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Abstract— Prism elements arise in some printed circuit
board modeling contexts, such as visualization and elec-
tromagnetic field modeling. Here we consider prisms built
by extruding from triangular bases which result from con-
strained2d Delaunay triangulation. The goal is to partition
each extruded prism into sub-prisms of high quality that fit
within the given printed circuit board layers. A prism quality
measure is introduced and, from it, optimal prism height
is derived given a triangular base. Given a printed circuit
board’s layer heights and optimal prism heights, we provide
a method for determining the height of each prism element.
The overall prism mesh quality is evaluated, which examines
the tradeoff of prism element quality versus the number of
elements. The new method also compares favorably with
respect to a prior prism mesh generation method that does
not involve optimizing prism heights.
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1. Introduction
In recent years, the interconnect modeling on Printed Cir-

cuit Board (PCB) and in packaging has become a bottleneck
for successful high-speed circuit design [1] and visualization.
The signal integrity issues, such as the signal propagation
time, the digital pulse distortion, and the cross-talk, alleffect
the quality of the digital signal and can cause integrated
circuit gate misswitching and introduce large bit rate error
[2]. Therefore, simple physical constraints on the routing
rules are no longer sufficient. For critical nets, accurate
circuit simulation is needed, which requires accurate electro-
magnetic (EM) characterization on interconnects. The finite
element based full-wave EM field solver can be applied
to perform such tasks which, in turn, rely heavily on the
quality of the finite element mesh generation [3]. Figures 1
and 2 (both images courtesy of Cadence Design Systems)
provide meshing examples for two common PCB structures:
coupled serpentine lines and coupled vias. The PCB has a
layered structure. A serpentine line is a transmission line,
embedded in a single layer, containing turns to control signal
propagation time over a line segment. A via is a vertical
signal connection between layers. In this paper we focus
on prism mesh generation, as discussed in Section 1.1 and
illustrated in Figures 1 and 2. The goal is to provide a high-
quality prism mesh which can be used for mesh visualization
as well as techniques such as finite element modeling. Part

Fig. 1: PCB coupled serpentine line feature (left) with mesh
(right).

Fig. 2: PCB coupled via feature (left) with mesh (right).

of this process involves creating sublayers of layers, where
appropriate. One important goal of mesh visualization is
verification of the model structure.

1.1 Prism Mesh Generation
Mesh generation for finite elements has been widely

studied (see [4] for a survey). The following mesh definition
is given in [4].Th is a mesh ofΩ if:

• Ω = ∪K∈Th
K.

• The interior of every elementK in Th is non-empty.
• The intersection of the interior of two elements is

empty.

Techniques for mesh generation in general have been
studied extensively in the geometric modeling and computa-
tional geometry communities [4], [5], [6], [7]. Geometric and
topological underpinnings of mesh generation are explored
in [8]. In some cases, mesh generation is tightly coupled
with the EM simulation method (e.g. in [9] there is tight
coupling of mesh generation with Finite Element Method
(FEM) simulation).

Here we perform mesh generation separately from the EM
simulation in order to allow our mesh results to be used as
a starting point for mesh visualization or other techniques



such as FEM. We primarily focus on mesh visualization,
but we use quality measures that should be valuable across
multiple contexts.

Due to the layered specialty of those interconnects on PCB
and in packaging, a mesh consisting of triangular prisms is
very efficient and sufficient to meet our meshing needs (each
prism has triangular top and bottom and three rectangular
sides.) On each layer, the vertical height of the interconnect
is thin and the shape is irregular, which is very suitable for
triangular prism meshing. Along the vertical direction in the
layer stack, triangles can be extruded up or down to build
prism volume elements which satisfy FEM needs. Due to this
special property, a triangular prism is the basic element for
our mesh generation [10]. As aforementioned, the quality
of triangulation directly effects the accuracy of EM com-
putation for FEM. This is true especially for full-wave EM
modeling [11]. The best triangles are the ones that have equal
angles, so a Delaunay triangulation algorithm is best utilized
(see Section 2.1). Furthermore, PCB feature boundaries must
be included in the triangulation, so aconstrainedDelaunay
triangulation is used (see also Section 2.1).

