
Effective Early Stage Model-Based Testing for an IT UI Application

Xin Bai

Alexander Ivaniukovich

The Microsoft Corporation

Redmond, WA 98052

xinbai@microsoft.com

aivan@microsoft.com

Abstract

Model-based testing is a technique which has been

practiced by many software test teams. A prototype has

been developed as a proof of concept (POC) for a User

Interface (UI) application by many of the development

teams. A combination of the two gives the project

teams a capability to virtually work on an IT UI

application at the early stage of design purely based

on the function specification and come up with a

solution with high confidence from both sides of

development and quality assurance.

Keywords: Model-Based Testing, software testing,

Spec Explorer, Visual Studio, UI, Sketchflow.

I. Introduction

In the world of software testing, the UI

automation is always a challenge. Not only because it

is hard to maintain the automated codes to

accommodate a frequent UI change on its nature; but

also, it is difficult to obtain the development codes,

which contain the required components for UI

automation at the early stage of the project cycle. As a

result, we often observed that the UI automation work

cannot be completed until the end of the project cycle

and thus it provided a little value to the current project

release (it may add more value to the next release as

part of regression).

Although many project teams have tried to solve

the issues by a team effort, model-based testing is an

effective and proven strategy to tackle on the problem.

By practicing model-based testing, in the design

phase of the software development, developers focus

on creating a UI prototype to mimic the real UI and

navigation, in the meanwhile, testers just focus on

authoring a machine readable model based on

requirements by using a tool to generate a complete

and maintainable test case suite [1].

The strategy and solution presented in this article

facilitates the project teams with a method to test a UI

application with automation at the early stage of a

product development cycle. The paper presents a case

study of model-based testing, using Microsoft Visual

Studio add-on Spec Explorer [2] as a tool to create a

machine readable model based on requirements. The

combination of the two efforts provides the project

teams with the capability to create an UI application

prototype at the early stage even without any

production codes, to discover inconsistent and missing

requirements in building a model, and to ensure the

quality by finding the issues in the design phase.

II. Today’s Automation

In today’s software testing against an UI

application, automation is not possible to accomplish at

the early stage of design phase of the project cycle. It

has always been a challenging task for testers to work

on UI test automation while developers are working on

a prototype in the software design phase. Even during

the build phase, if the needed UI properties, for

example, automation id, name, and class name for UI

controls, are missing, it will block testers from

continuing any UI automation work.

Traditionally, testers create test cases and

automation test scripts per user behaviors based on the

existing requirements. As a result, a static set of test

cases with scripting are created during the build and

stabilization phases. If UI design is changed, which is a

normal practice during the development of an UI

application, the test scripts need to be updated

frequently and manually. It results in much

maintenance work and is the number one complaint

during UI automation. The same issue occurs when a

new release comes into the picture.

mailto:xinbai@microsoft.com

Furthermore, testers manually design test cases

and write test scripts based on requirements. In fact,

each tester may create a different set of test cases based

on one’s experience. As a result, some use cases may

be missed during this manual test case design and

creation process.

In Figure 1, it displays the traditional software

testing activities at different phases of Requirement,

Design, Build, and Stabilization. It shows that testers

normally start writing test automation scripts at the

Build phase and they have to continue updating the

scripts through the Stabilization phase, which is the

later stage in the project cycle.

Traditional Software Testing

TesterJointDeveloper

R
eq

u
ir

em
en

t
St

ab
liz

at
io

n
D

es
ig

n
B

u
ild

Requirements

UI
POC

Requirements

Review BRD/FS

MTP

Write
automation

scripts

Continue
updating scripts
per UI changes

Code Review
UI

Development

Test Suite
(Test Cases)

Figure 1 Traditional Software Testing

Basically, there are three major problems by

using this traditional software testing process:

 Limited test automation against System Under

Test (SUT) at the early stage of the software

development cycle.

 High maintenance cost of UI test automation.

 No complete and automatically generated suite of

test cases, which cover user behaviors hundred

percent.

