Predicting Hysteresis Loss in Hip Joint Implants

M. Hodaei, K. Farhang and N. Maani
Department of Mechanical Engineering and Energy Processes
Southern Illinois University Carbondale

Abstract: Wear is an important issue in hip implants. Excessive wear can lead to toxicity and other implant associated medical issues such as patient discomfort and decreased mobility. Since implant wear is result of contact between surfaces of femoral head and acetabulum implant, it is important to establish a model that can address implant surface roughness interaction.

A statistical contact model is developed for the interaction of femoral head and acetabulum implant in which surface roughness effects are included. The model accounts for the elastic-plastic interaction of the implant surface roughness. For this purpose femoral head and acetabulum implants are considered as macroscopically spherical surfaces containing micron-scale roughness. Approximate equations are obtained that relate the contact force to the mean surface separation explicitly. Closed form equations are obtained for hysteretic energy loss in implant using the approximate equations.

Keywords: Contact Mechanics – Roughness – Hip Implant – Wear – Energy Loss - Toxicity

1 Introduction

Hip joint serves as one of the most important load bearing joints in human body. Studies have shown that up to 5.5 times the bodyweight is tolerated by femur and pelvis during daily activities [1-3]. These include normal activities such as walking, going up or down a set of stairs, getting up or sitting down, carrying groceries or other loads. A hip joint provides, in addition to its load bearing ability, the needed mobility that includes extension, rotation, and flexion. Most importantly hip joints provide smooth articulation of limbs necessary for bi-pedal gait.

Hip joint malfunction may occur as a result of many factors. The most prevalent cause of hip joint surgical operation and hip joint replacement is osteoarthritis (OA). OA occurs when the cartilage fissuring is severe enough to a point where bone contact is initiated at the hip joint. OA is attributed to many causes [1] that include age, overuse, excessive loading, or flaw in the hip joint geometry referred to hip dysplasia. It is estimated that about 200,000 hip replacements occur in the United States due to hip joint OA. Other hip joint problems include osteolysis, avascular necrosis, neck fracture of femur [4-5-6]. The purpose of the present paper is not to address the causes of hip replacement, rather it is to address the performance of a hip joint after surgery.

Hip joint implant is designed to provide the same mobility and stability of the original functioning hip joint. Certainly, the design of hip joint implant needs to investigate all parameters such as wear, roughness, erosion, tribology, materials, and also many problems caused by surgical procedure including bone replacement. Some of these factors have been studied since about 50 years ago. About 50 years ago, McLaurin [7] investigated the manufacturing of hip prostheses. At that time, the design encountered wear problems because of metal on metal contact. Smith and Nephew [8] made an experimental model of hip joint using oxidized zirconium alloy technology in femoral head of hip joint to reduce wear and improve longevity in comparison with using ceramics for femoral head. In the last two decades, advances in imaging technology has allowed better preoperative data generation and improve preparation and planning of surgery [9-12]. A more recent work by Shapi et al. [13] allows preoperative measurement of the size of acetabular implant in total hip replacement.