The fundamental prism generation strategy that we build
upon here is commonly used, as noted in [12]. It is em-
ployed in [9], and is detailed in our prior work [13] and
summarized in Section 3. The first step is to project all
PCB features’ line segments from 3d orthogonally down
onto the 2d x-y plane. There a 2d constrained Delaunay
triangulation is produced using the Computational Geometry
Algorithms Library (CGAL) [14] (see Section 2.2). In [9]
the Triangle software by Shewchuck [15], [16] is used to
generate a constrained Delaunay triangulation. While thisis
a strong approach, we find that CGAL is adept at handling
segment intersection other than at their endpoints. In both
our work and [9] edges of the triangulation are extruded up
through the layers to construct prisms. In [9] each prism
is subdivided into tetrahedra. In contrast, we subdivide the
prisms horizontally to preserve the prism mesh structure.
Within a given sublayer all of the prisms must have the
same height. This is because if prisms have different heights
within a sublayer, the generated prisms may not produce a
conformal prism mesh. For us, the height of the prisms is a
key decision and a crucial contributor to the quality of the
overall mesh. The focus of this paper is producing a high-
quality mesh by optimizing prism height and relating it to
the selection of quality criteria fed as inputs to CGAL.

Other prism meshing research includes [12], [17], [18].
Motivated by problems in biology and medicine, Whitakeret
al. [12] use iterative relaxation of point samples to create thin
layers of triangular prisms. Their triangular quality measure
is discussed in Section 4.1. In [17] Yamakawa and Shimada
transform a tetrahedral mesh into a hybrid prism-tetrahedral
mesh, motivated by FEM applications. They use prisms to
reduce the number of elements and provide more accurate
FEM analysis. Layers of prisms are created. Prism height

can be governed by user input or can be derived “from the
average edge length of the triangular faces." They provide
a prism quality measure that we discuss in Section 4.1.
For thin-walled solids, Yamakawa and Shimada [18] create
prisms as an intermediate step in a process that begins with
a tetrahedral mesh and ends with a hexahedral mesh. A layer
of prisms is added to the boundary of the tetrahedral mesh.
Some prisms are converted to hexahedral elements to form
a mixed mesh. Finally, midpoint subdivision of the mixed
mesh generates a hexahedral mesh. No pyramid elements are
generated by this process; they can be a FEM concern.

1.2 Contribution and Overview
In [13] we based prism height inside each PCB layer

solely on the thinnest height among the layers. Our triangle
quality criteria for input to CGAL were related to the
length of a triangle’s longest edge and its aspect ratio.
We used a triangle quality measure from [19] to evaluate
the results. In [13] the focus was on triangle quality for
successive refinements of an elliptical pad with a circle as
a special case. Prism mesh quality was not evaluated. In
this paper we present several contributions beyond the basic
prism meshing algorithm. The first idea maximizes prism
quality by formulating a prism quality measure based on the
regular prism; this is based on the triangle quality measure
from [19]. Next CGAL provides a 2d constrained Delaunay
triangulation. Then we show how to, given a triangle as the
prism’s base, find the prism height that maximizes prism
quality. The optimal height of the individual prism elements
can then be used to determine a common prism height. A
variety of strategies can be applied to derive common prism
height. We give 5 choices and provide guidance on how to
select a strategy. The next step produces sub-prisms within
each PCB layer guided by the common prism height. Note
that this approach is semi-automatic and involves optimizing
prism quality. In contrast, the prism height selection method
of Yamakawa and Shimada [17], while also semi-automatic,
does not appear to select prism height to optimize prism
quality. We compare their approach of the average triangle
edge length measure with our strategy.

