
Fire and Flame Simulation using Particle Systems and Graphical
Processing Units

T.S. Lyes and K.A. Hawick
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: { t.s.lyes, k.a.hawick }@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

February 2013

ABSTRACT

Simulating fire, flames or other natural phenomena can
be difficult because of the inherently complex systems used
to model them, while also requiring an adequate amount of
realism visually. Simulating such a system in real-time can
also be a problem if the system is too large, so a parallel
computing techniques can be used to good effect. Particle
systems have been shown to simulate flames and fires par-
ticularly well at relatively low computational cost. We de-
scribe how a simple particle system approach can be used to
simulate a fire or flame in real-time in conjunction with us-
ing data parallelization, achieving a substantial performance
speed up on graphical processing units (GPUs). Using
NVidia’s Compute Unified Device Architecture (CUDA)
and OpenGL interoperability functionality allows for further
performance increases when rendering the simulation with
GPUs. Additionally, different rendering techniques are used
to investigate trade-offs between performance speed and vi-
sual realism.

KEY WORDS
fire; flames; visualisation; rendering; simulation; turbu-
lence; GPU

1 Introduction
Fire and flame simulation is an interesting and important

area of research in computer graphics [3]. As with most
natural phenomena, it can be a challenging to simulate, par-
ticularly due to its complex, turbulent nature [12]. To sim-
ulate such a complex system in real time is difficult even
by today’s computing power standards. Sufficient realism
is an important aspect of fire simulation as well, and thus
many different rendering techniques have emerged to make
the simulated fire look and behave as convincingly as pos-
sible. Fire simulation has applications in many industries,
such as movie making special effects, video games and sci-
entific visualization, as well as areas such as fire control and

Figure 1: A fire particle system simulation

military emulation [19] [6].
To date there have been many methods on simulating and

rendering a fire or flame in real time. Some methods include
using a spring-mass model to model flame kinematics [1]
allowing external forces such as gravity and wind to be in-
corporated for added realism, or a method for rendering fire
on the surface of a polygon mesh [2] by generating points
on the surface of the polygon and using individual flame
primitives to render the fire, or by simulating the fire as an
“evolving front” of particles [9] moving across a polygonal
mesh. Other methods combine simple particle systems and
advanced rendering techniques [6] to generate highly de-
tailed fire simulations at relatively low computational cost.
Combustion models [17] [20] and hydrodynamics [18] have
also been used to model fires.

There are many different rendering techniques to consider

when simulating a fire. One technique involves uses two di-
mensional sprites or ”splats” [16] as textures to simulate the
fire, giving the illusion of the fire being three-dimensional
by using rendering techniques such as billboarding (rotating
the image to always face the camera) and blending (colours
in the background partially fade through to the foreground).
Three dimensional techniques such as utilizing polygons or
polygonal surfaces to model flames are far more compli-
cated but can provide much more realistic results.

Particle systems are a simple but effective way of model-
ing a lot of complex systems, and is the core basis for many
fire simulation methods [6] [9] [19]. A particle system con-
sists of many particles sharing similar attributes such as po-
sition, velocity, and lifetime, all controlled by a specific set
of rules or functions. Particles will be created and destroyed
throughout the lifetime of the system. The size of the system
can vary from just a few hundred particles to tens of thou-
sands of particles, but realistic and real-time results will de-
pend on the computing hardware used. Graphics Processing
Units (GPUs) [10] can help with this limitation [13,14], and
using GPU implementations allow simulations to be only
limited by the particle data transfer between the processor
and GPU [7] [8].

GPU’s are designed to handle problems which can be ex-
pressed in parallel [15] such as particle systems [4]. Parti-
cles can be divided up into blocks and updated in parallel as
each particle’s update function will typically be the same for
all particles in the system. Compute Unified Device Archi-
tecture (CUDA) [11] is an extension of the C programming
language developed by NVidia specifically designed for us-
age on NVidia GPUs. Using CUDA we can take advantage
of not only the data parallelism of the GPU, but also CUDA’s
built-in functionality to allow it to interact with the OpenGL
rendering library [5] or the purpose of rendering directly on
the GPU, resulting in even better performance from the pro-
gram.

