
How Data can become Data a Movie Star?

H.-P. Bischof
Department of Computer Science,

Center for Computational Relativity and Gravitation,
Rochester Institute of Technology, Rochester, NY, US

Abstract— Visualization of scientific data is the art of
converting numerical values into an image, which can be
comprehended by a human visual system. The conversion
process can lead to a movie or an individual image. The cre-
ation parameters, like light, viewing position, etc. typically
do not change. A movie can be assembled out of images
where the creation parameters for each individual image
does not change, or each image may have different creation
parameter set. This article discusses the second approach,
which is a significantly more dynamic and creative approach.
We will analyze what existing visualization systems are
capable of, and we will present a unique way how to create
accurate, but very dynamic movies.

Keywords: Visualization Framework, Animation

1. Introduction
This conversion of numerical data into visuals makes it

sometimes possible to understand complex relations, but it is
no replacement for an analytical analysis. A histogram, for
example, is the appropriate to tool to convey statistical infor-
mation to statistically untrained people[10]. A visualization
of the functions f(x) = e−1 and g(x) = 1x is helpful in
order to see that f(x) and g(x) for x close to 0 are nearly
identical. The proof for the birthday paradox[11] becomes a
bit easier if this fact is know.

The visualization of scientific data should not be confused
with the generation of a visual for a movie. The outer space
scene generated for the movie WALL-E[5] is wonderful,
but not based on data generated by an experiment or a
simulation. A visualization of scientific data needs to be true
to the science, but can also be exiting from an experience
point of view. In order to do so, it must be possible to control
viewpoint, color, light, size of objects and other attributes
used to control the creation of the visualization.

For a moment picture the following visualization problem.
A tiny black hole is merging with a very large black hole,
and for the scientist it is important to show the correct size
of the objects. In order to see the path of the small black,
the viewpoint has to be so far away that the small black
hole becomes invisible, because its appearance is smaller
than one pixel from the desired viewpoint. One solution of
this problem would be something like this: The viewpoint
moves from a viewing point far away to the original sized
tiny black hole. The at first invisible black hole will became

visible during the movement of the viewpoint. After the
final viewpoint is reached, the size of the tiny black hole
is increased to a size, which makes it visible form the
original viewpoint. The viewpoint then moves to the desired
viewpoint. The merger of the black holes continues and
shortly before the merger takes place we use a similar
technique as described before to show the actual merger.
The viewpoint moves close to where the merger takes place,
then the size of the tiny black hole shrinks to its real size
and the merger continues from there on. It is obvious that
the movement of the viewpoint have to be smooth in order
to create a pleasant viewing experience. For example, the
movement cannot come to a abrupt stop at the end of a
movement.

The rest of the paper explores three selected visualization
systems in terms of their functionality and their capability
to create more animated visualizations. The systems chosen
are visit[1], ParaView[2] and Spiegel[7].

2. Architecture
All three visualization systems are using similar data flow

architecture. The raw data is read, and filtered if the raw
data cannot directly be used for the visualization. This data
is then converted into geometric objects. These objects will
then be visualized according to the chosen algorithms and
then stored, shown, or assembled to a video.

ParaView is normally controlled via GUI, but the engine
can be programmed using the scripting languages pvbatch[3]
or pvpyhton[4]. The batch programs allow creating, connect-
ing, and controlling the data flow and the components used
in the process. The flavor of scripting language is similar to
other scripting languages. The use of it requires a significant
understand of the available ParaView components and their
communications and control. The scripting languages are the
path to the creation animated movies. This aspect will be
explored in chapter Architecture.

The Spiegel visualization framework is a Unix pipeline
inspired architecture. Similar to ParaView a GUI is used to
create the data flow. A scripting langue used to create and
connect the components, and the resulting program is then
stored in a file. The scripting language is extremely simple
and does not have control structure, or variables differently
to the scripting languages used for VisIt or ParaView. The
creation of more dynamic movies is controlled by a Spiegel



component which if programmable. This aspect will be
explored in chapter Animation Language.

VisIts dataflow is based on operators, which are performed
on the data, like slicing, etc., before the modified data
actually gets visualized. Like the other two systems, a GUI
controls visit. VisIt is using a scripting language or a GUI
component in order to create animated video. The GUI
component allows very simplistic animations; the language
needs to get used in order to create sophisticated animated
movies.