Finally, we perform the following post-processing step.
We supply the common prism height to CGAL as a max-
imum edge length constraint. Thus, CGAL again creates a
constrained Delaunay triangulation. We show that our ap-
proach compares favorably with respect to the results in [13].
We also examine the trade space of prism element quality
versus number of prism elements. Some applications may
need to apply further post-processing of the prism elements
that we construct using quality criteria. For example, in
FEM for PCB structures, the shape functions describing the
field (e.g. EM) can further influence the number of prism
sublayers required.

The remainder of the paper is structured as follows.
First, Section 2 gives background on constrained triangle



Fig. 3: A constrained triangulation (left) with a constrained
Delaunay triangulation (right) (modified from [14]).

meshing, including the definition of a constrained Delaunay
triangulation, and brief introduction to CGAL. Section 3
gives the original 3d triangular prism meshing algorithm,
which uses constrained Delaunay triangulation, as in [13],
and its choice of CGAL triangle quality criteria, as well as
the triangle quality measure from [19].

Our new algorithm’s primary goal is to provide good
prism mesh quality. Section 4 presents our prism quality
measure and shows how to maximize this measure by deriv-
ing optimal prism height given the base triangle. We compare
this with the strategy used in [17]. Section 5 describes
our revised prism meshing algorithm, including the post-
processing step of using prism height to supply CGAL with
revised quality criteria. Section 6 presents some results of
our revised prism meshing algorithm on PCB examples and
shows that it compares favorably with the standard approach.
Section 7 concludes the paper and outlines future work.

2. Constrained Triangle Meshing
Here we give background for the prism meshing algo-

rithms in this paper. We define Delaunay and constrained
Delaunay triangulation in Section 2.1. Then we discuss
CGAL’s support for this functionality in Section 2.2.

2.1 Constrained Delaunay Triangulation
Delaunay triangulation ([3], [6], [8], [10]) has the empty

circle property: each triangle’s circumcircle’s interiorcon-
tains no vertices. The Delaunay triangulation also maximizes
the minimum triangle angle size, which supports our 2d
quality criteria.

Because we must include edges of structural features in
the triangulation, we use a constrained Delaunay triangu-
lation [8]. “It is convenient to think of constrained edges
as blocking the view. Then, a triangulation is constrained
Delaunay if and only if the circumscribing circle of any
facet encloses no vertex visible from the interior of the facet"
[14]. Among all constrained triangulations of a given set of
vertices, the constrained Delaunay triangulation maximizes
the minimum angle [8]. Figure 3 illustrates the constrained
empty circle property of a constrained Delaunay triangula-
tion, where thick segments are the constrained edges.

2.2 CGAL
CGAL’s 2d constrained refined meshing [14] is utilized

to respect input line segments and control the size of the

triangles [15]. A CGAL constrained Delaunay triangulation
satisfies the constrained empty circle property stated above in
Section 2.1. The CGAL provides easy access to efficient and
reliable geometric algorithms in a C++ library. For Delaunay
triangulation and mesh generation, we find that CGAL can
handle segment intersection other than at their endpoints
better than other similar software, such as [16], which is
used in [9]. CGAL does not yet support 3d constrained
Delaunay triangulations (although it does support basic 3d
triangulation), so we use their 2d constrained Delaunay
functionality.

CGAL uses shape criterion lower boundB and size
criterion of longest edge length to control triangle elements.
The lower boundB is the ratio between the circumradius
and the shortest edge length. The size criterion is an upper
bound on the longest edge length of a triangle element.
This criterion can allow users to define small triangles. In
Section 3.2 we describe the choices available in the basic
prism meshing algorithm.

3. Basic Prism Meshing Algorithm
Section 3.1 summarizes the algorithmic starting point for

this paper. Section 3.2 discusses the CGAL triangle quality
criteria used in this algorithm. Section 3.3 introduces the
chosen triangle quality measure.