This paper focuses on using a simple particle system to
simulate a fire or flame, as well as using CUDA and OpenGL
to simulate and render the system using various simple ren-
dering techniques. An example of a flame rendered using
particles is shown in Figure 1. In Section 2 we describe the
methods and functionality used, describing the core CUDA
and OpenGL concepts behind simulating the fire. Section 3
shows some screen caps of the program in action highlight-
ing the differences in the rendering techniques. Section 4
presents a discussion of the performance of the program us-
ing different rendering setups, and finally Section 5 lays
forth some concluding remarks on the project as well as
some future work suggestions.

2 Implementation Method
This fire particle system uses the following properties -

particles are born in a random position inside of a circular

area (based on the radius and angle specified by the ker-
nel), with an upwards velocity and a slightly deviated ac-
celeration along the x and z axes. Wind effects increase or
decrease this deviation using according to a sine wave func-
tion. The fire is coloured using a randomly generated colour
when it is born as well as a randomly generated colour when
it dies. Throughout its lifetime the colour will not only tran-
sition from its start colour to its end colour, but also the alpha
component will also decrease. All particles are born with an
alpha component of 1.0 and die with an alpha component of
0.0 - in other words, particles will fade as they grow older
until they completely disappear when the particle dies.

Algorithm 1 gives a general idea of how a particle system
works.

Algorithm 1 the general layout of a particle system kernel
for all particles in system do

update life
if particle dies then

destroy particle
create new particle
randomize particle values

end if
update positions, velocities
update collisions, etc...

end for

CUDA has built in OpenGL interoperability functionality
which can improve performance levels [11]. To take ad-
vantage of this, the general method is to use vertex buffer
objects (VBOs) to store rendering data such as points and
colours so that once the system has been updated, the
particles can be rendered directly using the GPU rather
than passing the values back to the CPU after the ker-
nel has been executed. This takes slightly longer prepa-
ration as CUDA needs to map resources using the func-
tions cudaGraphicsMapResources() and cudaGraphicsRe-
sourceGetMappedPointer() before executing the kernel. Ad-
ditionally, OpenGL will use glBindBuffer() to bind an array
buffer to the VBO needed. For this simulation, two VBOs
were used - a vertex array for particle positions, and a colour
array for particle colours.

Colours can be applied to the fire in two ways depend-
ing on the rendering method - when rendering on the CPU,
colours can be applied using glColor4f, using four percent-
age floats to determine the red, green, blue and alpha com-
ponents of the colour. The fire will always have a red com-
ponent of 1.0f (100 percent red) while the green and blue
components will be randomized to give a more orange or
yellow colour to the fire. If the simulation is rendered on the
GPU using CUDA-OpenGL interoperability, colours can be
applied using a colour vertex buffer object (VBO) and using
the functions glColorPointer() and glEnableClientState(GL
COLOR ARRAY) to bind the colour VBO to OpenGL’s

Figure 2: Setup kernel for initializing the CURAND pseudo-random number generator

colour array buffer.
Pseudo-random numbers are sufficient to provide ran-

domized data values when a new particle is created. How-
ever, conventional C pseudo-random number generators will
not work when used in CUDA kernels. For this reason,
NVidia recently developed the CURAND random number
library for use of random numbers in parallel. CURAND
random numbers can be generated either on the host or de-
vice. When generating on the device, curand init must first
be run to initialize a RNG state for each particle in the sys-
tem. As shown in Figure 2 when using CURAND in parallel
it is recommended to use the same random number seed and
a different sequence number for each particle in the system.

In this case, 1234 was used as the seed for all particles,
while each particle’s id number was used as the sequence
number. What results is an array of ”curand states” which
can be passed to the kernel similar to float arrays for position
or colour. The kernel can then use this state to generate as
many random numbers as needed, such as in Figure 2 when
randomizing a particle’s starting colour and decay rate. In
this example, the function curand uniform is used, which
generates a uniformly distributed number between 0 and
1, however CURAND supports many other distributions as
well.

The fire simulation was run on a single NVidia Quadro
4000 graphics card.

3 Visualisation Results
The particle system was tested using a range of system

sizes (64x64, 128x128, 256x256, and 512x512), or from
4096 in the smallest system tested up to 262144 particles
in the largest system tested. The frame rates were also mon-
itored and displayed on screen in real-time. Additionally,
a variety of rendering techniques were used to investigate
their impact both visually and on the computational perfor-
mance of the program.