Hiroyuki et al. [14] evaluated the effect of RF heating on hip joint implant during MRI examinations. They used two types of different implants in material and shapes. They found that the electrical characteristics of metallic implants have influence on RF heating. Maximum temperature was found to occur at the tip of the implants, location of large curvature. Zhang et al. [15] compared stress distributions between silicon nitride and cobalt-chromium-alloy in hip prostheses. The results related to stress distributions with the implanted silicon nitride hip resurfacing prostheses are very close to the corresponding stresses for health, intact femur bone. Scifert et al. [16] developed a new design to reduce the tendency of dislocation in Hip implants in patients. The authors claim that their proposed design increases stability of total hip joint and decreases by fifty percent stress distributions around impingement zone of polyethylene. Phillips et al. [17] used an elasto-plastic material model to show constitutive behavior of morsellised cortico-cancellous bone graft. Three 3D load scenarios related to walking, sitting, and standing were applied at the center of femoral head to check migration and rotation of the acetabular cup. Walking cause superior migration and rotation in abduction of the acetabular cup while sitting down and standing up cause posterior migration and rotation of the acetabular cup. Jonathon et al. [18] investigated dangerous effects of metal release from hip prostheses on patients. Metal-on-metal hip prostheses failed in some patients due to the release of metal debris resulting in revision surgery.
Symptoms such as neurological impairment, cardiomyopathy, and hypothyroidism were reported in their study. Steens et al. [19] showed the effect of ceramic-on-ceramic toxicity in the blood can lead to impairment of hearing, sight, numbness in feet, and dermatitis in head and neck. Tower [20] also showed that the dangerous effects of metal debris in human blood pain such as onset of anxiety, major depression, tinnitus, high frequency hearing loss, peripheral neuropathy, and cognitive decline. Alan and Swarts [21] investigated the effect of modularity on tapered cone of Margron hip prosthesis. Their study found that increased modularity can cause corrosion and crack, debris of particles, and metal ion generation. Brodner et al. [22] investigated the levels of serum cobalt in patients before and after implantation of non-cemented total hip arthroplasties. As a result, they show that the metal-on-metal prostheses produce detectable levels of serum cobalt in comparison with the ceramic-polyethylene prostheses as metal-on-metal prostheses generate some systemic release of cobalt.

This paper develops a contact mechanics model of hip joint taking into account the effect the surface finish property and surface roughness geometry of the implant. An elastic-plastic model of the spheres in contact representing the femoral and acetabular implants is developed.

The specific contribution of this paper includes:
- Inclusion of implant surface roughness in hip implant contact model
- Approximate equations relating the contact force to minimum mean plane separation in an explicit form
- Energy loss per cycle that include macro and micro geometry of the implant surfaces
- Characterization of hip implant natural contact frequency and contact damping

The results agree with the recent issues with hip implant failures when metal-on-metal is employed. The model presented is, therefore, a necessary first step in the prediction of possible wear in hip implants and issues related to wear borne toxicity in implant recipients.

2 Hip Contact Model:

The schematic diagram of a hip joint is shown in Fig. 1. Figure 1 shows that force transfer to hip gives rise to contact force between the femoral head and acetabulés, whose shapes are approximated using spheres. Let R_1 and R_2 be the radii of curvature of the femoral head and acetabulum, respectively. Figure 2 details the contact between two spheres of radii R_1 and R_2. When roughness of the surfaces is incorporated into the contact model, it is expected that the load-carrying zone be defined by a minimum separation with symmetrically distributed pressure about the minimum separation. Since the number of contact points and their respective pressure depend on the mean surface separation of the two spheres, it is necessary to develop the expression for mean separation as a function of minimum separation and the geometries of the two spheres. In contact of femoral head with acetabulum, we confront a conformal contact. This is represented by the sphere contact in Fig. 1.

The schematic drawing of the mean spheres of the femoral head and the acetabulum surface in Fig. 2 shows that for a mean surface separation h_0, the offset between sphere centers, δ, can be expressed in terms of h_0.

$$\delta = R_2 - R_1 - h_0$$

$$R_1 + \delta = x$$

Where, the triangle shown in Fig 2, clearly shows that the mean plane separation, h, can be found in terms of minimum separation, h_0, radii of the two spheres, R_1 and R_2, and the angular location measured with respect to the inner (smaller) sphere.

$$x = -\delta \cos \theta \pm \sqrt{\delta^2 \cos^2 \theta + R_2^2 - \delta^2}$$

An acceptable solution in Eq. (3) must yield a positive x. Therefore,

$$x = -\delta \cos \theta + \sqrt{\delta^2 \sin^2 \theta + R_2^2 - \delta^2}$$

Substitute for x in terms of R_1 and h and solve the resulting equation for h, the separation at location θ. We find from eq. (2) and (4),

$$h = R_2 \left(-\frac{\delta}{R_1} \cos \theta + \sqrt{1 - \left(\frac{\delta}{R_2}\right)^2 \sin^2 \theta} \right) - R_1$$