3. Visualization Components
A Spiegel visualization component[7] has typed input,

output and argument channels; k input channels, l output
channels and m argument input channels. The output of a
component can be connected to the argument of a compo-
nent, which allows reaching into the data stream and mod-
ifying the visualization based on the data. Lets assume we
would like to follow a black hole with a cameras viewfinder.
In order to do so one component of the visualization program
would reach in the data stream and send out the position of
the black hole we are looking for. This position would be
sent as an argument input to the camera, and the viewpoint
would follow the black hole. The camera itself would be
at a fixed position in space, but the cameras viewfinder, or
look-at-position would follow a particular black hole. This
functionality alone would not do, because the black hole may
ay be in a less than desirable lighting situation. One solution
would be to point a light source to the same position as
the look-at-position of the camera. Figure 1 illustrates this
concept. The dashed lines connect output channels with a
argument channel, and the solid lines connect output with
input channels. The Stars component send out all stars to the
Visualizer and the component, which extracts the position of
the black hole, we are interested in, in this case number 3.

This “hello world” program illustrates one design princi-
ple behind the Spiegel system. The Spiegel program lan-
guage is simple; it allows only creating and connecting
components. Every functionality else need is implemented in
Java, which allows to use object oriented program paradigms
and the power of existing Java frameworks. This concept
allows to add functionality very easily, because the Spiegel
specific communication part can be learned in less than 5
minutes. My students have proven this many times.

VisIt and ParaView are using well known scripting lan-
guages, mainly python. The connection of data output and
argument does not really exist. The burden of the functional-
ity of the visualization program is divided into scripting and
the components. This means, the same functionality can be
achieved in many different ways. Adding new components
into the ParaView or VisIt environment is doable, but very
difficult. My students have proven this many times. In other
words, an animation is most likely done in a scripting

Fig. 1: How to change the viewpoint based on the location
of a black hole

environment, and it is not easy to re-use established ideas,
from one visualization to an other.

4. Visualization Algorithms
The basis for visualizations is obviously the available

algorithms. VisIt and ParaView trump Spiegel in this regard
significantly. Benger at all[6] describe in detail the usual
implemented visualization algorithms. VisIt and ParaView
implement a super set of these algorithms. Both systems
have been developed to be a production tool. Spiegel, on
the other hand, was and is developed as research system
and its main purpose is to understand design criteria’s for
visualization systems. Spiegel has been successfully used to
create visuals as shown on History Channel.

5. Animation 1.0
The animation of a scientific data visualizations can

enhance the understanding of the data[8]. The result of an
animation is a movie; therefore we must keep in mind how
many frames per second the animation creates. In other



words, the number or frames used for the simulation is know
before the animation is created.

The most simplistic animation of a supernova simulation
of a stellar explosion is keeping every thing constant, view-
ing position, lighting condition etc. The input parameter for
this animation would be t, meaning we create a frame for
t starting at the beginning, and then the next value of t
would be calculated by t = t + ∆ t. This might not the
most desirable animation because at the beginning at the
end of the simulation nothing of interested may happen. In
other words, it is known when and where the visualization
shows an interesting situation. Therefore it would be better
if ∆ t would not be a constant, but rather be calculated as
∆ t = F(simulation time) in order to fast forward the time of
show the simulation in slow motion. If this is done, then we
introduce the concept of a simulation time and visualization
time. The simulation time is the time of the simulation,
which created the data; the visualization time is the wall
time passing while the animated movie is running. Scalars
like time are very obvious and easy to understand and to
use. The visualization time moves forward in constant units;
the simulation time is calculated based on a function. At
this point the how to calculate the simulation time is not
important. We will be discussed in the next chapter.

Is a scalar, like time, the only kind of data which drives
an animation. For example, lets assume you would like to
visualize how a projectile rips a balloon apart. It might be
preferable to use the x/y/z position of the projectile to drive
the simulation and not the time. This is most likely not the
path to go, because if the time is know, then it is know
there the projectile is, because the projectile has to follow
the laws of physics. The author has never found a need
to use to anything else than a scalar value to control the
animation. Nevertheless the following chapter will not use
this restriction.

6. Animation 2.0
Animation always require at least on input parameter, i,

to drive the animation, which at the end controls the change
of the attributes used to create single frames. We assume
at this point, that the input parameter is a scalar value. A
function is needed for every attribute controlled by i.