Figure 4 shows the initial visualization of the system with
a size of 128x128. Smaller systems (64x64) did not produce
visually strong simulations so those screenshots were not

Figure 4: A simulation of the 128x128 fire particle system
(16384 particles) rendered using simple GL POINTS

used. This particular simulation used simple GL POINTS to
represent each particle. While not the most visually interest-
ing rendering method, GL POINTS did give the best frame
rate performance of all the rendering methods. Note that
the redness of the particles increases the further away from
the center they get. This was intended to better simulate a
flame, however it is not always apparent in other rendering
methods seen later.

Figure 5 shows the same system size rendered using
the CUDA-OpenGL interoperability functionality. A wind
component has also been added. The simulation is almost
identical to the non-VBO rendered simulation, however one
big difference is that the frame rate has increased substan-
tially.

Figure 6 uses GL LINES to render the fire instead of nor-

Figure 3: Example of using CURAND to randomize the colour and decay rate of a created particle

Figure 5: A simulation of the 128x128 fire particle system
(16384 particles) rendered using CUDA-OpenGL interoper-
ability (vertex and colour arrays)

mal points. This simulation was also rendered on the GPU
using CUDA-OpenGL interoperability. In this simulation
the flame appears to be slightly larger - this is due to the lines
not taking into account the alpha component of the colour.
The particles are showing up fully throughout their entire
life when they should be fading away. The lines also ac-
centuate the red colour a lot more as the outer red lines are
drawn over the top of the inner yellow and white lines.

Figure 7 uses GL TRIANGLES instead of lines or points.
While the colour progression looks much better than the
lines or points, the shape of the flame is rather ”pointy”
(similar to Figure 6). Because this simulation is rendered
using polygons, GL BLEND has been enabled, however this
means that the red colour on the outer particles is almost lost
as there are far more lighter particles on the inside of the fire
which are blended through. It is also worth noting that this
simulation suffered a significant frame rate drop when com-

Figure 6: A simulation of the 128x128 fire particle system
(16384 particles) rendered using VBOs and GL LINES

pared to Figure 4 and Figure 6.
Figure 8 uses a texture mapped onto GL QUADS to rep-

resent each particle. This simulation produced the best visu-
alization for a flame but at the cost of the lowest frame rate
for all the 128x128 particle systems.

Figure 9 shows the simulation of the larger 256x256 par-
ticle system with added wind effect rendered using points.
The system is much more dense which is good visually, but
the system suffers from a dramatic frame rate drop when
compared to the 128 x 128 system. Using more advanced
rendering methods other than GL POINTS such as triangles
or textures would reduce the frame rate to unmanageable
levels.

Finally, Figure 10 shows the simulation of the largest sys-
tem tested, 512x512 or 262144 particles. At this point, the
frame rate is low enough to the point that it has started af-
fecting the kernel executions. As a result, ”fluctuations” oc-
cur in the flame as many more particles die in between exe-

Figure 7: A simulation of the 128x128 fire particle system
(16384 particles) rendered using VBOs and GL TRIAN-
GLES

Figure 8: A simulation of the 128x128 fire particle system
(16384 particles) rendered using texture maps

Figure 9: A simulation of the 256x256 fire particle system
(65536 particles) rendered using GL POINTS

Figure 10: A simulation of the 512x512 fire particle system
(262144 particles) rendered using GL POINTS

cutions of the kernel than would otherwise be expected.

4 Discussion
The performance of the system was monitored in various

ways. Firstly, a comparison was made between the perfor-
mance of sequential and parallel versions of the same up-
date kernel. Performance was timed over 10,000 kernel ex-
ecutions and a mean kernel execution time was calculated.
Secondly, performance was monitored for differences when
using CUDA-OpenGL interoperability to render the simu-
lation on the GPU. Additionally, the average frame rate of
the simulation was also monitored and displayed in real-
time above the fire rendering. As mentioned previously, the
simulations were carried out a single NVidia Quadro 4000
graphics card.

No. of Seq. time Para. time
Particles seconds seconds
64x64 0.0009 ca. 0.00001

128x128 0.0036 ca. 0.00001
256x256 0.0143 ca. 0.00001
512x512 0.0557 ca. 0.00002

Table 1: Performance results of a particle system of various
sizes simulated sequentially and in parallel

Table 1 shows the performance results of a sequential ker-
nel vs a parallel kernel execution. It is important to first note
that the parallel execution speeds of the 64x64, 128x128 and
256x256 systems are not identical. The execution speeds of
all three kernels were too fast for the precision used by the
timer. This is mainly due to the simplicity of the particle
code, which can be easily scaled and made far more compli-
cated in future work. Nevertheless the parallel versions are
clearly performing far better than their sequential counter-
parts.