The vision and recommendation presented in the

paper is to use a Model-Based testing technique as an

alternative test method to fill the gaps above. Model-

based testing is a test technique that system behavior is

checked against a model. And the model can be built

against the requirements as early as at the design

phase.

Since the model is a simpler description of the

system under test, it can help us to understand and

predict the system’s behaviors at the early stage.

It does not need to be an all or nothing approach

while testers try to leverage model-based testing. At

least, it can help them to fill the existing gaps in the

traditional software testing. Particularly, it is feasible to

be applied to a complex, state rich, and UI based

application due to its internal nature.

III. Model-Based Testing

Model-based testing is a new level of testing,

although it has been around for many years. It

simulates the user behaviors based on a well-built

model by testers. The model is an abstraction of the

system under test from a particular perspective.

In Figure 2, it displays a high level conceptual

architecture of model-based testing and its related

activity components. It shows that testers can start

building a system model at the design phase when

developers are working on a POC solution, for

example, an UI prototype using MS Sketchflow [3].

Testers may have already found some

inconsistent, unclear, even missing requirements while

building the model. The testers would feedback the

findings to the project teams, which should have

tremendously improved the requirement inspection

effectiveness since it is at the early stage of bug

detection process. Of course, it requires the testers to

put some up-front effort in the project cycle.

Model-Based Testing

TesterJointDeveloper
R

e
q

u
ir

e
m

e
n

t
D

e
si

gn

Requirements

UI/Sketch
(POC)

Requirements

Model
(Spec Explorer)

Test Suite
(Test Cases)

Adapter
(MITA)

UI/Prod

Figure 2 Model-Based Testing

IV. Benefits

A. Benefits

There are a couple of immediate benefits for the

project teams by using model-based testing:

 Early stage testing to reduce costs

 Early automaton to detect bug

 Automatic generation of test cases

 100% coverage of user behaviors

 Easy test script maintenance

In model-based testing, the suite of test cases is

automatically generated out of the model by a tool. For

example, MS Spec Explorer, it has been integrated

with Visual Studio as an extension. There are some

advantages by using this tool:

 The test cases are automatically generated.

 The suite of generated test cases covers the most

complete paths, and thus it has a better coverage.

 It is easier to maintain the test cases. Each time

when a new feature is added, we just need to

update the model and re-generate test cases.

B. Challenges

There are some obstacles, especially when it is

the first time testers use the model-based testing

methodology. Basically, an adapter needs to be

developed as a bridge between the UI Prototype and

the MS Spec Explorer model.

 Testers are not comfortable to use it at beginning

since they are not familiar with the technique.

 The initial effort to build a model is high.

 Need dedicated resources to work on it. A limited

tester resource may have assigned to work on

requirement inspection as well as the test plan.

 Specific technical skills and tools are required.

Testers need to learn those technical skills.

 Testers are capable of making a design suggestion

based on the practice of building a model.

In the next section, a case study will be presented

on how to create a model, to generate test cases, to

bind the model with a system adapter to generate some

real test cases against the prototype, and finally to

achieve the goal of performing an early stage

automation and testing for an UI application.

Although there are some other tools in the market

to help with the model-based testing. Here, we use

Microsoft Spec Explorer 2010 to demonstrate a case

study since it is integrated with Visual Studio well and

a VS solution is presented in this case study.

VI. A Case Study

A Silverlight UI application is used as an example

to elaborate the major steps during a model-based

testing.

As a case study, all solution details assume that

Microsoft Visual Studio 2010 or greater and .Net are in

use. Also, it assumes that Microsoft Spec Explorer

2010 Visual Studio Power Tool and MS Sketchflow

are in use.

A. Prototype

In the design phase, developers usually develop a

prototype for the purpose of POC based on the existing

requirements. By using MS Sketchflow, developers

can quickly create a UI prototype which closely

mimics the behaviors of a real UI application. It is not

required to develop a middle tier or/and backend code.

