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Abstract – Like ordinary symmetries, anti-symmetries are 
defined by relations between function cofactors. For ordinary 
symmetries, two cofactors must be equal, for anti-symmetries two 
cofactors must be complements of one another. This paper shows 
that anti-symmetries can be used to improve simulation 
performance in the same manner as ordinary symmetries. 
Detailed detection, clustering and simulation algorithms are 
given along with a set of experimental results to demonstrate the 
effectiveness of the algorithms. These results show that anti-
symmetries can be just as effective as ordinary symmetries in 
enhancing simulation performance. In fact, in some cases, anti-
symmetries give better performance than ordinary symmetries. 

1 Introduction 
Detecting function symmetries has proven to be useful in many 

areas of electronic design automation [1-7]. Many symmetry 
detection algorithms have been created, and permutations are the 
basis of virtually all of these algorithms [8-10]. 

The most important types of symmetry are total symmetry and 
partial symmetry. The inputs of a totally symmetric function can be 
rearranged arbitrarily, while a partially symmetric function has 
subsets of inputs that can be rearranged arbitrarily. Examples of 
totally symmetric and partially symmetric functions are abcd  and 

abc d  (where + represents OR and multiplication represents 
AND). There are many other types of permutation-based symmetries 
(see [9, 11]) which are often lumped together and called weak 
symmetries, But in this paper we will be concerned only with total 
and partial symmetry. 

Total and partial symmetries are common in the circuits we 
encounter in practice, and can be detected by examining pairs of 
variables. Two variables constitute a symmetric variable pair if they 
can be exchanged without altering the output of the function. 
Symmetric variable pairs are transitive. Thus, if ( , )a b  and ( , )b c  

are symmetric variable pairs, then so is ( , )a c . A function is totally 

symmetric if and only if every pair of input variables is a symmetric 
variable pair. A function is partially symmetric in the variables 

1,..., kx x  if ( , )i jx x  is a symmetric variable pair for all i  and j , 

1 i j k   . 

The symmetric variable pairs of a function f  can be detected 

using the cofactors of f . If f  is an n-input Boolean function with 

input variables 1,..., nx x . The cofactors of f  with respect to 1x  are 

the functions 0 ...x xf  and 1 ...x xf , which are computed by setting the 

variable 1x  to 0 and then to 1. The exact procedure for computing a 

cofactor depends on the representation of the function. Cofactors can 
be computed with respect to a single variable or with respect to a set 
of variables. When there is no opportunity for confusion, we omit the 
x’s and simply place the 1’s and 0’s in the subscripts. In symmetry 
detection, it is common to compute cofactors with respect to pairs of 
variables. There are four such cofactors 00 ,f  01f , 10f , and 11.f  

Different relations between these cofactors can be used to define 
different types of symmetry [12, 13]. 

One of the latest developments in symmetry detection is matrix-
based symmetry [7]. All permutations can be specified as non-
singular matrices, but not all non-singular matrices can be specified 
as permutations. Thus matrix-based symmetry is an extension of 
permutation-based symmetry. Conjugate symmetry is one form of 
matrix-based symmetry, some forms of which can be detected using 
cofactor-relations. 

The algorithms discussed in this paper are based on cofactor 
relations, the two most important of which are the classical relations 
and the anti-relations [14].  

2 Classical Symmetry 
The classical relations are defined in terms of the two-variable 

cofactors of a function, 00f , 01f , 10f , and 11f . There are six 

possible relations, each of which represents a certain type of 
symmetry. These relations are given in Figure 1, along with their 
respective symmetry types. 

In a sense, the only relation that truly represents symmetry is 

01 10f f , ordinary symmetry. The other relations represent variable 

pairs that are not symmetric, but can be “corrected” to become 
symmetric. Our algorithm tests for all six relations to detect 
symmetric variable pairs. When a symmetric variable pair is detected, 
it is “corrected,” if necessary, and combined into a single clustered 
variable. In fact, we test only for ordinary symmetry. The other five 
relations are detected by transforming the state space of the function, 
and then testing for ordinary symmetry. (See Section 4 for details on 
the state space transformations.) Our classical symmetry algorithms 
are described in [7], but for completeness, we repeat some of the 
details here. 

