in this paper can efficiently incorporate both commonly used voltage scaling (VS) and power gating (PG) techniques and it can further produce synergistic effects on its total amount of power saving. This paper reports evaluation results of the proposed scheme through actual power measurement of our fabricated STP-based data-driven processor.

Keywords: self-timed pipeline, power gating, voltage scaling

1. Introduction

With the advancement of modern semiconductor integration technology, higher power-performance efficiency of LSI systems is required more and more. For example, power efficient LSI systems contribute to help wireless ad hoc networks more tolerant and dependable, especially in case of emergent conditions such as natural or artificial disasters.

As for static (leakage) power consumption of LSI systems, power gating (PG) technique is usually employed to power-off idle part of LSI and cut off leakage current [1]. As for dynamic (switching) power consumption, voltage scaling (VS) technique is commonly used to lower both power supply voltage and clock frequency to reduce switching power of transistors [2].

However, conventional PG schemes coping with coarse grain power domain such as processor core or whole die has some performance overhead derived from longer wakeup time [3], and they cannot cut off leakage power of a finer part of LSI. In case of applying conventional VS to clock synchronous LSI systems, there is some performance overhead since the LSI circuit has to be suspended during the transition time when both voltage and clock frequency are scaled. Furthermore, combinations of voltage level and frequency are predetermined at the design phase so that flexibility of power supply is limited.

In order to overcome those problems, the authors have been studying a runtime fine-grain power supply scheme [4], [5] in a collaborative research project on ultra-low-power LSIs. By the runtime fine-grain power supply scheme, voltage scaling operation adaptive to processing load saves switching power, and fine-grain power gating operation within short idle time reduces leakage power even in runtime. To realize both operations, we are focusing on the self-timed pipeline (STP) circuit. The STP can operate under different supply voltages without changing the clock frequency and thus throughput performance of the STP autonomously alters depending on the scaled voltage. Furthermore, data transfer control signals between adjacent pipeline stages can be utilized to control the power switch for PG and the wakeup time of the stage can be enclosed in hand-shake time with its preceded stage. However, the performance and power overheads will increase in the condition where the processing load changes frequently or drastically.

This paper therefore focuses on realizing adaptive control of power supply according to processing load. The proposed scheme provides multiple policies to control PG and VS operations and adjusts the tradeoff point of power supply control depending on various conditions. The paper reports evaluation results of the proposed scheme through actual power measurement of our STP-based data-driven processor fabricated by 65 nm CMOS process.

2. Runtime fine-grain power supply

In general, processing load within a parallel processor momentarily alters depending on the parallelism of the programs and frequency of processing requests from outside of the processor. The runtime fine-grain power supply scheme aims to realize PG and VS adaptive to such processing load fluctuations with as small performance overhead as possible. To maximize performance per power, it is important to consider balance between the size of power domain and energy overhead as follows. Figure 1 illustrates the spectrum of power supply control.

1) Spatially fine-grained power-domain and temporally fine-grained control for minimizing power supply
2) Suspend-free control for avoiding performance degradation

3) Adaptive power supply control to processing load

The authors have already proposed a fine-grain (stage-by-stage) PG and a suspend-free VS based on STP. In this paper, more rich information for adaptive power supply control is extracted from the circuit and it is utilized to change the control policy of the target grain.

This section briefly introduces the autonomous behavior of STP and the runtime fine-grain power supply scheme [6] utilizing the STP behavior.

2.1 Self-Timed Pipeline

Basic STP circuit is configured as shown in Figure 2. Each pipeline stage is composed of a data latch DL_i operating as a pipeline resister, a functional logic, and a coincidence flip-flop C_i controlling data transfer between its neighbor pipeline stages. A set of data transferred in the pipeline is packed in a form of packet with a set of tags. Every packet is transferred at stage-by-stage based on localized control signals (send and ack signals) between adjacent pipeline stages as follows.

1) **(Beginning of packet transfer)** In C_{i-1} at stage $(i-1)$, $send_{i-1}$ signal is asserted for its succeeded stage (i). At the same time, data latch D_{i-1} sends a packet to the stage (i).

2) **(Handshake)** C_i opens the data latch DL_i when both $send_{i-1}$ and ack_i signals are asserted.