3.1 Algorithm
BASIC_PRISM_MESHING_ALGORITHM

1: Exy ← Initial set of structural feature edges, projected
orthogonally onto thex-y plane

2: l← number of layers
3: quality_criteria← 2d triangle quality criteria
4: Txy ← 2D_CONSTRAINED_TRIANGULATION

(Exy, quality_criteria)
5: for i = 1 to l do
6: Extrude and create prisms for layeri using 2d trian-

gles inTxy. Thinnest height among the layers is found
and used to divide each existing layer into sub-layers.

7: end for
The mesh examples of Figures 1 and 2 use this approach.

The idea, which we employed in [17], comes from Lee’s
thesis [9] for FEM analysis. Even prior to that, the idea
of extruding triangles to form prisms has appeared in the
literature as a common approach to prism meshing [12]; in
some cases the offset direction comes from surface normals.
The components and layers are projected to a 2d surface,
on which a triangle mesh is generated based on the certain
mesh control criteria such as edge length and angle of the
mesh triangle elements. Then, the triangle mesh is extruded
vertically back to the original layers of 3d structure to form
prism elements. Prisms are built by connecting vertically
adjacent triangles vertically. The results of this strategy are



examined in Section 6 as a baseline for comparison with
our new approach. Examples are introduced there for those
experiments.

3.2 CGAL Triangle Criteria
In the basic algorithm we used the CGAL default angle

bound of 20.7 degrees, which guarantees termination of
the constrained Delaunay triangulation algorithm [14]. Good
mesh quality in FEM simulation for a PCB context not only
relies on the shape of mesh elements, but also closely de-
pends on the wavelengthλ. Wavelength has the relationship
λ = δ/f , whereδ is the speed of light andf is the frequency.
Consequently, we model the longest edge of a mesh element
to be close to or less than one third of the wavelength,
(1/3)λ. In today’s high-speed design, if we take 50GHz as
an example, the longest edge of mesh elements should be
at most 2mm. We initially use this criterion, motivated by
FEM considerations, as the longest CGAL edge length.

3.3 Triangle Quality
There are many possible ways to measure quality for tri-

angular elements to assess the success of the above algorithm
and the choice of CGAL criteria. For example, Whitakeret
al. [12] use a radius ratioQ = 3r/R. Here “r andR are the
radii of inscribing and circumscribing circles, respectively."
From [4], in an optimal mesh of triangles the triangles are
equilateral and “the elements in the mesh have a quality close
to 1." One triangle quality formula offered there involves a
ratio of longest edge length to inradius.

Here we present the method from [19] that we used in
[13]. It forms a solid foundation for the 3d extension to the
prism case in Section 4.1 and facilitates optimization. For
the triangle case [19] the element qualityqt is:

qt =
4
√
3A

h2

1
+ h2

2
+ h2

3

(1)

whereA denotes the area, andh1, h2 andh3 are the edge
lengths. When it is an equilateral triangleqt = 1. This agrees
with the view expressed in [4].

4. Prism Mesh Quality
We begin our prism quality discussion by first generalizing

Eq. 1 from Section 3.3 to the prism case in Section 4.1.
Section 4.2 shows how to maximize prism height given a
base triangle, and Section 4.3 examines sensitivity of prism
quality to changes in prism height. Section 4.4 discusses
overall prism mesh quality.

4.1 Prism Quality
Similar to [12] we start with a triangle quality measure

that encourages equilateral triangles and the side faces of
our prisms will be perpendicular to the triangular faces. We
generalize generalize Eq. 1 to the prism case to accomplish
this, and the result lends itself to optimization, which is

useful in our context. To generalize Eq. 1 to the prism case
the element qualityqp is:

qp =
32

√
3

3
V

(h2

1
+ h2

2
+ h2

3
+ h2

4
)

3

2

. (2)

whereV denotes the volume, theh’s are the edge lengths,
and the coefficient ofV follows from the constraint that
qp = 1 for a regular prism. We assume thath1, h2, h3 are the
known edge lengths for the base triangle of the prism, and
h4 is the unknown height which we would like to optimize.