Substitute for δ from eq. (1) to find...
The equivalent asperity radius is defined as given by eq. (6), in which the reduced modulus of elasticity of the two surfaces, \(\beta \), is the dimensionless equivalent average asperity radius of curvature.

\[
h = R_2 \left(\frac{R_2 - R_1 - h_0}{R_2} \right) \cos \theta + \sqrt{1 - \left(\frac{R_2 - R_1 - h_0}{R_2} \right)^2 \sin^2 \theta} - R_1
\]

(6)

Where, \(R_1 \) and \(R_2 \) are the average asperity radius of curvature of the femoral and acetabulum implants, respectively. \(h_0 \) is the asperity density per unit area. The force per unit normal area due to plastic interaction is derived from the properties of the material used in the implant. It is given by

\[
P_p(h) = P_{pp}(h) + P_p(h)
\]

(7)

Where, \(P_{pp}(h) \) is the elastic force per unit nominal area given by the following equation,[23],

\[
P_{pp}(h) = C \left(\int_{h}^{\infty} (s-h)^{3/2} e^{-t^2/s} \, ds - \int_{\infty}^{h} (s-h)^{3/2} e^{-t^2/s} \, ds \right)
\]

(8)

Where,

\[
C = \frac{4}{\sqrt{\pi}} E \eta \beta \sigma^2
\]

(9)

\(s \) and \(h \) are both dimensionless. \(s \) is the ratio of an asperity height over the standard deviation of asperity summit distribution, \(\sigma \), and \(h \) is the ratio of the mean surface separation over \(\sigma \). When the surfaces are pressed together, there may be locations within the contact zone where asperity interference results in onset of plastic deformation. Greenwood and Williamson [24] defines asperity critical interference to be the onset of plastic deformation. In following the CEB model [25], the authors employed the definition of the critical interference to formulate the elastic-plastic model of contact. In eq. (8) \(w_c \) represents the dimensionless critical interference. Greenwood and Williamson [24] defines plasticity index and critical interference for a surface as follows:

\[
\psi = \frac{E}{H} \frac{\sigma}{R} \quad \omega_c = \left(\frac{H}{E} \right)^{1/2} \frac{1}{R}
\]

(10)

Where, \(R \) is the average asperity summit radius of curvature, \(E \) is the equivalent modulus and \(H \) is the hardness of the softer material. Letting \(w_c = \frac{\omega_c}{\sigma} \) be the dimensionless critical interference, the plasticity index, \(\psi \), is related to the \(w_c \) as follows:

\[
\psi = \frac{1}{\sqrt{w_c}}
\]

(11)

Equation (8) uses a constant \(C \) and the dimensionless force expression in integral form for the elastic part of the surface interaction. \(C \) is defined as given by eq. (9), in which \(E \) is the reduced modulus of elasticity of the two surfaces, \(\beta \) is the dimensionless equivalent average asperity radius of curvature. The reduced modulus of elasticity is derived from the properties of the material used in the implant. It is given by the following equation

\[
\frac{1}{E} = \frac{1-\nu_1^2}{E_1} + \frac{1-\nu_2^2}{E_2}
\]

(12)

Where, \(E_1 \) and \(\nu_1 \) are the modulus of elasticity and Poisson ratio of the femoral implant material and \(E_2 \) and \(\nu_2 \) are those of the acetabulum implant. The equivalent asperity radius is found using

\[
\left(\frac{R_2 - R_1 - h_0}{R_2} \right) \cos \theta + \sqrt{1 - \left(\frac{R_2 - R_1 - h_0}{R_2} \right)^2 \sin^2 \theta} - R_1
\]

2.1 Dependence of Coefficients on Hip Radii

In this section acetabulum and femoral radii are used as parameters in the approximate expression relating contact force to minimum mean surface separation. It can be shown that the approximate equation is of the following form

\[
F_{nd}(h_0, R_2, R_2) = N(\psi, R_1, R_2) e^{-ch_0^{1/2}}
\]

(17)

The values are generated for various femoral head radii, ranging from 5 mm to 25 mm. Where, the coefficients \(N \) and \(c \) are expected to depend on the geometry of the hip and the plasticity index.

\[
F_{nd}(h_0, R_1, R_2) = 4\pi c^{1/2} \int_{0}^{\pi/2} P(\theta) R^2 \sin \theta \cos \theta \, d\theta
\]

(18)

In obtaining the approximate equation, the femoral radius is varied, and the acetabulum radius is assumed to be 0.2 mm larger than the femoral radius. Femoral radius is varied from 5 mm to 25 mm [61] while in each case acetabulum radius is kept 0.2 mm larger.