 
Relation Symmetry Type 

01 10f f  Ordinary 

00 11f f  Multi-Phase 

01 11f f  Single-Variable A 

10 11f f  Single-Variable B 

10 00f f  Multi-Phase Single-Variable A 

01 00f f  Multi-Phase Single-Variable B 

Figure 1. Cofactor Relations. 

The multi-phase relation, 00 11f f , indicates that the function is 

symmetric, but one variable is inverted with respect to the other. It is 
possible to treat the multi-phase relation as ordinary symmetry after 
performing a state-space transformation and adding a NOT gate to 
one of the inputs. 

The single-variable relations represent two types of conjugate 
symmetry. Not all conjugate symmetries manifest themselves as 
single-variable symmetries, but the mechanisms used to detect single-
variable symmetries can be extended to detect most conjugate 
symmetries. As with multi-phase symmetries, it is possible to treat 



 

  

conjugate symmetries as if they were ordinary symmetries using a 
state-space transformation and a collection of XOR gates on the 
function inputs. The XOR gates compute a matrix transformation of 
the inputs prior to passing the inputs into the function. The input 
transformation is similar to the first layer of logic in some forms of 
three-level minimization [16, 17]. 

The multi-phase single-variable relations represent the 
combination of conjugate symmetry and multi-phase symmetry. 
These types of symmetry can be handled by combining the 
techniques for multi-phase and conjugate symmetry. 

The result of symmetry detection is a multi-dimensional state 
machine which represents the state of a Boolean function. Each 
dimension of the state machine represents a cluster of symmetric 
variables. It is convenient to think of the multi-dimensional machine 
as an extended type of hypercube with several states along each 
dimension. For a simple, non-clustered input variable, the dimension 
will have two states representing input values of zero and one. For a 
cluster of n  variables, the dimension will have 1n   states with the 
state representing the number of one-inputs in the cluster of n 
variables. Figure 2 illustrates a function with a simple variable A, and 
a clustered variable containing three simple variables, B, C, and D. 

Another way to view the n-dimensions of a gate state-machine is 
as a collection of n input-ports. For ordinary and multi-phase 
symmetries, there is a one-to one mapping between input ports and 
clusters of function inputs. For conjugate symmetry, an event on an 
input can generate events on many different ports. This technique is 
used to compute the XOR functions on the inputs. We will explain 
this further in Section 4. 

 

 
Figure 2. A Gate State-Machine. 

3 Anti-Symmetry 
Anti-symmetry is known by several other names, including skew 

symmetry and negative symmetry. Anti-symmetry is based on the 
observation that relations of the form 01 10f f  can be written 

01 10 0f f  , where   represents the XOR operation and 0  

represents the constant zero function. If we reformulate our six 
relations and replace the constant zero with the constant one function, 

1 , we obtain the six anti-symmetry relations given in Figure 3. Note 

that if 01 10 1f f  , then 01f  and 10f  are inverses of one 

another. 
As with multi-phase and conjugate symmetries, anti-symmetries 

can be transformed into ordinary symmetries using state-space 
transformations. These transformations are easier to visualize if we 
place the four cofactors 00f , 01f , 10f  and 11f  into a hyper-linear 

structure as shown in Figure 4. To convert the anti-symmetry into an 
ordinary symmetry, we invert one of the grayed cofactors. 

There are several different state-space transformations that will 
transform an anti-symmetry into an ordinary symmetry, each one of 
which requires a different corrective action in the final function. The 
naïve transformation shown in Figure 4 results in a complex 
corrective action. Let us suppose that an ordinary anti-symmetry is 
found between the variables are a  and b  and that 01f  has been 

complemented to transform the symmetry into a classical symmetry. 
This means that when the transformed function is evaluated, the 
output will be inverted whenever 0a   and 1b  . The corrective 

function shown in Figure 5 is applied during the simulation process 
to produce the correct function output.   

 

Relation Anti-Symmetry Type 

01 10 1f f   Ordinary 

00 11 1f f   Multi-Phase 

01 11 1f f   Single-Variable A 

10 11 1f f   Single-Variable B 

10 00 1f f   Multi-Phase Single-Variable A 

01 00 1f f   Multi-Phase Single-Variable B 

Figure 3. The Anti-Symmetry Relations. 
 