3) **(Acknowledge signal)** At the same time, ack_{i-1} signal is asserted at C_i to allow next packet transfer from its preceded stage.

4) **(Send signal)** C_i asserts $send_i$ signal and begins to send the packet to its succeeded stage $(i + 1)$.

5) The above steps are iterated as long as there are packets in the pipeline.

By virtue of this localized data transfer control among pipeline stages, STP provides (a) power saving feature that the switching power is consumed only when the stage transfers and processes packets and (b) autonomous buffering (elastic) capability against fluctuated packet flow in the pipeline.

2.2 Runtime fine-grain power supply with STP

The send and ack signals of a pipeline stage represents whether the valid data is processed in the pipeline stage or not. By utilizing these signals for power control, the power can be concentrated to only pipeline stages with valid data. To realize such localized power gating, a power switch is inserted between the power line and each pipeline stage and it is switched off only when the corresponding pipeline stage has no valid data. This fine-grain power gating can deeply reduce the leakage current in comparison with the widely-used processor-core level power gating. Figure 3 shows the circuit diagram of the self-timed pipeline with the fine-grain power gating. To reduce the leakage current through the power switch itself, a high-threshold NMOS transistor is used as the power switch between the ground-line VSS and both the DL and Logic. To control the power switch, a control circuit called PC is introduced. The PC observes the send and ack signals, and it closes and opens the power switch. Generally, isolation cells are inserted between the powered-on and powered-off circuits to stop the propagation of the unstable signals from the powered-off circuit to the powered-on circuit. Fortunately, a part of the DL circuit can behave as the isolation cell in the self-timed pipeline, and thus the isolation cells are no longer required. Moreover, the absence of the isolation cells makes it possible to dynamically adjust the size of a target cluster in which the pipeline stages are powered-off at a time.

As for the dynamic voltage scaling, the self-timed pipeline is suitable because of its clock-less principle. The data transfer timing is determined by the C as already described, and it can be changed by scaling the supplied voltage to the C. The self-timed pipeline can continues to run even in the transition period when the supplied voltage changes as long as the difference among the potentials in the VDD lines is within a certain value enough to guarantee the switching of every transistor. Moreover, the whole consumption current...
through the self-timed pipeline is in proportion to the number of valid data flowing in the self-timed pipeline because only the pipeline stages with valid data are driven as a result of the handshake. This graceful feature is preserved as long as any interlocking or forwarding mechanisms are not introduced, and it cannot be realized by using clock-synchronized circuit in which power is consumed independently from the number of valid data. By exploiting the graceful feature, the number of valid data flowing in the self-timed pipeline can be observed by the whole consumption current of the self-timed pipeline. Consequently, the power consumption can be reduced by setting the supplied voltage to a minimum value enough to achieve the throughput (the number of valid data flowing the self-timed pipeline) observed by the consumption current. This is because the power consumption generally is in proportion to the square of the supplied voltage.

On the other hand, the clock-synchronized circuit should introduce a PLL (Phase-Locked Loop) circuit providing several clock-frequencies according to the supplied voltage in order to change the supplied voltage. Unfortunately, the PLL takes several tens of μ seconds to switch the clock-frequency [7], and thus the supplied voltage cannot be changed during the several tens of μ seconds. In contrast, the absence of the PLL in the self-timed pipeline makes it possible to realize truly runtime voltage scaling as long as the amount of change of the supplied voltage is moderate enough to guarantee the switching of transistors.

As explained above, both the power gating and the dynamic voltage scaling can be deeply exploited to reduce the power consumption by focusing on the unique features of the self-timed pipeline.

2.3 Break even model

The power gating reduces the leakage current through the powered-off circuit while the switching of the power switch consumes power. In addition, the rush current which flows after the power switch is opened results in the power consumption. As for the dynamic voltage scaling, the switching power can be reduced according to the required throughput, meanwhile, the charge and discharge of the load capacity are unavoidable to scale the supplied voltage. An equivalent circuit by which these gains and overheads are modeled is illustrated in figure 4. Based on the equivalent circuit, the switching energy for the power switch, \(E_{PS} \), can be defined by equation (1) in which \(C_{PS} \) denotes the parasitic capacitance.

\[
E_{PS} = C_{PS} \times VDD^2
\]