2.2 Dependence of Coefficients on Plasticity Index \(\psi \)

In this section, approximate functional relationships between the coefficients and plasticity index are established.

\[
\frac{1}{\beta} = \frac{1}{\beta_1} + \frac{1}{\beta_2}
\]

(11)
for plasticity index ranging 0.3 to 1.3. Keep in mind that for surfaces characterized by \(\psi < 0.6 \) the surface is considered predominantly elastic, while for \(0.6 < \psi < 1 \) the surface is viewed as elastic-plastic.

\[
\begin{align*}
N(\psi, R_1, R_2) &= a(\psi)R_1^2 + b(\psi)R_2 \\
&= a_2 \psi^3 + a_3 \psi^2 + a_4 \psi + a_5 \\
a_2 &= -6.179 \times 10^{-5}, a_3 = 1.65 \times 10^{-4}, \\
a_4 &= -1.237 \times 10^{-4}, a_5 = 7.132 \times 10^{-5}
\end{align*}
\]

(21)

Likewise, the fitted function for \(b(\psi) \) is

\[
b(\psi) = b_2 \psi^3 + b_1 \psi^2 + b_1 \psi + b_0
\]

(24)

with coefficients

\[
b_2 = -0.012313, b_1 = 0.032885, \\
b_1 = -0.024663, b_0 = 0.010218
\]

(25)

The function \(c(\psi) \) is defined as follows

\[
c(\psi) = c_0 + c_1 \psi + c_2 \psi^2 + c_3 \psi^3
\]

(26)

Where,

\[
c_3 = -0.118687, c_2 = -0.069481, \\
c_1 = 0.513741, c_0 = 1.7366
\]

(27)

Finally, plasticity function with low percent error for \(a, b, \) and \(c \) is

\[
F_{pl}(h_0, R, \psi) = [a(\psi)R_1^2 + b(\psi)R_2]e^{-c(\psi)h_0^{1.1}}
\]

(28)

The max error between the approximate and original elastic-plastic contact force is less than 5% over the entire range of parameters considered.

2.3 Energy Loss in Hip Implant

The contact between femoral and acetabulum implant surfaces consists of asperities experiencing elastic and plastic deformation. A close look at the loading and unloading process reveals that both energy loss and elastic recovery are involved in the process. During the increase in contact load both elastic and plastic deformations can occur at asperity deformation level. However, during unloading asperities undergo only elastic recovery. Therefore, the load and unload process will follow different paths, resulting in hysteresis type energy loss in the hip joint contact.

We can employ the approximate equations for elastic-plastic contact and purely elastic contact to represent the loading and unloading process mathematically. The force during loading is denoted \(F_{nl} = \alpha_{1L}e^{a_{2L}h_0^{0.5}} \) and that during unloading, \(F_{nu} = \alpha_{1U}e^{a_{2U}h_0^{0.5}} \). Based on the results of the previous section, the respective coefficients of contact force during load and unload are as follows:

\[
\begin{align*}
\alpha_{1L} &= a_2 \psi^3 + a_3 \psi^2 + a_4 \psi + a_5 \\
\alpha_{2L} &= c_0 + c_1 \psi + c_2 \psi^2 + c_3 \psi^3 \\
\alpha_{1U} &= a_2 \psi^3 + a_3 \psi^2 + a_4 \psi + a_5 \\
\alpha_{2U} &= -c_0 - c_1 \psi - c_2 \psi^2 - c_3 \psi^3
\end{align*}
\]

(30) - (34)