       
Figure 4. Naïve Corrective Actions. 

 

 

Figure 5. A Naïve Corrective Function. 
 

To simplify the corrective procedure, we use an over-kill 
method when transforming the function. Instead of just 
complementing 01f  (or 10f ) we also complement 11f , as shown in 

Figure 6. This means that the output of the transformed function is 
inverted whenever 1b   (or 1a  ). This eliminates the AND and 
NOT gates, as shown in Figure 7. Regardless of how many anti-
symmetric variable pairs are detected for a function, only a single 
XOR gate is required on the output. This XOR gate must have one 
input for each detected anti-symmetric pair. What is more, in Section 
5 we will show how to get the XOR function for free. 

 

       
 

Figure 6. Sophisticated Corrective Actions. 
 

 

Figure 7. A Simple Corrective Function. 

4 Symmetry Detection 
There are several problems in determining the inputs of the  

corrective XOR gate. When combining anti-symmetry with conjugate 
symmetry, adding inputs to the correcting XOR becomes more 
complicated. We need to determine what should happen when a 
variable is added twice to the correcting XOR and we need to 



 

  

determine how to detect anti-symmetry with respect to clustered 
variables. 

In hyperlinear structures ordinary symmetries can be detected by 
examining cofactors along the anti-diagonals. For there to be an 
ordinary symmetry in Figure 2, node (1,0) must equal (0,1), (2,0) 
must equal (1,1) and (3,0) must equal (2,1). If there are more than 
two dimensions, the diagonal tests must be repeated for each of the 
planes containing the two variables. There is no required relationship 
between separate diagonals or between separate planes. 

Multi-phase symmetry can be detected by reversing the structure 
along one dimension and then testing for ordinary symmetry. 
Conjugate symmetry can be detected by reversing the odd numbered 
rows or the odd numbered columns, and then testing for ordinary 
symmetry. Combined multi-phase and conjugate symmetry is 
detected by reversing the even numbered rows and columns. The 
reversals can be done without altering the structure by indexing rows, 
columns, or the entire dimension in reverse order. 

Consider the left-most state machine of Figure 8. This state 
machine represents a 4-input function with two clustered variables. 
Assume that the inputs to the function are a, b, c, and d. and have 
been clustered into two pairs (a,b) and (c,d). The horizontal 
dimension of the state machine represents the state of the pair (a,b), 
while the vertical dimension represents the state of the pair (c,d). 

To detect symmetries between the clustered variables (a,b) and 
(c,d) it is necessary to examine the reverse diagonals. If the states 
with the same letter (L, F, and G) contain the same function, then the 
two clustered variables (a,b) and (c,d) are symmetric with one 
another. 

When an anti-symmetry exists between any two variables in two 
different clustered pairs, then an anti-symmetry exists between every 
pair of variables in the two of clustered variables. This implies that a 
function must alternate with its complement along each back-
diagonal. This condition is shown in the middle state-machine of 
Figure 8. (See [15] for more detail.) 

To convert the anti-symmetry into an ordinary symmetry, we 
invert the functions in the odd-numbered rows or the odd-numbered 
columns, as shown in the third state machine of Figure 8, in which 
the center column is inverted. This column is where the XOR of the 
individual variables in the clustered variable takes the value 1. Thus 
to correct the inverted column of Figure 8, we must add the variables 
a and b to the corrective XOR gate as shown in Figure 9. 

 

                         
Figure 8. Clustered-Variable State Machine. 

 

When the first anti-symmetry is detected, we add the XOR gate 
to the output of the function. We also create a list of the input 
variables that must be added to the inputs of the XOR gate. When 
new anti-symmetries are detected, new input variables are added to 
the list. 

It is sometimes necessary to add the same input to the list twice. 
Since the two inputs are identical, the pair will have either the value 
(0,0) or the value (1,1). In both cases, the XOR of the two values is 0, 
which will not change the value computed from the other inputs, so 
both inputs can be removed. Thus, when we add an input to the list, 
we check to see whether it is currently on the list. If so, then we 
remove it instead of adding it. 