4.2 Prism Quality Maximization
Starting with Eq. 2, for notational convenience letβ =

h2

1
+ h2

2
+ h2

3
≥ 0. This can be calculated for a given

base triangle. Our goal is to solve for positiveh4 which
maximizes qualityqp. The result using calculus is:

h4 =
√

β/2 ≥ 0. (3)

Although we designedqp to equal 1 for a regular prism, 1 is
not the maximum value ofqp. For an equilateral base triangle
with sides all equal to 1, we obtainqp = 1.0264 from Eq. 2
when using Eq. 3 for the height. Using Eq. 2 forqp, we
randomly generated 20,000 triangles to selecth1, h2, h3 and
with h4 from Eq. 3. Results appear in the top line of Table 1.
Our experiments support the conjecture thatqp = 1.0264 is
the maximum value ofqp.

Using the fact thath4 maximizesqp, one can use calculus
to show that the equilateral case whenh1 = h2 = h3 = 1
does indeed optimizeqp. Since the roles ofh1, h2, andh3 in
Eq. 2 are symmetric, one can show that the partial derivative
of qp with respect toh1 equals0 whenh1 = h2 = h3 = 1, so
that this yields a critical point. These results suggest that the
behavior of Eq. 2 makes it a useful prism quality measure.

Table 1:qp for 20,000 randomly generated triangles using
Eq. 3 forh4 and using average triangle edge length.

method max qp min qp avg qp

Eq. 3 1.02638 1.91483e− 4 .528858
Avg. edge length .999977 2.92361e− 5 .506697

Table 1 (bottom line) also shows 20,000 random trials for
calculating prism height by averaging triangle edge lengths
(an approach from [17]). Note that the average quality is
smaller here than when using Eq. 3 forh4. The maximum
quality is also smaller and appears to have an upper limit of
1 rather than the upper bound of 1.0264 when using Eq. 3
for h4. These differences can be justified algebraically.

4.3 Prism Quality Sensitivity
For the purpose of the revised prism meshing algorithm

in Section 5, it is useful to examine the sensitivity of Eq. 2
to the value ofh4. A small random example is presented
in Figure 4. In that example a triangle’s edge lengths are



Fig. 4: Prism quality vs.h4 for a randomly generated
triangle.

randomly generated,h4 is calculated using Eq. 3, and then
prism quality is plotted using Eq. 2 for a range ofh4 values
near the optimal value. Note the difference in scale for the
two axes in the figure. This suggests that, for this sample
triangle, prism quality is not very sensitive to changes in
h4. For a collection of triangles, it is possible to compare
sensitivity by calculating the second derivative ofqp and then
comparing the results across the triangles. This can be used
to guide the overall prism quality policy choice in Section 5.

4.4 Overall Prism Mesh Quality
In assessing the results of Section 5’s new algorithm

in Section 6, we will evaluate the average prism quality
across the mesh using Eq. 2. However, this is not the only
criterion. From [4]: “An optimal mesh is that for which the
chosen quality function is optimal while, at the same time,
its number of vertices (elements) is minimal." Thus, we must
take the number of prism elements into account in addition to
the quality of the prism elements. There is a tradeoff between
number of prism elements and prism element quality, which
we explore in Section 6. The number of prism elements is
addressed in some literature. Yamakawa and Shimada [17]
give an example from computational fluid dynamics in which
42,304 elements provided good analysis results.

As noted in Section 1.2, some applications may need fur-
ther post-processing of the prism elements that we construct.
For example, in FEM for PCB structures, wavelength or
choice of FEM shape functions may impose a lower bound
on the number of prisms within a layer. This lower bound
is often small and is satisfied in our work.

5. Revised Prism Meshing Algorithm
Here we introduce our new approach in

REVISED_PRISM_MESHING_ALGORITHM. An
important challenge is how to select sub-layer heights
during the extrusion process so that overall high prism
quality is achieved. Step 6 of the algorithm presented in
Section 3 used the thinnest height among the layers to
produce conformal prisms with a common height inside

each sub-layer. Other choices of sub-layer height are
possible, and here we use our prism quality maximization
from Section 4.2 as the basis for 5 policy choices in
CALCULATE_PRISM_HEIGHT. While this choice is
user-defined, it can be guided by the sensitivity analysis
suggested above in Section 4.3.