An interesting point that was found was that if the par-
allel system synchronized its threads before the next kernel
execution (using cudaThreadSynchronize) the parallel ex-
ecution time was actually slower than the sequential time.
This was not an issue with this simulation as thread syn-
chronization was not needed, but in more complex systems
which require it this might become a problem. Using VBOs
and CUDA-OpenGL interoperability did not affect the ex-
ecution time of the kernel whatsoever, simply because both
methods used exactly the same kernel. However, there was a
slight increase (0.0001 secs) in all update times when using
the VBOs due to the graphics resource and pointer mapping
and unmapping needed before and after the kernel execu-
tion. This extra time was negligible, however.

Table 2 compares the frame rates of both rendering meth-
ods on various particle system sizes. All renderings were
done using OpenGL points. In all instances, rendering us-

No. of Avg. Norm FR Avg. VBO FR
Particles frames / sec frames / sec
64x64 220.3 247.8

128x128 63.7 69.7
256x256 13.9 16.7
512x512 2.4 2.6

Table 2: Average frame rates of a particle system rendered
normally vs using VBOs.

ing VBOs and CUDA-OpenGL interoperability resulted in
an improved frame rate of around ten percent. Considering
there was no difference visually between the two methods,
rendering using VBOs is clearly a better choice. It is im-
portant to note that NVidia Quadro cards can allow for even
more performance improvements when used in a multi-GPU
setup. A Quadro card performs OpenGL interoperability
better than NVidia GeForce or Tesla cards. Therefore, in a
multi-GPU set up it is preferential to use the Quadro card
purely for rendering the simulation while using the other
card or cards to perform the parallel computation parts of
the program. Although this paper did not use a multi-GPU
setup, it would be interesting to try this setup in the future.

Render Method Avg. Frame Rate
seconds

Points 69.7
Lines 64.9

Triangles 39.3
Textures 31.0

Table 3: Average frame rates of a 128x128 particle system
using different rendering methods.

Table 3 shows the average frame rates of each different
rendering method using a 128x128 size particle system. In
general, a more realistic looking rendering method resulted
in a lower frame rate, which was to be expected. All meth-
ods resulted in an acceptable frame rate (anything below 20-
25 frames per second becomes undesirable very quickly). A
128x128 sized particle system seems to be the optimal size
at this point, because even using simple OpenGL points the
frame rate drops to at most 16.7 frames per second and using
a more complicated render method would lower this even
further.

5 Conclusions
A simple particle system model was used to simulate a

dynamical fire or flame, using OpenGL to visualize the sim-
ulation in real-time. Significant performance increases were
observed when a CUDA parallel approach to the system was
used, as opposed to a traditional sequential model. Sev-
eral rendering techniques for the fire were investigated, each

with certain trade-offs in performance and visual aspects.
We have presented screenshots showing the major effects
and tradeoffs that we found and explored.

Using simple points to represent particles resulted in fast
frame rates, while using textures simulated a more visually
appealing flame at the cost of a slower frame rate. Us-
ing CUDA-OpenGL interoperability increased the potential
rendering performance across all rendering techniques by
around 10 percent (measured in average frames per second).
It was also found the ideal particle system size for the ren-
dering techniques and kernels used was 128x128 or 16384
particles, as it provided the best trade-off between speed and
visual appeal.

Future work in this area would be very interesting, hav-
ing a look at other more complicated rendering techniques,
as well as more complex kernels in order to simulate a more
accurate and realistic fire or flame. As mentioned in Sec-
tion 4, running this simulation on a multi-GPU set up to take
advantage of the superior Quadro CUDA-OpenGL interop-
erability should also be possible in the near future. Other
complex natural phenomena such as fluids have also sim-
ulated using particle systems, and this is also an area that
could benefit from the techniques described here. Fountains
or other structured particle model systems could be imple-
mented using these techniques. More generally, visualising
and modelling other plasma based systems is potentially of
interest for both the gaming and movie industries where re-
alistic physically based models of these complex systems
can aid in attaining enhanced realism.