When anti-symmetry is combined with conjugate symmetry we 
have an additional problem. The function has n inputs and the state-
machine has n input ports, but with conjugate symmetry, the mapping 

between inputs and ports is not one-to-one. Several function inputs 
can be directed into a single port, and a single function input can be 
directed into several ports. Since symmetry detection is done with 
respect to ports, and correction is done with respect to function 
inputs, it is necessary to maintain a mapping between the two. The 
symmetry detection algorithm maintains a n n matrix which shows 
the input-to-port mapping. When correction must be done with 
respect to a port, every function input directed into that port is added 
to (or removed from) the list of XOR inputs. 

 

 
Figure 11. A Clustered Corrective Function. 

 

To avoid conflicts with multi-phase and conjugate symmetry we 
take note of the reversing operations used during the detection 
process. To detect multi-phase symmetry it is necessary to reverse 
either all rows or all columns, but not both. If the rows have been 
reversed, then we transform the function by inverting the odd rows. If 
the columns have been reversed then we invert the odd columns. By 
placing the reversal and the inversion along the same dimension, we 
invert the same vertices that would have been inverted for an 
ordinary symmetry. 

Conjugate symmetry is handled the same way. If the odd rows 
are reversed, we invert the odd rows. If the odd columns are reversed, 
we invert the odd columns. The algorithm for symmetry detection is 
given in section A1, Figure A1. 

The algorithm for detecting symmetric variable pairs is virtually 
identical for ordinary symmetry and anti-symmetry. State-space 
transformations are used to combine ordinary and anti-symmetry with 
conjugate and multiphase symmetry. The basic algorithm is given in 
Section A1, Figure A2. This algorithm is executed twice, once for 
anti-symmetry and once for ordinary symmetry. 

Checking the back diagonals is done by selecting each diagonal, 
and obtaining a comparator function from the first element of the 
diagonal. The comparator function is compared to the function 
contained in the other vertices along the diagonal. For anti-symmetry, 
two comparator functions are obtained. The first is taken from the 
first vertex of the diagonal and the second is obtained by inverting the 
first function. These functions are compared in alternating fashion 
along the diagonal. The two algorithms are given in Section A1, 
Figures A3 and A4. 

5 Simulation Code 
Detecting the various types of symmetry is beneficial because 

our simulator can operate faster with symmetric functions. It is 
possible for the corrective functions to negate the benefit of detecting 
symmetries, but as we will show in this section, we can either 
eliminate, or greatly reduce the cost of these functions. 

Our simulator is a compiled simulator. Simulation detection is 
done during the code generation phase so that the cost of symmetry 
detection can be amortized over many simulations. When we report 
simulation times, these times do not include the cost of symmetry 
detection. Symmetry detection is extremely fast and takes less than a 
second for all but circuit c3540, which required 4 seconds. 

At run time, each function is implemented as an n-dimensional 
state machine, with the current state represented as an n-element 
vector. A simple input can either increment or decrement a single 
index by 1. If 1{ ,..., }kA a a  is a clustered variable, then each of the 

simple inputs, 1,..., ,ka a  operates on the same index. A separate 

index is used for each dimension. 



 

  

The operations performed with respect to simple variables 
alternate with one another. If the current action increments the index, 
then the next action decrements it, and vice versa. It is not necessary 
to maintain the value of the input as long as we know which 
operation to perform next. The NOT gates required by multi-phase 
symmetry can be eliminated as long as the increment/decrement state 
of the input is initialized properly. Thus we get multi-phase 
symmetry for free. 

Suppose we have two successive events for the same input. The 
first event will increment (or decrement) an index, and the second 
event will decrement (or increment) the same index, leaving the state 
unchanged. In effect we have computed the “exclusive or” of the two 
events. Since this exclusive-or is inherent in the state machine, we 
can get the XOR gates required by conjugate symmetry almost for 
free. 

The state of each input port is recorded as 1 or 1 , depending 
on whether the next operation is an increment or decrement. The data 
structure representing the event has an array of pointers to port states 
and port indices. When an event is executed, the port state is added to 
the port index and is then negated. The indices are used to determine 
whether the output of the function has changed. If the output changes 
then an event is queued. If an event is already queued for the output, 
the queued event is cancelled. 