REVISED_PRISM_MESHING_ALGORITHM

1: Exy ← Initial set of structural feature edges, projected
orthogonally onto thex-y plane

2: l← number of layers
3: lh ← layer heights
4: c← user’s choice of height policy
5: quality_criteria ← 2d triangle quality criteria:

longest_edge_length andangle_bound
6: Txy ← 2D_CONSTRAINED_TRIANGULATION

(Exy, quality_criteria)
7: h← CALCULATE_PRISM_HEIGHT(Txy, l, lh, c)
8: if c 6= 1 andh < longest_edge_length then
9: longest_edge_length← h

10: quality_criteria ← 2d triangle quality criteria with
adjusted trianglelongest_edge_length

11: Txy ← 2D_CONSTRAINED_TRIANGULATION
(Exy, quality_criteria)

12: end if
13: for i = 1 to l do
14: Extrude and create prisms for layeri using 2d trian-

gles inTxy and heighth.
15: end for

CALCULATE_PRISM_HEIGHT(Txy, l, lh, c)

1: switch (c)
2: case 1:
3: h ← height calculated as in Step 6 of BA-

SIC_PRISM_MESHING_ALGORITHM
4: case 2:
5: h← average optimal prism height inTxy using Eq. 3
6: case 3:
7: h← maximum optimal prism height inTxy using Eq. 3
8: case 4:
9: h← minimum optimal prism height inTxy using Eq. 3

10: case 5:
11: h← minimum layer height
12: end switch
13: return h

This new method gives users an opportunity to tune
prism mesh quality over the given model structure based on
optimal heights of prism meshing. The difference between
cases 1 and 5 in CALCULATE_PRISM_HEIGHT is that
case 1 does not have the feedback into CGAL triangulation
criteria that case 5 has. Cases 2 through case 5 provide
feedback forlongest_edge_length criteria to refine triangle



Table 2: Resources for Prism Meshing
Resources List

Operating System Windows 7: 64-bit
Machine PC
Programming Language C++ (STL)
Development Environment Microsoft Visual Studio 2005
Existing Libraries Qt 4.6.2 Desktop Edition

CGAL 4.0
Boost Library 1_51
VTK 5.8.0

Fig. 5: PCB with single serpentine line (left) and single via
(right), used examples in our experiments.

meshing again. Cases 2 through case 5 also give suggestion
of more realistic heights for prism meshing. Later on, the
prism quality tables show very positive results.

6. Quality Results
We begin by listing in Table 2 the resources that we

use to implement and test our algorithm. This includes the
visualization toolkit VTK. Section 6.1 describes our test
cases and examines their layer heights. Section 6.2 discusses
the optimal heights associated with the prisms formed by our
new algorithm. Section 6.3 tabulates quality results for our
test cases and illustrates visualization results.

6.1 Test Cases
To evaluate our new algorithm we use one single serpen-

tine line PCB and one single via PCB (Figure 5, courtesy
of Cadence Design Systems). Since layer height is the basis
for cases 1-5 in CALCULATE_PRISM_HEIGHT, we briefly
discuss layer height for these 2 examples. The serpentine
line resides in a 5 layer structure. Top and bottom layers are
the shield layers, while the middle layers are the dielectric
layers. Of the 5 layers, the thickness of 3 of them is 1mm
and the other 2 are each 4 mm thick. The via model is a 11
layer structure. The 11 layer structure has two shield layers
in the middle of the layers; other layers are the dielectric
layers. The via model itself has two traces, a drill, two pads
and two anti-pads (void or hole features). We approximate a
pad using a regular octagon. Two anti-pads are on the shield
layers. Two traces are used to connect other devices, via
models or transmission line models. The minimum of the
layer heights for this via example is 2mm.