References
[1] Balci, M., Faroosh, H.: Real-time 3d fire simulation

using a spring-mass model. In: Proc. 12th Int. Multi-
Media Modelling Conference. pp. 108–115. Beijing,
China (2006)

[2] Beaudoin, P., Paquet, S., Poulin, P.: Realistic and con-
trollable fire simulation. In: Proc. Graphics Interface
(GRIN’01). Toronto, Ontario, Canada (2001)

[3] Foley, J.D., van Dam, A., Feiner, S.K., Hughes,
J.F.: Computer graphics: principles and practice (2nd
ed.). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1990)

[4] Hawick, K.A., Playne, D.P., Johnson, M.G.B.: Numer-
ical precision and benchmarking very-high-order inte-
gration of particle dynamics on gpu accelerators. In:
Proc. International Conference on Computer Design
(CDES’11). pp. 83–89. No. CDE4469, CSREA, Las
Vegas, USA (18-21 July 2011)

[5] Hearn, D., Baker, M.P.: Computer Graphics with
OpenGL. No. ISBN 0-13-015390-7, Pearson Prentice
Hall, third edition edn. (2004)

[6] Horvath, C., Geiger, W.: Directable, high-resolution
simulation of fire on the gpu. ACM Trans. on Graphics

28(3), 41–1–8 (August 2009)
[7] Kolb, A., Latta, L., Rezk-Salama, C.: Hardware-based

simulation and collision detection for large particle
systems. In: Proc. Graphics Hardware (2004)

[8] Latta, L.: Building a million particle system. In: Game
Developers Conference (2007)

[9] Lee, H., Kim, L., Meyer, M., Desbrun, M.: Meshes
on fire. In: EG Workshop on Computer Animation and
Simulation. pp. 75–84 (2001)

[10] Leist, A., Playne, D.P., Hawick, K.A.: Exploiting
Graphical Processing Units for Data-Parallel Scientific
Applications. Concurrency and Computation: Prac-
tice and Experience 21(18), 2400–2437 (25 December
2009), CSTN-065

[11] NVIDIA R© Corporation: CUDATM 3.1 Programming
Guide (2010), http://www.nvidia.com/, last
accessed September 2010

[12] Peyret, R., Taylor, T.D.: Computational Methods for
Fluid Flow. Springer Series in Computational Physics,
Springer-Verlag (1983)

[13] Playne, D.P., Hawick, K.A.: Classical mechanical
hard-core particles simulated in a rigid enclosure us-
ing multi-gpu systems. In: Proc. Int. Conf. on Paral-
lel and Distributed Processing Techniques and Appli-
cations (PDPTA’12). pp. 76–82. CSREA, Las Vegas,
USA (16-19 July 2012)

[14] Playne, D.P., Johnson, M.G.B., Hawick, K.A.: Bench-
marking GPU Devices with N-Body Simulations. In:
Proc. 2009 International Conference on Computer De-
sign (CDES 09) July, Las Vegas, USA. pp. 150–156.
WorldComp, Las Vegas, USA (13-16 July 2009)

[15] Wei, W., Huang, Y.: Real-time flame rendering with
gpu and cuda. Int. J. Info. Tech and Computer Science
1, 40–46 (2011)

[16] Wei, X., Li, W., Mueller, K., Kaufman, A.: Simulating
fire with texture splats. In: Proc. IEEE Conf. on Visu-
alization (VIS’02). Bostan, MA., USA (27 October - 1
November 2002)

[17] Xue, H., Ho, J.C., Cheng, Y.M.: Comparison of dif-
ferent combustion models in enclosure fire simulation.
Fire Safety Journal 36, 37–54 (2001)

[18] Zhang, F., Hu, L., Wu, J., Shen, X.: A sph-based
method for interactive fluids simulation on the multi-
gpu. In: Proc. ACM SIGGRAPH Int. Conf on Vir-
tual Teality Continuum and its applications in Indus-
try (VRCAI’11). Hong Kong, China (11-12 December
2011)

[19] Zhaohui, W., Zhong, Z., Wei, W.: Realistic fire simula-
tion: A survey. In: Proc. 12th Int. Conf. On Computer-
Aided Design and Computer Graphics (CAD/Graphics
11). pp. 333–340. Jinan, China (September 2011)

[20] Zhou, J., Chang, Y., Wu, E.: Realistic, fast, and con-
trollable simulation of solid combustion. Computer
Animation and Virtual Worlds 22, 125–132 (2011)