Surprisingly enough, we can get the anti-symmetry correction 
essentially for free. Since events are processed one at a time, we need 
only concentrate on the effect of one event. Referring back to Figure 
7, suppose an event on input B causes the output of the transformed 
function to change. This change will propagate to the final XOR gate. 
The event on B will also propagate to the XOR gate, and the two 
events will cancel one another. Thus, if the output of the transformed 
function changes, no output event will be scheduled for the XOR 
gate. 

Now suppose that an event occurs on input B , but the output of 
the transformed function does not change. Because the output does 
not change, no event propagates into the XOR gate from the function 
output. However, the event on B  still propagates directly into the 
XOR gate, causing an event on the output of the XOR. 

The correcting XOR gate causes the usual effect of an event to 
be reversed. Events propagate when the output of a function does not 
change, and no event propagates when the output changes. To take 
advantage of this, we generate two sets of run-time routines. The first 
set contains a comparison of the form “if Old New then propagate” 
while the second contains a comparison of the form “if Old  New 
then propagate”. The first set is used for those inputs directed into the 
corrective XOR, the second is used for other inputs. These two 
routines are virtual functions that are called through function pointers 
determined at compile time. No run-time test is required to 
distinguish the two types of inputs. Effectively, the corrective XOR is 
obtained for free. 

Figures A5 and A6 give the run-time code for processing an 
event. Our simulator does not require gate simulation code, so the 
algorithms of Figures A5 and A6 represent virtually the entire run-
time code of our simulator. 

6 Experimental Results 
For our experimental results, we used the ISCAS 85 benchmarks 

[19]. Although these benchmarks are the de facto standard for 
determining simulation performance, they are specified at the gate 
level rather than at the Boolean function level. In this respect, they 
are not the most ideal vehicle for determining the effectiveness of our 
simulator, however they exhibit a wide variety of symmetries of all 
types. 

The main problem with gate-level circuits is that one must 
attempt to reconstruct the Boolean functions from which the circuit 

was created. This is a decidedly non-trivial task. As an approximation 
to this we first identify the fanout-free networks in the circuit. These 
networks represent single-output functions, but are only an 
approximation of the original Boolean functions. About 50% of the 
gates in each circuit end up as isolated gates. We do not apply our 
algorithm to isolated gates, because their symmetries are already 
well-known.  

A few circuits have very large fanout-free networks which 
represent several Boolean functions combined into a single network. 
To break these giant networks down into something resembling real 
Boolean functions we limit the number of inputs of a single network. 
We have experimented with different limits and have found that a 
limit of eight tends to expose the most symmetries. The limit is only 
approximate. It is possible for an individual partition to have more 
than eight inputs. 

Our first experiment was to determine the number of anti-
symmetries that appear in these circuits. Figure 12 gives the number 
of anti-symmetries found in each circuit when no other types of 
symmetries are detected. The numbers are counts of anti-symmetric 
variable pairs. These are further broken down into ordinary anti-
symmetries (Ord.), multi-phase anti-symmetries (M.P.), conjugate 
anti-symmetries (Conj.), and combined multi-phase/conjugate 
symmetries (C.M.P). Every one of the ten benchmarks contains some 
anti-symmetries. The total ranges from a low of 10 for c432, to a high 
of 944 for c6288. This experiment verifies that anti-symmetries are 
indeed prevalent enough to be worth pursuing. If we examine the 
breakdown of sub-types, it is clear that it is necessary to combine 
anti-symmetry with multi-phase and conjugate symmetry. Note, for 
example, benchmark c499, which has no ordinary anti-symmetries, 
but has 104 symmetric pairs of other types. 

To compare the prevalence of anti-symmetries with that of 
classical symmetries we determined the number of classical 
symmetries in each of the four categories. The results of this 
experiment are given in Figure 13. For most of the circuits there are 
significantly more classical symmetries than anti-symmetries, but 
there are two notable exceptions. Both c1355 and c6288, have more 
anti-symmetries than classical symmetries. Clearly we should detect 
anti-symmetries to handle these circuits effectively. 