Based on both the equivalent circuit and a paper [8], the energy consumed by the rush current can be defined by equation (2) in which \(C_{VVSS} \), \(C_L \) and \(\Delta_{VVSS} \) denote the virtual ground, the capacitance of the target circuit and the potential of the virtual ground, respectively.

\[
E_{rush} = (C_{VVSS} + \frac{1}{2} C_L) \times VDD \times \Delta_{VVSS}
\]

The \(\Delta_{VVSS} \) increases as long as the target circuit is powered-off, and it asymptotically reaches to the VDD. This fact indicates that the amount of the reduced leakage current increases along with the sleep time while the short sleep time exposes the overhead energy. That is, the sleep time is the break-even point to determine the gain of the power gating. Based on the equation (1) and (2), the break-even sleep time can be defined by an approximate expression (3) in which \(P_{active} \) and \(P_{sleep} \) denote the energy consumed by the isolation parts, the power consumed by the leakage current during powered-on and the power consumed by the leakage current during powered-off, respectively.

\[
BET = \frac{E_{PS} + E_{rush}}{P_{active} - P_{sleep}}
\]

The gain of the power gating can be obtained by satisfying the equation (3), and it can be defined by an approximate expression (4) which calculates the difference between the gain and loss based on the equation (3).

\[
E_{PG.gain} = \sum_{i=1}^{N} (T_{sleep}(P_{active} - P_{sleep}) - E_{rush} - E_{PS})
\]

In the equation (4), the \(i \) and \(T_{sleep} \) denote the number of pipeline stages and the sleep time of the target circuit, respectively.

As for the dynamic voltage scaling, the break-even point can be modeled. The energy is reduced after the supplied voltage decreases, and the charge and discharge due to the increase and decrease of the supplied voltage results in the power overhead. Based on these facts, a break-even processing load (BEPL) is introduced to explain how many
times the target circuit should be driven after a decrease of the supplied voltage to obtain the gain. The BEPL can be defined by an approximate expression (5) in which C_{VDD}, C_L and α denote the capacitance of power line, the capacitance of both the DL and Logic, the switching probability of the transistors of both the DL and Logic, respectively.

$$BEPL = \frac{C_{VDD}}{C_L \times \alpha}$$

The gain of the dynamic voltage scaling can be obtained by satisfying the equation (5), and it can be defined by an approximate expression (6) which calculates the product of the ratio of actually-measured parameters and the difference between the gain and loss based on the equation (5).

$$E_{VS,\text{gain}} = (VDD^2 - VDD_{\text{min}}^2)(C_L \times \alpha \times PL - C_{VDD})$$

In the equation (6), VDD_{min} and PL denote the minimum value of the supplied voltage and the processing load to the target circuit, respectively. The concrete values of the equations can be calculated by measuring the parameters by using the prototype VLSI chip.

3. Variable-grain power gating

In the variable-grain power gating, several pipeline stages are clustered and powered-off at a time. The size of the cluster is changed dynamically between 1 (stage-by-stage) to a certain number to keep the sleep time of the cluster longer than the BET defined by the equation (3). In this section, the circuit implementation of the variable-grain power gating is discussed.

The PG enable signal which is the output of the PC should be asserted when the sleep time of the cluster is longer than the BET. The sleep time is determined by the time interval between the sets of data transferred in the self-timed pipeline. To detect whether the time interval is longer than the BET or not, a counter-based detection scheme is introduced.

The counter-based detection scheme is shown in figure 5, and it counts how many sets of data are transferred during the BET by focusing on the processing time of the self-timed pipeline. The processing time of the self-timed pipeline is determined by the sum of the forwarding delays of the successive pipeline stages. The forwarding delay of the i-th stage is denoted by T_f_i in the figure 5. In the counter-based detection scheme, several successive pipeline stages are selected so that the processing time of them becomes nearly equal to the BET, and the number of the sets of data transferred during the BET is counted by using a up/down counter which increases when the send (transfer request) signal to the first pipeline stage is asserted and decreases when the send signal of the last pipeline stage is asserted. As a result of this counting, if the count is 0 or 1, it is indicated that the time interval between the sets of data transferred is longer than the BET, i.e., the PG enable signal should be asserted. On the other hand, if the count is greater than 1, it is indicated that the BET is not met and thus the number of the pipeline stages in a cluster should be increased.