6.2 Optimal Prism Heights
The other key ingredient to the revised algorithm in

Section 5 is the calculation of optimal prism element height

00 . 0 0 0 50 . 0 0 10 . 0 0 1 50 . 0 0 20 . 0 0 2 5
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0

m a x i m u m
a v e r a g em i n i m u m

Fig. 6: Scatter plot of optimal prism heights using Eq. 3,
in centimeters, for example in Figure 5, using20.7 degree
angle bound and 2mm longest edge length criteria in CGAL.
There are 382 triangles (horizontal axis).

for cases 2-4. In our two examples the optimal prism heights
are calculated using Eq. 3. For a20.7 degree angle bound
and 2mm longest edge length criteria in CGAL we discuss
optimal prism height results. A scatterplot of optimal prism
height for the triangles in the serpentine line case appearsin
Figure 6. In this case, there are 382 triangles. The minimum
height is 0.282843 mm, the maximum height is 2.32849 mm
and the average height is 0.659132 mm.62.8% of optimal
triangle heights in this case are smaller than the average.
In the single via case, we obtain minimum optimal prism
height of 0.019614 mm, maximum height of 1.18 mm, and
the average is 0.196417 mm. Similar to the serpentine line
case, the majority (68.8%) of optimal triangle heights in
the single via example are smaller than the average. In the
via case, the layer heights are all smaller than the average
optimal prism height; this will influence the choice of case
in CALCULATE_PRISM_HEIGHT.

6.3 Quality and Visualization Results
Mesh quality and visualization results for the 5 cases in

CALCULATE_PRISM_HEIGHT for our serpentine line and
via cases appear in Tables 3 and 4 and Figures 7 and 8
(both images courtesy of Cadence Design Systems). The last
column is average prism quality across the mesh. In both of
our examples the best case is always better than case 1. The
percentage improvement is94.4% and87.5%, respectively.
In the serpentine line example, the best triangle and prism
quality is provided by case 4, which uses minimal optimal
prism height across the triangles. Note that the number of
triangles and prisms is of moderate size, which facilitates
fast mesh visualization (144 seconds).

In the via example, the best triangle and prism quality
is provided by case 5, which uses minimum layer height.
Unfortunately, in this situation the number of triangles and
prisms is quite large, which presents a challenge for mesh
visualization. We plan to address this in future work.



Table 3: Single serpentine line results for example in Fig-
ures 5 and 7.

Case Longest Edge # Triangle # Prism
(meters) Triangles Quality Prisms Quality

1 0.002 382 0.845355 3056 0.359807
2 0.000659132 717 0.899001 2868 0.594523
3 0.00232849 382 0.845355 1524 0.521804
4 0.000282843 3350 0.907986 13400 0.699492
5 0.0001 27121 0.911653 108484 0.555146

Table 4: Single via results for example in Figures 5 and 8.
Case Longest Edge # Triangle # Prism

(meters) Triangles Quality Prisms Quality

1 0.002 324 0.8088 3888 0.3728
2 0.000196417 1097 0.8927 13164 0.3177
3 0.00118 324 0.8088 3888 0.3728
4 0.000019614 90376 0.9142 1084512 0.68273
5 0.00002032 84199 0.9143 1010388 0.699

7. Conclusion
The goal of new prism meshing approach is to improve the

quality of meshing. Here, we obtain optimal heights of prism
elements by maximizing prism quality. Our experimental
results show significant quality improvement of the revised
method. In the future we plan to expand our set of test cases
beyond the single serpentine line and via feature cases to
multiple serpentine lines and coupled vias. Also, as indicated
in Section 6.3, in some cases the number of elements can
be large enough to induce visualization difficulty with our
use of the visualization toolkit VTK. To address this, in
future work we plan to investigate using VTK in a parallel
environment. The authors thank Michelle Daniels for helpful
suggestions on prism quality sensitivity.
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