When combining the detection of anti-symmetries with that of 
classical symmetries, we encounter the phenomenon known as 
“symmetry masking.” This occurs when the detection of one type of 
symmetric pair prevents the detection of a different type. This is not 
necessarily a problem, since the two symmetries are usually with 
respect to the same pair of variables. Nevertheless, it is not possible 
to add the results of Figure 12 to those of Figure 13 to determine the 
total number of symmetric pairs. 

To determine the effect of symmetry detection on simulation 
performance, we compared four different simulations for each 
benchmark circuit. The four simulations are with no symmetry 
detection, with anti-symmetry alone, with classical symmetry alone, 
and with combined classical and anti-symmetry. Each simulation was 
performed on a dedicated 3.06 Ghz Xeon processor with 2GB of 233 
Mhz memory. The results, which are shown in Figure 15, are in 
seconds of execution time for 500,000 input vectors. 

The compile step, which includes all symmetry detection, took 
less than a second for each circuit, regardless of the types of 
symmetries detected. The run times given in Figure 15 do not include 
the time required to detect symmetry. 

 



 

  

Ckt Ord. M.P. Conj. C.M.P. Total 
c432 10 0 0 0 10 
c499 0 40 64 0 104 
c880 5 12 18 2 37 
c1355 104 104 0 0 208 
c1908 14 2 99 0 115 
c2670 14 11 72 2 99 
c3540 173 11 52 9 245 
c5315 29 46 139 22 236 
c6288 480 464 0 0 944 
c7552 53 126 310 44 533 

Figure 12. Anti-Symmetries 

Ckt Ord. M.P. Conj. C.M.P. Total 
c432 47 45 9 2 103 
c499 110 24 40 0 174 
c880 133 4 13 2 152 
c1355 14 24 0 104 142 
c1908 138 4 4 0 146 
c2670 279 10 11 58 358 
c3540 198 169 74 23 464 
c5315 298 12 120 239 669 
c6288 0 0 480 0 480 
c7552 710 16 108 119 953 

Figure 13. Classical Symmetries. 
 

Ckt Classical Anti Total 
c432 103 0 103 
c499 174 0 174 
c880 152 19 171 
c1355 142 104 246 
c1908 146 0 146 
c2670 357 34 357 
c3540 463 5 468 
c5315 664 32 696 
c6288 480 464 944 
c7552 951 99 1050 

Figure 14. Classical and Anti-Symmetries 

Ckt None Anti Classical Combined 
c432 2.54 2.52 2.35 2.28 
c499 3.75 3.43 3.20 3.20 
c880 5.54 5.49 4.85 4.78 
c1355 5.30 4.91 5.17 5.08 
c1908 5.12 5.01 5.04 4.95 
c2670 17.77 17.57 17.06 16.97 
c3540 12.37 12.20 11.18 11.20 
c5315 26.71 26.23 24.11 24.12 
c6288 18.81 17.29 19.30 18.47 
c7552 31.38 30.73 29.09 29.12 

Figure 15. Running Times. 

Several conclusions can be drawn from Figure 15. First, using 
either classical symmetries or anti-symmetries in isolation gives a 
substantial benefit. Second, combining the two gives improved 
performance in some cases, and roughly the same performance as 
Classical symmetries in other cases. When detecting symmetries, 
each variable pair can be assigned at most one type of symmetry. 
However for many variable pairs, there is a choice of which type of 
symmetry to assign. In this respect, the simulator is sensitive to the 
order in which symmetries are detected. For c6288, anti-symmetries 
give better performance than either classical symmetries or combined 

anti and classical symmetries. We corrected this problem by changing 
the order in which symmetries were detected. For Figure 15, for each 
pair of variables, we first detected classical symmetries and then anti-
symmetries. We later changed the order to intersperse the detection 
of classical and anti-symmetries. This caused the anti-ordinary and 
anti-multiphase symmetries to be detected before the classical single-
variable symmetries. This reduced the “combined” time for c6288 to 
roughly the same as that for anti-symmetries. 