In runtime, the BET may change according to the change of temperature of the circuit. To reconfigure the number of the successive pipeline stages according to the BET dynamically, a MUX is introduced to select the appropriate last stage. The MUX also makes it possible to select an arbitrary successive pipeline stages over non-liner self-timed pipelines such as a circular pipeline indispensable to realize the data-driven processors.

4. Suspend-free voltage scaling

The suspend-free voltage scaling makes it possible to change the throughput of the running self-timed pipeline by scaling the supplied voltage without any suspend operation.
In the self-timed pipeline, the delay times of the DL, Logic and C are proportional to the supplied voltage. Therefore, the supplied voltage of the self-timed pipeline can be scaled at runtime without any suspension. By exploiting this nature, the power consumption can be reduced by keeping the supplied voltage at minimum value enough to achieve the throughput required by a target application even when the required throughput changes at runtime. The required throughput can be directly known based on the whole consumption current of the self-timed pipeline. This is because the localized data transfer of the self-timed pipeline drives only pipeline stages with valid data and thus the consumption current of the self-timed pipeline is in proportion to the number of valid data processed at a time, that is, the throughput.

However, a temporally-sharp magnitude of the fluctuation of the supplied voltage exposes the effects of the overshoots and undershoots, and thus it may result in both the false operation of circuit and the noise on the power lines. Therefore, the rate of change of the supplied voltage should be moderate enough to ignore the effects of the overshoots and undershoots.

To realize such moderate scaling of the supplied voltage, PID (Proportional Integral Derivative) control is introduced in the circuit implementation. The suspend-free voltage scaling circuit is illustrated in figure 6, and it consists of PID controller, I-V mapping table and DC/DC converter. The I-V mapping table is used to lookup the target supplied voltage according to the consumption current, and each supplied voltage value in the table is set to maximize the throughput-power efficiency. Based on both the target supplied voltage value and the currently supplied voltage, the PID controller calculates the amount of change of the supplied voltage. Finally, the DC/DC converter actually changes the supplied voltage according to the calculated amount of change.

5. Power-performance estimation

In order to evaluate power performance characteristic, a data-driven processor ULP-CUE based on the self-timed pipeline has been implemented by using 65 nm CMOS process. In this section, the ULP-CUE is briefly introduced and then the basic power-performance characteristics are evaluated by integrating actual measurement results of the ULP-CUE chip and SPICE simulation results. Finally, total power reduction effects of the proposed variable-grain power gating and suspended-free voltage scaling are revealed in the case of the ULP-CUE.

5.1 Circuit configuration of ULP-CUE

The ULP-CUE is a 32 bit dynamic data-driven processor composed of the 13-stages ring-shaped STP. Each STP stage is designed to perform the following elemental function.

- MB: merging function of input tokens and internally circulated tokens.
- MM: firing control function to detect a pair of operand tokens for its instruction execution. It is divided into two STP stages, MM0 and MM1.
- M: merging function for tokens bypassing the MM stages.
- PS: instruction fetching function. It is divided into two stages, PS0 and PS1.
- FP: instruction decoding function (FP0) and execution function, i.e., ALU. It is divided into two stages, FP1 and FP2.
- MA: data-memory access function. It is divided into two stages, MA0 and MA1.
- B: branch function to bypass the MM stages or not.
- BB: branch function to ether output port or the circular STP.

Those stages are placed and routed on a die shown in figure 7. As shown in the figure, area of each stage is different from others so that the load capacitance of each stage is different. This means its break-even condition is different.
5.2 Estimation of power gating

Because each STP stage of the ULP-CUE is implemented as different circuits, the break-even time is different. For each stage, it is difficult to measure every parameter in equation (3). Thus, in this evaluation, PS switching energy E_{PS}, energy consumption caused by rush current E_{rush}, and leakage power P_{leak} are evaluated by SPICE simulation of each stage. This is because the detailed breakdown of each stage’s power consumption cannot be measured on the fabricated ULP-CUE chip. Since the voltage of the VVSS depends on sleep time, the SPICE simulation is conducted in many times in the case of different sleep times.