To study energy loss and storage in a hip joint, we consider an equilibrium contact force. For example this may correspond to an individual standing still and a contact force equal to the equilibrium force exists between femoral head and acetabulum. The equilibrium contact force is associated with an equilibrium minimum mean plane separation, \(h_0 \). A disturbance from equilibrium is denoted \(x \). Therefore, to study the behavior of the contact near an equilibrium state, we can use the contact force equations above. Depending on the nature of the disturbance, the load may increase from equilibrium or decrease from it. If the load is increasing from equilibrium then both elastic and plastic contacts must be included in the calculation of contact force. If the load is decreasing from the equilibrium state, then only elastic contacts contribute, since this is a load recovery process. The following expressions will be adequate to account for either load change scenarios.

\[
F_{nl}(h_0, x) = \alpha_{1L}e^{a_{2L}(h_0-x)^{0.5}}
\]

(35)

\[
F_{nu}(h_0, x) = \alpha_{1U}e^{a_{2U}(h_0-x)^{0.5}}
\]

(36)

Here \(F_{nl} \) denotes the normal contact load due to both elastic and plastic interaction of surface roughness, and \(F_{nu} \) is the normal contact force due to only elastic interaction of the roughness. When the disturbance is small, the above force equations can be written in linear form using truncated Taylor series expansion of \(F_{nl} \) and \(F_{nu} \) about the equilibrium minimum separation.

\[
\begin{align*}
F_{nl}(h_0, x) &= \left(h_0^{0.5} - 0.5 h_0^{0.5} x + \frac{0.25 h_0^{0.5} x^2}{2!} \right) \\
F_{nu}(h_0, x) &= \left(h_0^{0.5} - 0.5 h_0^{0.5} x + \frac{0.25 h_0^{0.5} x^2}{2!} \right)
\end{align*}
\]

(37)

Figure 4 illustrated the contact forces along with their linear estimates about an equilibrium position for a relatively high plasticity index. The area between the load and unload forces represents energy loss per cycle. Figure 5, shows a similar force history corresponding to a lower value of the plasticity index. As expected the area between the load and unload phases are reduced to zero for a plasticity index of 0.5, since it corresponds to elastic behavior of contact. It is a simple task to estimate the energy loss per cycle.
We can perform integration of force over displacement in the load and unload phases and obtain the energy loss in a single cycle. For amplitude of oscillation of x, from equilibrium, we can express the energy loss per cycle as follows:

$$E = \int_{-A}^{A} F_{nl} \, dx - \int_{-A}^{A} F_{nu} \, dx$$ \hspace{1cm} (39)$$

That can be simplified by using the linear approximation of each load function in eqs (37) and (38). We find

$$E_L = 2C x_a \left(e^{\alpha x_a} \frac{\alpha x_a}{x_a} - \frac{\alpha x_a}{x_a} e^{\alpha x_a} \right)$$ \hspace{1cm} (40)$$

E_L is the energy loss per cycle. The energy per cycle can be expressed in dimensionless form by dividing eq. (40) by $C x_a$. So the dimensionless energy loss per cycle is

$$E_L = 2 \left(\alpha x_a e^{\alpha x_a} \frac{\alpha x_a}{x_a} - \frac{\alpha x_a}{x_a} e^{\alpha x_a} \right)$$ \hspace{1cm} (41)$$

Figure 6 illustrates dimensionless energy loss per cycle and plasticity index as functions of dimensionless critical interference. When critical interference is low (high plasticity index), the interference enters the plastic regime for less contact load. Therefore, energy loss per cycle is higher for low critical interference. As critical interference increase, the number of asperities experiencing plastic interference decrease, thereby, reducing the energy per cycle. This is clearly shown to be the case in Fig. 6.

A similar plot, which directly relates energy loss per cycle to surface roughness, is shown in Fig. 7. In this case the abscissa represents the dimensionless average radius of curvature. It is observed that as dimensionless asperity summit radius of curvature is increased (surface is made more smooth) the energy loss per cycle decreases.