7 Conclusion 
Detecting and using anti-symmetries can be of benefit for 

simulation performance. For all of our circuits, simulation detection 
was essentially instantaneous, even after adding the code for 
detecting anti-symmetries, so the cost of detecting anti-symmetries is 
worth the benefit. This is especially true because our simulator is a 
compiled simulator, and the cost of symmetry detection can be 
amortized over many hours of simulation. Furthermore, the ability to 
pick and choose among several different types of symmetry permits 
us to weigh several different detection options against one another 
and pick the best. Again, the cost of doing this can be amortized over 
many simulations. Even in a situation where the circuit is undergoing 
rapid changes, the cost of detecting symmetry is barely noticeable 
and will not substantially affect compilation time. 

Because of these benefits, anti-symmetry detection is now a 
permanent part of our simulation engine. 
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A1. Appendix 1: Algorithms 
 

Compute 00f , 01f , 10f  and 11f  and place them in a 2-dimensional 

hypercube structure. 
Repeat Until No variables remain 

Test the back diagonals for ordinary symmetry 
Test the back diagonals for anti-symmetry 
If a symmetric variable pair is detected 
 Collapse the structure by combining vertices along diagonals. 
 Add any required corrective functions 
Endif 

 If uneliminated variables remain 
  Compute two new cofactors from each existing cofactor 
  Double the size of the structure increasing dimensions by 1. 
  Insert the new cofactors into the new structure 
 Endif 

Figure A1. Symmetry Detection. 
 

Remove all State-Space transformations. 
Check Back diagonals, stop if symmetry is detected. 
Reverse Hyper Linear structure along one dimension 
Check Back diagonals, stop if symmetry is detected. 
Restore Hyper Linear Structure 
Reverse Odd Rows 
Check Back diagonals, stop if symmetry is detected. 
Restore Hyper Linear Structure 
Reverse Odd Columns 
Check Back diagonals, stop if symmetry is detected. 
Restore Hyper Linear Structure 
Reverse Hyper Linear structure along one dimension 
Reverse Odd Rows 
Check Back diagonals, stop if symmetry is detected. 
Restore Hyper Linear Structure 
Reverse Hyper Linear structure along one dimension 
Reverse Odd Columns 
Check Back diagonals, stop if symmetry is detected. 

Figure A2. General Symmetry Pair Detection. 

 
For each plane containing the pair to be tested 

For each diagonal 
Comparator = HeadVertex.function; 
For V = each vertex after the head vertex 
 If Comparator Not Equal V.function Then 
  Report Failure 
 Endif 
Endfor 

Endfor 
Endfor 
Report Success 

Figure A3. Ordinary Symmetry Diagonal Check. 
 

For each plane containing the pair to be tested 
For each diagonal 

Comparator = HeadVertex.function; 
AntiComparator = Negate(Comparator) 
Odd = 1; 
For V = each vertex after the head vertex 
 If Odd = 1 Then 

 If AntiComparator Not Equal V.function Then 
  Report Failure 
 Endif 
 Odd = 0; 

 Else 
 If Comparator Not Equal V.function Then 
  Report Failure 
 Endif 
 Odd = 1; 

 EndIf 
Endfor 

Endfor 
Endfor 
Report Success 

Figure A4. Anti-Symmetry Diagonal Check. 
 

GateState[i] = GateState[i] + PortState; 
PortState = -PortState; 
// note the contents of the Then and Else sections 
If Value[GateState] Not Equal OldGateState Then 
 If EventQueued Then 
  Dequeue Event 
 Else 
  Queue Event 
 Endif 
Else 
 Do Nothing; 
Endif 
OldGateState = Value[GateState]; 
GoTo NextEvent 

FigureA5. Ordinary Symmetry Event Processor. 
 
 



 

  

GateState[i] = GateState[i] + PortState; 
PortState = -PortState; 
// note the contents of the Then and Else sections 
If Value[GateState] Not Equal OldGateState Then 
 Do Nothing; 
Else 
 If EventQueued Then 
  Dequeue Event 

 Else 
  Queue Event 
 Endif 
Endif 
OldGateState = Value[GateState]; 
GoTo NextEvent 

Figure A6. Anti-Symmetry Event Processor. 
 

 