For this example we would to adjust the viewpoint of
a camera. The viewpoint should follow a path in 3d. We
assume i moves forward by a constant ∆ i. We will later
show that this is a fair assumption. The path p, is defined
by a function f(i). We need to know the values of f(i) for
a few fixed values of i. These values are called the anchor
points. For example:

I = 0: p = (0, 0, 255) // a
I = 1: p = (0, 255, 0) // b
I = 3: p = (255, 0, 0) // c
I = 4: p = (255, 255, 255) // d

The question is how do we calculate the value for p(i), at
i = 2? Some kind of interpolation has to happen between the
anchor points. If the values represent the RGB values for a
color, then a linear interpolation between the points is the
one to choose. TCP-splines[9] would be the right choice, if
the values represents the path of a flying seagull, because
the flight seagull does not include sharp kinks.

The ∆ for i is: 1, 2, 1. Lets follow the flight of the seagull
for a moment. We note that the speed of the seagull between
point a and b is twice as fast as the flight from point c and
b. This technique would be used to create a speed up or
slow-motion view of the simulation.

It is obvious that the described algorithm can be im-
plement in any reasonable language, which includes the
scripting language used in ParaView or VisIT. The question
is would be worthwhile to implement a tiny specialized
language animation language.

7. Animation Language
The input for an animation language is one input value.

The outputs can be many attributes as a function of the input.
The values of the attribute are controlled by the input value,
the anchor points, and the interpolations used for a given
attribute. We have to keep in mind, that the final result will
be a movie; therefore we have to define how many frames
per second the animation should generate: The animation
language must allow for the following:

1) Define the outputs attribute by names, we call this
objects output streams

2) Define the anchor points for each output stream
3) Define the interpolation algorithm for each output

streams

An example is shown in Fig xxx and the use case is show
in Fig .. The keywords of the language are: fps, stream,
name, type, interpolator, and the parenthesis. TCB is an
index in a table defining the one used for the position stream.

fps 25.0

stream position {
name "position"
type vector interpolator TCB

}
time 0 { position(0, 0, 255) }
time 1 { position(0, 255, 0) }
time 3 { position(255, 0, 0)
time 4 { position(255, 0, 0) }

The component Flythrough gets the input parameter from
the Clock component and sends out the position parameter
calculated based on the animation program shown in Fig-
ure 2. The clock ticks forward in time, and this will trigger
a change of the output attribute position.



Fig. 2: How to change the viewpoint based on the location
of a black hole

8. Extension
The component parsing the animation programs needs

to get modified, if the grammar of the animation language
needs to change. This might be a serious undertaking, highly
depending on the new grammar. Adding new interpolators,
or new type is trivial; it just requires the creation of a
interpolator class and an extension of an array to connect
the identifier with the interpolator.

9. Future Work
Incorporating of the Spiegel animation philosophy in

ParaView or VisIt should be done as a proof concept. The
animation language does not make it easy to modify the
program after it is written because the language does not
have variables and arithmetic build in. The language would
benefit from adding these two ideas. Rather complicated
animated movies have been produced with this technology,
but none of them had audio attached to it. It would be
interesting to understand if this language could support the
creation of audio for the animation.

References
[1] The visit home page @ONLINE. March 2012.
[2] Paraview - open source scientific visualization tool@ONLINE. March

2013.
[3] Paraview/users guide/batch processing @ONLINE. March 2013.
[4] Praview/python scripting paraview @ONLINE. March 2013.
[5] Wall-e@ONLINE. March 2013.

[6] Werner Benger, Markus Haider, Josef Stoeckl, Biagio Cosenza, Mar-
cel Ritter, Dominik Steinhauser, and Harald Hoeller. Visualization
Methods for Numerical Astrophysics. InTech - Open Access Publisher,
2012.

[7] Hans-Peter Bischof, Edward Dale, and Tim Peterson. Spiegel - a
visualization framework for large and small scale systems. In In MSV
âĂŹ06: Proceedings of the 2006 International Conference of Modeling
Simulation and Visualization Methods, 2006.

[8] Danyel Fisher. Animation for visualization: Opportunities and draw-
backs @ONLINE. March 2013.

[9] Doris H. U. Kochanek and Richard H. Bartels. Interpolating splines
with local tension, continuity, and bias control. In SIGGRAPH ’84:
Proceedings of the 11th annual conference on Computer graphics
and interactive techniques, pages 33–41, New York, NY, USA, 1984.
ACM Press.

[10] Douglas C. Montgomery. Introduction to statistical quality control.
Wiley, New York, NY [u.a.], 3. ed edition, 1997.

[11] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toy-
ota. Birthday paradox for multi-collisions. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., E91-A(1):39–45, January 2008.

10. Conclusion
The use of this or any other animation language could

be added to ParaView or VisIt. Animation in these two
environments is difficult to create. Therefore it would be
beneficial for the users to add visualization language as
described