Figure 8 shows the break-even time and power reduction effect of each STP stage composing the ULP-CUE at 0.8 V, 25°C. The triangular plot shows the break-even time. The MM0 stage has the shortest BET, 159 ns. This is because its area is the largest in all stages. Furthermore, the gate width of the PS0 can be shortened because the switching probability of transistors composing the MM0 is not so high compared with other stages. The PS0 has the longest BET, 998 ns. It is about 5 times longer than the shortest one.

Based on those analyses, power saving effect of the proposed variable grain PG is roughly estimated. In this estimation, the stages of ULP-CUE is categorized into three classes; a small-area stage (BET = 895 ns), a middle-area stage (BET = 602 ns), and large-area stage (BET = 275 ns), and an evaluated processor is configured by 12 STP stages including four stages per stage class. Figure 9 shows estimated power depending on the interval time between flowing tokens in the pipeline at 0.8 V, 80°C. This result shows that the variable grain PG is more power efficient in shorter interval time rather than the stage-by-stage PG, e.g., 17 ns shorter in the case of interval time 85 ns.

5.3 Estimation of voltage scaling

As for the voltage scaling, total power of the ULP-CUE processor can be measured on the fabricated chip as shown in figure 10. This measured wave shows an example of consumption current of the ULP-CUE in the case the supply voltage VDD is changed from 0.8 V to 1.2 V by using the PID controller. This consumption current includes charge current to both C_{VDD} and C_L. If electric current when the voltage of VDD is raised from 0.8 V to 1.2 V is measured without operating a program, only the electric current concerning C_{VDD} (overhead cost) can be observed. Moreover, it becomes possible to calculate C_L as difference with the consumption current of figure 10. As a result, the break-even processing load can be calculated based on the equation (5).

As for the voltage scaling, the break-even processing load is evaluated based on the equation (6). Figure 11 shows the break-even processing load of the ULP-CUE based on the measurement current of the chip when the supply voltage is changed from 0.8 V to 1.2 V. The diamond-shape plots indicate C_L, i.e., the denominator part of the equation (5), and the square-shape plots indicate C_{VDD}, i.e., the numerator part of that. From this result, the BEPL is about 113 tokens.

The measured chip is not equipped with the on-die DC/DC convertor. If a DC/DC convertor can be implemented on a die, the load capacitance of the power line, C_{VDD}, can be
reduced to one-tenth of that [9]. In this case, the break-even processing load can be reduced to 11 tokens.

Figure 12 shows the measured transient power-performance ratios and voltage rise times when the supply-voltage is altered from 0.8 V to 0.9 V, 1.1 V, and 1.3 V. Even during such transient time of supply-voltage, the ULP-CUE can work at reasonable power-performance ratio. Therefore, total performance-power ratio could be improved as well as better dependability against hard real-time constraints can be obtained. On condition of 0.8 V to 0.9 V, it was the throughput performance of 5 [M token/sec]. And on condition of 0.8 V to 1.3 V, the maximum throughput performance of 5.5 [M token/sec] was able to be maintained. Be subject to frequent work load changes application, it is shown that continuation of processing can be performed by the minimum performance overhead. In addition, it is important parameters for considering applicability to real applications.

6. Conclusion

In this paper, a variable-grain power gating and suspend-free voltage scaling mechanism based on the self-timed elastic pipeline (STP) was proposed to realize lower-power LSI circuits and then its effectiveness was analyzed by defining a break-even model in terms of energy trade-off. The low-powered STP circuit was then applied to an ultra-low-power data-driven processor, ULP-CUE, and evaluated through integrating SPICE simulation and actual measurement results.

Since the break-even condition of the proposed scheme may change depending on the temperature and process variations, a kind of self-checking circuit of typical leakage and switching power should be introduced on a die and its monitoring result should be fed back to the power-supply controller. Furthermore, in order to verify such on-die mechanism in terms of power performance efficiency, a microarchitecture simulator must be developed which can simulate not only architectural behavior but also transient power consumption. We are now developing such a platform simulator and then we will report the comprehensive evaluation results using this simulator in near future.

Acknowledgement

This research work was supported in part by Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST). The circuit design work was supported by VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration with Synopsys, Inc. and Cadence Design Systems, Inc.

References