![Figure 6. Dimensionless energy loss per cycle and surface plasticity index versus critical asperity interference.](image)

For Cobalt-on-Cobalt implant we can use the properties in Table 1 to find $E = 62$ GPa and $H = 700$ MPa. For average dimensionless asperity summit radius of curvature $\beta = R/\sigma = 4600$, we obtain a surface plasticity index of $\psi = 1.3$ which puts deformation in the plastic range. In fact to ensure that contact is in the elastic range, the surface finish must be enhanced to a degree that would result in $\beta = 21,600$, an unrealistically high number. This result is consistent with the latest news regarding the failure of many implants involving metal-on-metal material.

![Figure 7. Dimensionless energy loss per cycle and surface plasticity index versus dimensionless average asperity summit radius of curvature.](image)

Recent legal litigation regarding the use of similar implant material shed light on the difficulty faced in using similar material in hip implant replacement. Cobalt-Cobalt implant was alleged to result in excessive degradation of implant material, generating unacceptable amount of wear debris to the level of presenting toxicity in the patient. Based on the present study, use of Cobalt-Cobalt implant would require a very high level of surface finish to reduce plastic deformation. Consider, for example, the equation for plasticity index given by Greenwood and Williamson [59]

$$\psi = \frac{E}{HR}$$

![Table 1. Material and surface properties used](image)

For Cobalt-on-Cobalt implant we can use the properties in Table 1 to find $E = 62$ GPa and $H = 700$ MPa. For average dimensionless asperity summit radius of curvature $\beta = R/\sigma = 4600$, we obtain a surface plasticity index of $\psi = 1.3$ which puts deformation in the plastic range. In fact to ensure that contact is in the elastic range, the surface finish must be enhanced to a degree that would result in $\beta = 21,600$, an unrealistically high number. This result is consistent with the latest news regarding the failure of many implants involving metal-on-metal material.

In fact to ensure that contact is in the elastic range, the surface finish must be enhanced to a degree that would result in $\beta = 21,600$, an unrealistically high number. This result is consistent with the latest news regarding the failure of many implants involving metal-on-metal material.

Figure 7 corresponds to typical ranges when dissimilar materials are used in hip implant. For Cobalt-Polyethylene, we use $E = 0.75$ GPa, and $H = 120$ MPa (Table 1) for the Polyethylene, the softer material, and $\beta = 25$, the surface plasticity index $\psi = 0.953$, putting the contact in the elastic-plastic range, whereas for $\beta = 112$, the plasticity index reduces to $\psi = 0.586$, yielding elastic contact. The plot in Fig. 7 well represents this range. The advantage of using dissimilar material is clearly shown in the above discussion. It is easy to obtain surface finish that would yield an elastic interaction at the contact of femoral head and acetabulum implant if one employs dissimilar material, while using similar material, such as Cobalt-Cobalt, is quite problematic since to guarantee elastic contact the surface finish requirement are not attainable.
3 Closing Remarks

This paper has developed an elastic-plastic contact model of hip joint implant. The model treats femoral and acetabulum implants as spherical solids in internal conformal contact and accounts for the roughness effects of both surfaces. An equation relating force to minimum mean surface separation was derived using statistical integral over contact region of effective interaction. Approximate equation describing force explicitly in terms of minimum separation was obtained and used to find closed-form equation for contact energy loss per cycle. It is shown that energy loss per cycle varies with plasticity index of the surface of the weaker implant. For an assumed lump mass representation at contact of implant, the utility of the approximate equations were exemplified by deriving expressions for contact natural frequency and damping ratio.

The specific contribution of this paper includes:
- Inclusion of implant surface roughness in hip implant contact model.
- Explicit function for hip implant for a considerable range of hip implant joint sizes.
- Energy loss per cycle related to macro and micro geometry of the implant surfaces.
 - Closed-form equation for hysteretic energy loss per cycle was obtained using load/unload process at the hip implant surfaces. The energy per cycle was related explicitly to the material properties and surface statistics of the implant.