In Figure 3, it shows a prototype solution named

‘Solution MitaApplication’ in Visual Studio. For

simplicity, it includes a project named

‘MitaApplcation’, which has only one static class –

‘MitaClass’ with one static method – ‘MainMethod ()’.

 MITA (Microsoft Internal Test Automation) is a

UI automation framework. In the case study, MITA is

leveraged for creating a sample application adapter

code. Actually, in the real world, testers can use any

other UI automation framework, for example, they can

use the Coded UI feature in Visual Studio [4]

Figure 3 Sample of Prototype Solution

The method MainMethod () represents a test

scenario for a UI dashboard prototype in Figure 4,

which basically performs the following actions:

1. Launch a Silverlight UI application.

2. Create a new project.

3. Enter the project name and other required items

for the project.

4. Enter Start Date for the project.

5. Save the launch project onto the dashboard.

Figure 4 Prototype UI

In practice, there are some tools which help the

developers to develop the POC of an UI application,

for example, Microsoft Expression Blend [5], which is

a design tool to help with creating an UI sketch at the

early stage of the project. The tool is easy to use and it

has rich feature to create an UI sketch without any

middle tier and database associated with it. It enables a

developer to deliver on the ideas faster.

B. Model

At the same period of time when developers work

on a POC of the application, testers can work on a

model per existing requirements, which simulates the

system and incorporates all user behaviors. The task is

beyond the traditional activities a tester normally

works on at the design phase, which is only to inspect

the requirements and write a master test plan.

Microsoft Spec Explorer 2010 Visual Studio

Power Tool is a tool that extends Visual Studio for

modeling software behavior, analyzing that behavior

by graphical visualization, model checking, and

generating standalone test code from models [2].

Although some initial effort need to be put in building

a model, the tool itself is relatively easy to use and the

test cases can be automatically generated. Besides, the

suite of test cases is more complete than those

manually created, and it is designed to cover user

behaviors 100%. As a result, it enables testers to detect

the bugs at the early stage, in the meanwhile, to

maintain the test cases with a better flexibility.

Since Spec Explorer has been integrated with

Visual Studio, after its installation, a ‘Spec Explorer’

menu is created within Visual Studio client as in

Figure 5.

Figure 5 Spec Explorer Menu in VS Client

Now, testers can also add a new project of ‘Spec

Explorer Model’ type as shown in Figure 6, which

holds a C# model file as well as a configuration

coordination file.

 Figure 6 Spec Explorer Model project

While the project is created, there is an option to

create a separate test suite project, which holds all of

the auto-generated test cases out of the model by Spec

Explorer.

In Figure 7, it shows the two projects described

above in Visual Studio: SpecExplorer1 and

SpecExplorer1.TestSuite.

Figure 7 Spec Explorer Model project and Test
Suite project

In the project SpecExplorer1, two files are

created by defaults: one is ‘Model.cs’, which holds the

C# model codes representing different rules; the other

is ‘Config.cord’, which holds all actions, bounds,

switches, and the state machine definitions.

In Figure 8, it displays the content of the model

program ‘Model.cs’ for the case study. The rule in the

model program is represented by the test method, here,

it is ‘MainMethod ()’.

Figure 8 Sample of Model Program

In Figure 9, it displays the content of

coordination file ‘Config.cord’. It contains actions of

the model which is to bind to either a model program

or adapter functions. It also defines all of the switches,

configurations, main state machine, sliced machines

for specific scenarios.

Figure 9 Sample Coordination File

C. Test Suite

As soon as a model is built based on

requirements, Spec Explorer can generate automated

test codes and save them in the Test Suite project,

which is created in previous Section B. Here, it is the

project of ‘SpecExplorer1.TestSuite’.

While a model is being built, an exploration

graph can be generated with states as well as

transitions between the states. Testers can review the

graph that helps them with the model design. In Figure

10, it shows the exploration graph in the case study.

There are two states S0 and S4, and three transitions

between them. Each transition takes a different

parameter value of Start Date.

Figure 10 Sample of Exploration Graph

D. Adapter

In previous Section C, a set of test cases are

generated by Spec Explorer after a model is developed.

Within such a test case, action invocations don’t call

the system under test directly because they belong to

modeling. In order to call a real SUT, an adapter must

be developed upon the prototype so that Spec Explorer

generates a new set of test cases by binding to the

adapter. In Figure 2, it shows how UI/Sketch, Adapter,

and Spec Explorer play together.

The adapter codes are part of prototype project

‘MitaApplication’, which is mentioned in the Section

A. For a UI application, the adapter codes hold any

functions and user behaviors based on the

requirements. Figure 10 shows a sample code of the

adapter.

Figure 10 Sample Code of Adapter

Here, in the study case, the adapter codes are in a

C# file named ‘MitaClass.cs’, which has been

discussed in the Section A. But for a complex

application, it is better to separate the UI element

codes. The definition of those UI element objects can

be generated by using a tool, for example, the Coded

UI feature in Visual Studio.

The Adapter codes for sketch UI can be

leveraged to access the production UI controls for

automation purpose if the AutomationId and other

control properties of the sketch UI are designed to be

the same as those of production UI. In Figure 2, it

shows how UI/Prod, Adapter, and Spec Explorer play

together.

VII. Summary

In software development life cycle (SDLC), early

test automation and bug detection are always

challenging, but badly desired by the teams since it is

going to save many costs and ensure product quality.

But, in the early stage, testers may not have access to

the development codes, even the prototype codes.

Therefore, testers are blocked from starting their test

automation. This requires testers to think creatively

and work out a different way to do testing. The model-

based testing is a strategic methodology to tackle on

the challenge.

Traditionally, on one hand, testers create test

cases and automation scripts manually based on ones’

experience. During the process, some of the important

use cases may be missed. On the other hand, the test

scripts are piled up as testers try to cover more and

more use cases, which make it harder to maintain them,

especially for a UI application.

The proposed ‘early stage model-based testing

for an UI application’ can fill these gaps as an

alternative way of testing. Testers can start doing some

preliminary testing based on the model that they have

built and thus find some design bugs at the early stage.

Also, by leveraging some tools, such as, Spec

Explorer, a complete suite of test cases can be

generated automatically and maintained easily.

Finally, testers will achieve a better job

satisfaction by doing a model-based testing since they

are going to be more involved in creative architecture

and design process. Also, they will learn new

technology and tools and do more coding by working

on the model and adapter with developers.

VIII Acknowledgements

We would like to thank Mrs. Poorvi Shrivastav

and Mr. Raghavender Anegouni, the software

development engineers in test, and Mrs. Swati Kaul,

the team’s test manager, in Microsoft MSIT, took time

to review the paper or listen to the presentation demo,

and provided some valuable feedback.

IX. References

[1] Nico Kicillof, “What is Model-Based Testing?”

http://blogs.msdn.com/b/specexplorer/archive/2009/10/27/wh

at-is-model-based-testing.aspx

[2] MSDN, “Spec Explorer 2010 Visual Studio Power Tool.”

http://visualstudiogallery.msdn.microsoft.com/271d0904-

f178-4ce9-956b-d9bfa4902745

[3] Expression Team, “SketchFlow: An Overview”,

http://expression.microsoft.com/en-us/ee215229.aspx

[4] Junfeng Dai, “Use Spec Explorer to do UI automation

test”,

http://blogs.msdn.com/b/junfengdai/archive/2010/08/02/use-

spec-explorer-to-do-ui-automation-test.aspx

[5] Wikipedia, “Microsoft Expression Blend”,

http://en.wikipedia.org/wiki/Microsoft_Expression_Blend

http://blogs.msdn.com/b/specexplorer/archive/2009/10/27/what-is-model-based-testing.aspx
http://visualstudiogallery.msdn.microsoft.com/271d0904-f178-4ce9-956b-d9bfa4902745