Simulation of load/unload process on hip implant using similar material, Cobalt-Cobalt, and dissimilar material, Cobalt-Polyethylene, for the femoral head and acetabulum showed that:
- Similar implant material was more prone to plastic deformation, thereby suggesting the increased possibility of wear. Cobalt-Cobalt contact required an unreasonably high surface finish to minimize plastic energy loss. Such high requirement of surface finish is impractical and even if possible would be highly costly.
- Dissimilar implant material was shown to be superior in that it is easier to guarantee elastic contact so that the plastic energy loss is minimized for a practical range of surface roughness.

The above result is consistent with recent issues related to the use of similar material in hip implant. Recent litigation won by an implant patient in California against Johnson and Johnson related to failed implant due to the generation of excessive wear and the resulting toxicity. According to the news, the reason was primarily due to the use of metal-on-metal in the hip implant. Many more lawsuits relating to the metal-on-metal contact in hip implants against Johnson and Johnson are being submitted to the courts.

The potential usefulness of the results on estimation of hip implant contact frequency and damping can involve the issue of potential vibration and noise generation. These not only can result in accelerated fatigue wear of implant surfaces but also can relate to implant recipient’s comfort level.

4 Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>a surface constant</td>
</tr>
<tr>
<td>E</td>
<td>equivalent modulus of elasticity of the two surfaces</td>
</tr>
<tr>
<td>E₁</td>
<td>modulus of elasticity of the femoral implant</td>
</tr>
<tr>
<td>E₂</td>
<td>modulus of elasticity of the acetabulum implant</td>
</tr>
<tr>
<td>Eₖ</td>
<td>energy loss per cycle</td>
</tr>
<tr>
<td>F</td>
<td>total contact force</td>
</tr>
<tr>
<td>Fₙₘ</td>
<td>normal contact load due to elastic-plastic interaction of roughness</td>
</tr>
<tr>
<td>Fₙₘ₀</td>
<td>normal contact load due to elastic interaction of roughness</td>
</tr>
<tr>
<td>h</td>
<td>mean plan separation</td>
</tr>
<tr>
<td>h₀</td>
<td>minimum separation</td>
</tr>
<tr>
<td>m₀</td>
<td>mass of femoral head</td>
</tr>
<tr>
<td>Pₑ(ₗ)</td>
<td>elastic force per unit nominal area</td>
</tr>
<tr>
<td>Pₚ(ₗ)</td>
<td>plastic force per unit nominal area</td>
</tr>
<tr>
<td>P(ₗ)</td>
<td>contact force per unit nominal area</td>
</tr>
<tr>
<td>R₁</td>
<td>radius of femoral head</td>
</tr>
<tr>
<td>R₂</td>
<td>radius of acetabulum</td>
</tr>
<tr>
<td>s</td>
<td>ratio of an asperity height over the standard deviation</td>
</tr>
<tr>
<td>ωᵣ</td>
<td>angular location</td>
</tr>
<tr>
<td>ωₜ</td>
<td>a disturbance from equilibrium</td>
</tr>
<tr>
<td>xₛ</td>
<td>amplitude of oscillation</td>
</tr>
<tr>
<td>βᵣ</td>
<td>dimensionless equivalent average asperity radius of curvature</td>
</tr>
<tr>
<td>β₁</td>
<td>average asperity radius of curvature of the femoral implant</td>
</tr>
<tr>
<td>β₂</td>
<td>average asperity radius of curvature of the acetabulum implant</td>
</tr>
<tr>
<td>δ</td>
<td>offset between sphere centers</td>
</tr>
<tr>
<td>ζ</td>
<td>damping ration</td>
</tr>
<tr>
<td>ζₜ</td>
<td>the asperity density per unit area</td>
</tr>
<tr>
<td>θ</td>
<td>angular location</td>
</tr>
<tr>
<td>ν₁</td>
<td>Poisson ratio of the femoral implant</td>
</tr>
<tr>
<td>ν₂</td>
<td>Poisson ratio of the acetabulum implant</td>
</tr>
<tr>
<td>σ</td>
<td>standard deviation of asperity height</td>
</tr>
<tr>
<td>Ψ</td>
<td>plasticity index</td>
</tr>
<tr>
<td>ωₙ</td>
<td>natural frequency</td>
</tr>
</tbody>
</table>

5 References:

