

Anti-Symmetry and Logic Simulation
Peter M. Maurer

Dept. of Computer Science
Baylor University

Waco, Texas 76798-7356

Abstract – Like ordinary symmetries, anti-symmetries are
defined by relations between function cofactors. For ordinary
symmetries, two cofactors must be equal, for anti-symmetries two
cofactors must be complements of one another. This paper shows
that anti-symmetries can be used to improve simulation
performance in the same manner as ordinary symmetries.
Detailed detection, clustering and simulation algorithms are
given along with a set of experimental results to demonstrate the
effectiveness of the algorithms. These results show that anti-
symmetries can be just as effective as ordinary symmetries in
enhancing simulation performance. In fact, in some cases, anti-
symmetries give better performance than ordinary symmetries.

1 Introduction
Detecting function symmetries has proven to be useful in many

areas of electronic design automation [1-7]. Many symmetry
detection algorithms have been created, and permutations are the
basis of virtually all of these algorithms [8-10].

The most important types of symmetry are total symmetry and
partial symmetry. The inputs of a totally symmetric function can be
rearranged arbitrarily, while a partially symmetric function has
subsets of inputs that can be rearranged arbitrarily. Examples of
totally symmetric and partially symmetric functions are abcd and

abc d (where + represents OR and multiplication represents
AND). There are many other types of permutation-based symmetries
(see [9, 11]) which are often lumped together and called weak
symmetries, But in this paper we will be concerned only with total
and partial symmetry.

Total and partial symmetries are common in the circuits we
encounter in practice, and can be detected by examining pairs of
variables. Two variables constitute a symmetric variable pair if they
can be exchanged without altering the output of the function.
Symmetric variable pairs are transitive. Thus, if (,)a b and (,)b c

are symmetric variable pairs, then so is (,)a c . A function is totally

symmetric if and only if every pair of input variables is a symmetric
variable pair. A function is partially symmetric in the variables

1,..., kx x if (,)i jx x is a symmetric variable pair for all i and j ,

1 i j k   .

The symmetric variable pairs of a function f can be detected

using the cofactors of f . If f is an n-input Boolean function with

input variables 1,..., nx x . The cofactors of f with respect to 1x are

the functions 0 ...x xf and 1 ...x xf , which are computed by setting the

variable 1x to 0 and then to 1. The exact procedure for computing a

cofactor depends on the representation of the function. Cofactors can
be computed with respect to a single variable or with respect to a set
of variables. When there is no opportunity for confusion, we omit the
x’s and simply place the 1’s and 0’s in the subscripts. In symmetry
detection, it is common to compute cofactors with respect to pairs of
variables. There are four such cofactors 00 ,f 01f , 10f , and 11.f

Different relations between these cofactors can be used to define
different types of symmetry [12, 13].

One of the latest developments in symmetry detection is matrix-
based symmetry [7]. All permutations can be specified as non-
singular matrices, but not all non-singular matrices can be specified
as permutations. Thus matrix-based symmetry is an extension of
permutation-based symmetry. Conjugate symmetry is one form of
matrix-based symmetry, some forms of which can be detected using
cofactor-relations.

The algorithms discussed in this paper are based on cofactor
relations, the two most important of which are the classical relations
and the anti-relations [14].

2 Classical Symmetry
The classical relations are defined in terms of the two-variable

cofactors of a function, 00f , 01f , 10f , and 11f . There are six

possible relations, each of which represents a certain type of
symmetry. These relations are given in Figure 1, along with their
respective symmetry types.

In a sense, the only relation that truly represents symmetry is

01 10f f , ordinary symmetry. The other relations represent variable

pairs that are not symmetric, but can be “corrected” to become
symmetric. Our algorithm tests for all six relations to detect
symmetric variable pairs. When a symmetric variable pair is detected,
it is “corrected,” if necessary, and combined into a single clustered
variable. In fact, we test only for ordinary symmetry. The other five
relations are detected by transforming the state space of the function,
and then testing for ordinary symmetry. (See Section 4 for details on
the state space transformations.) Our classical symmetry algorithms
are described in [7], but for completeness, we repeat some of the
details here.

Relation Symmetry Type

01 10f f Ordinary

00 11f f Multi-Phase

01 11f f Single-Variable A

10 11f f Single-Variable B

10 00f f Multi-Phase Single-Variable A

01 00f f Multi-Phase Single-Variable B

Figure 1. Cofactor Relations.

The multi-phase relation, 00 11f f , indicates that the function is

symmetric, but one variable is inverted with respect to the other. It is
possible to treat the multi-phase relation as ordinary symmetry after
performing a state-space transformation and adding a NOT gate to
one of the inputs.

The single-variable relations represent two types of conjugate
symmetry. Not all conjugate symmetries manifest themselves as
single-variable symmetries, but the mechanisms used to detect single-
variable symmetries can be extended to detect most conjugate
symmetries. As with multi-phase symmetries, it is possible to treat

conjugate symmetries as if they were ordinary symmetries using a
state-space transformation and a collection of XOR gates on the
function inputs. The XOR gates compute a matrix transformation of
the inputs prior to passing the inputs into the function. The input
transformation is similar to the first layer of logic in some forms of
three-level minimization [16, 17].

The multi-phase single-variable relations represent the
combination of conjugate symmetry and multi-phase symmetry.
These types of symmetry can be handled by combining the
techniques for multi-phase and conjugate symmetry.

The result of symmetry detection is a multi-dimensional state
machine which represents the state of a Boolean function. Each
dimension of the state machine represents a cluster of symmetric
variables. It is convenient to think of the multi-dimensional machine
as an extended type of hypercube with several states along each
dimension. For a simple, non-clustered input variable, the dimension
will have two states representing input values of zero and one. For a
cluster of n variables, the dimension will have 1n  states with the
state representing the number of one-inputs in the cluster of n
variables. Figure 2 illustrates a function with a simple variable A, and
a clustered variable containing three simple variables, B, C, and D.

Another way to view the n-dimensions of a gate state-machine is
as a collection of n input-ports. For ordinary and multi-phase
symmetries, there is a one-to one mapping between input ports and
clusters of function inputs. For conjugate symmetry, an event on an
input can generate events on many different ports. This technique is
used to compute the XOR functions on the inputs. We will explain
this further in Section 4.

Figure 2. A Gate State-Machine.

3 Anti-Symmetry
Anti-symmetry is known by several other names, including skew

symmetry and negative symmetry. Anti-symmetry is based on the
observation that relations of the form 01 10f f can be written

01 10 0f f  , where  represents the XOR operation and 0

represents the constant zero function. If we reformulate our six
relations and replace the constant zero with the constant one function,

1 , we obtain the six anti-symmetry relations given in Figure 3. Note

that if 01 10 1f f  , then 01f and 10f are inverses of one

another.
As with multi-phase and conjugate symmetries, anti-symmetries

can be transformed into ordinary symmetries using state-space
transformations. These transformations are easier to visualize if we
place the four cofactors 00f , 01f , 10f and 11f into a hyper-linear

structure as shown in Figure 4. To convert the anti-symmetry into an
ordinary symmetry, we invert one of the grayed cofactors.

There are several different state-space transformations that will
transform an anti-symmetry into an ordinary symmetry, each one of
which requires a different corrective action in the final function. The
naïve transformation shown in Figure 4 results in a complex
corrective action. Let us suppose that an ordinary anti-symmetry is
found between the variables are a and b and that 01f has been

complemented to transform the symmetry into a classical symmetry.
This means that when the transformed function is evaluated, the
output will be inverted whenever 0a  and 1b  . The corrective

function shown in Figure 5 is applied during the simulation process
to produce the correct function output.

Relation Anti-Symmetry Type

01 10 1f f  Ordinary

00 11 1f f  Multi-Phase

01 11 1f f  Single-Variable A

10 11 1f f  Single-Variable B

10 00 1f f  Multi-Phase Single-Variable A

01 00 1f f  Multi-Phase Single-Variable B

Figure 3. The Anti-Symmetry Relations.

Figure 4. Naïve Corrective Actions.

Figure 5. A Naïve Corrective Function.

To simplify the corrective procedure, we use an over-kill
method when transforming the function. Instead of just
complementing 01f (or 10f) we also complement 11f , as shown in

Figure 6. This means that the output of the transformed function is
inverted whenever 1b  (or 1a ). This eliminates the AND and
NOT gates, as shown in Figure 7. Regardless of how many anti-
symmetric variable pairs are detected for a function, only a single
XOR gate is required on the output. This XOR gate must have one
input for each detected anti-symmetric pair. What is more, in Section
5 we will show how to get the XOR function for free.

Figure 6. Sophisticated Corrective Actions.

Figure 7. A Simple Corrective Function.

4 Symmetry Detection
There are several problems in determining the inputs of the

corrective XOR gate. When combining anti-symmetry with conjugate
symmetry, adding inputs to the correcting XOR becomes more
complicated. We need to determine what should happen when a
variable is added twice to the correcting XOR and we need to

determine how to detect anti-symmetry with respect to clustered
variables.

In hyperlinear structures ordinary symmetries can be detected by
examining cofactors along the anti-diagonals. For there to be an
ordinary symmetry in Figure 2, node (1,0) must equal (0,1), (2,0)
must equal (1,1) and (3,0) must equal (2,1). If there are more than
two dimensions, the diagonal tests must be repeated for each of the
planes containing the two variables. There is no required relationship
between separate diagonals or between separate planes.

Multi-phase symmetry can be detected by reversing the structure
along one dimension and then testing for ordinary symmetry.
Conjugate symmetry can be detected by reversing the odd numbered
rows or the odd numbered columns, and then testing for ordinary
symmetry. Combined multi-phase and conjugate symmetry is
detected by reversing the even numbered rows and columns. The
reversals can be done without altering the structure by indexing rows,
columns, or the entire dimension in reverse order.

Consider the left-most state machine of Figure 8. This state
machine represents a 4-input function with two clustered variables.
Assume that the inputs to the function are a, b, c, and d. and have
been clustered into two pairs (a,b) and (c,d). The horizontal
dimension of the state machine represents the state of the pair (a,b),
while the vertical dimension represents the state of the pair (c,d).

To detect symmetries between the clustered variables (a,b) and
(c,d) it is necessary to examine the reverse diagonals. If the states
with the same letter (L, F, and G) contain the same function, then the
two clustered variables (a,b) and (c,d) are symmetric with one
another.

When an anti-symmetry exists between any two variables in two
different clustered pairs, then an anti-symmetry exists between every
pair of variables in the two of clustered variables. This implies that a
function must alternate with its complement along each back-
diagonal. This condition is shown in the middle state-machine of
Figure 8. (See [15] for more detail.)

To convert the anti-symmetry into an ordinary symmetry, we
invert the functions in the odd-numbered rows or the odd-numbered
columns, as shown in the third state machine of Figure 8, in which
the center column is inverted. This column is where the XOR of the
individual variables in the clustered variable takes the value 1. Thus
to correct the inverted column of Figure 8, we must add the variables
a and b to the corrective XOR gate as shown in Figure 9.

Figure 8. Clustered-Variable State Machine.

When the first anti-symmetry is detected, we add the XOR gate
to the output of the function. We also create a list of the input
variables that must be added to the inputs of the XOR gate. When
new anti-symmetries are detected, new input variables are added to
the list.

It is sometimes necessary to add the same input to the list twice.
Since the two inputs are identical, the pair will have either the value
(0,0) or the value (1,1). In both cases, the XOR of the two values is 0,
which will not change the value computed from the other inputs, so
both inputs can be removed. Thus, when we add an input to the list,
we check to see whether it is currently on the list. If so, then we
remove it instead of adding it.

When anti-symmetry is combined with conjugate symmetry we
have an additional problem. The function has n inputs and the state-
machine has n input ports, but with conjugate symmetry, the mapping

between inputs and ports is not one-to-one. Several function inputs
can be directed into a single port, and a single function input can be
directed into several ports. Since symmetry detection is done with
respect to ports, and correction is done with respect to function
inputs, it is necessary to maintain a mapping between the two. The
symmetry detection algorithm maintains a n n matrix which shows
the input-to-port mapping. When correction must be done with
respect to a port, every function input directed into that port is added
to (or removed from) the list of XOR inputs.

Figure 11. A Clustered Corrective Function.

To avoid conflicts with multi-phase and conjugate symmetry we
take note of the reversing operations used during the detection
process. To detect multi-phase symmetry it is necessary to reverse
either all rows or all columns, but not both. If the rows have been
reversed, then we transform the function by inverting the odd rows. If
the columns have been reversed then we invert the odd columns. By
placing the reversal and the inversion along the same dimension, we
invert the same vertices that would have been inverted for an
ordinary symmetry.

Conjugate symmetry is handled the same way. If the odd rows
are reversed, we invert the odd rows. If the odd columns are reversed,
we invert the odd columns. The algorithm for symmetry detection is
given in section A1, Figure A1.

The algorithm for detecting symmetric variable pairs is virtually
identical for ordinary symmetry and anti-symmetry. State-space
transformations are used to combine ordinary and anti-symmetry with
conjugate and multiphase symmetry. The basic algorithm is given in
Section A1, Figure A2. This algorithm is executed twice, once for
anti-symmetry and once for ordinary symmetry.

Checking the back diagonals is done by selecting each diagonal,
and obtaining a comparator function from the first element of the
diagonal. The comparator function is compared to the function
contained in the other vertices along the diagonal. For anti-symmetry,
two comparator functions are obtained. The first is taken from the
first vertex of the diagonal and the second is obtained by inverting the
first function. These functions are compared in alternating fashion
along the diagonal. The two algorithms are given in Section A1,
Figures A3 and A4.

5 Simulation Code
Detecting the various types of symmetry is beneficial because

our simulator can operate faster with symmetric functions. It is
possible for the corrective functions to negate the benefit of detecting
symmetries, but as we will show in this section, we can either
eliminate, or greatly reduce the cost of these functions.

Our simulator is a compiled simulator. Simulation detection is
done during the code generation phase so that the cost of symmetry
detection can be amortized over many simulations. When we report
simulation times, these times do not include the cost of symmetry
detection. Symmetry detection is extremely fast and takes less than a
second for all but circuit c3540, which required 4 seconds.

At run time, each function is implemented as an n-dimensional
state machine, with the current state represented as an n-element
vector. A simple input can either increment or decrement a single
index by 1. If 1{ ,..., }kA a a is a clustered variable, then each of the

simple inputs, 1,..., ,ka a operates on the same index. A separate

index is used for each dimension.

The operations performed with respect to simple variables
alternate with one another. If the current action increments the index,
then the next action decrements it, and vice versa. It is not necessary
to maintain the value of the input as long as we know which
operation to perform next. The NOT gates required by multi-phase
symmetry can be eliminated as long as the increment/decrement state
of the input is initialized properly. Thus we get multi-phase
symmetry for free.

Suppose we have two successive events for the same input. The
first event will increment (or decrement) an index, and the second
event will decrement (or increment) the same index, leaving the state
unchanged. In effect we have computed the “exclusive or” of the two
events. Since this exclusive-or is inherent in the state machine, we
can get the XOR gates required by conjugate symmetry almost for
free.

The state of each input port is recorded as 1 or 1 , depending
on whether the next operation is an increment or decrement. The data
structure representing the event has an array of pointers to port states
and port indices. When an event is executed, the port state is added to
the port index and is then negated. The indices are used to determine
whether the output of the function has changed. If the output changes
then an event is queued. If an event is already queued for the output,
the queued event is cancelled.

Surprisingly enough, we can get the anti-symmetry correction
essentially for free. Since events are processed one at a time, we need
only concentrate on the effect of one event. Referring back to Figure
7, suppose an event on input B causes the output of the transformed
function to change. This change will propagate to the final XOR gate.
The event on B will also propagate to the XOR gate, and the two
events will cancel one another. Thus, if the output of the transformed
function changes, no output event will be scheduled for the XOR
gate.

Now suppose that an event occurs on input B , but the output of
the transformed function does not change. Because the output does
not change, no event propagates into the XOR gate from the function
output. However, the event on B still propagates directly into the
XOR gate, causing an event on the output of the XOR.

The correcting XOR gate causes the usual effect of an event to
be reversed. Events propagate when the output of a function does not
change, and no event propagates when the output changes. To take
advantage of this, we generate two sets of run-time routines. The first
set contains a comparison of the form “if Old New then propagate”
while the second contains a comparison of the form “if Old  New
then propagate”. The first set is used for those inputs directed into the
corrective XOR, the second is used for other inputs. These two
routines are virtual functions that are called through function pointers
determined at compile time. No run-time test is required to
distinguish the two types of inputs. Effectively, the corrective XOR is
obtained for free.

Figures A5 and A6 give the run-time code for processing an
event. Our simulator does not require gate simulation code, so the
algorithms of Figures A5 and A6 represent virtually the entire run-
time code of our simulator.

6 Experimental Results
For our experimental results, we used the ISCAS 85 benchmarks

[19]. Although these benchmarks are the de facto standard for
determining simulation performance, they are specified at the gate
level rather than at the Boolean function level. In this respect, they
are not the most ideal vehicle for determining the effectiveness of our
simulator, however they exhibit a wide variety of symmetries of all
types.

The main problem with gate-level circuits is that one must
attempt to reconstruct the Boolean functions from which the circuit

was created. This is a decidedly non-trivial task. As an approximation
to this we first identify the fanout-free networks in the circuit. These
networks represent single-output functions, but are only an
approximation of the original Boolean functions. About 50% of the
gates in each circuit end up as isolated gates. We do not apply our
algorithm to isolated gates, because their symmetries are already
well-known.

A few circuits have very large fanout-free networks which
represent several Boolean functions combined into a single network.
To break these giant networks down into something resembling real
Boolean functions we limit the number of inputs of a single network.
We have experimented with different limits and have found that a
limit of eight tends to expose the most symmetries. The limit is only
approximate. It is possible for an individual partition to have more
than eight inputs.

Our first experiment was to determine the number of anti-
symmetries that appear in these circuits. Figure 12 gives the number
of anti-symmetries found in each circuit when no other types of
symmetries are detected. The numbers are counts of anti-symmetric
variable pairs. These are further broken down into ordinary anti-
symmetries (Ord.), multi-phase anti-symmetries (M.P.), conjugate
anti-symmetries (Conj.), and combined multi-phase/conjugate
symmetries (C.M.P). Every one of the ten benchmarks contains some
anti-symmetries. The total ranges from a low of 10 for c432, to a high
of 944 for c6288. This experiment verifies that anti-symmetries are
indeed prevalent enough to be worth pursuing. If we examine the
breakdown of sub-types, it is clear that it is necessary to combine
anti-symmetry with multi-phase and conjugate symmetry. Note, for
example, benchmark c499, which has no ordinary anti-symmetries,
but has 104 symmetric pairs of other types.

To compare the prevalence of anti-symmetries with that of
classical symmetries we determined the number of classical
symmetries in each of the four categories. The results of this
experiment are given in Figure 13. For most of the circuits there are
significantly more classical symmetries than anti-symmetries, but
there are two notable exceptions. Both c1355 and c6288, have more
anti-symmetries than classical symmetries. Clearly we should detect
anti-symmetries to handle these circuits effectively.

When combining the detection of anti-symmetries with that of
classical symmetries, we encounter the phenomenon known as
“symmetry masking.” This occurs when the detection of one type of
symmetric pair prevents the detection of a different type. This is not
necessarily a problem, since the two symmetries are usually with
respect to the same pair of variables. Nevertheless, it is not possible
to add the results of Figure 12 to those of Figure 13 to determine the
total number of symmetric pairs.

To determine the effect of symmetry detection on simulation
performance, we compared four different simulations for each
benchmark circuit. The four simulations are with no symmetry
detection, with anti-symmetry alone, with classical symmetry alone,
and with combined classical and anti-symmetry. Each simulation was
performed on a dedicated 3.06 Ghz Xeon processor with 2GB of 233
Mhz memory. The results, which are shown in Figure 15, are in
seconds of execution time for 500,000 input vectors.

The compile step, which includes all symmetry detection, took
less than a second for each circuit, regardless of the types of
symmetries detected. The run times given in Figure 15 do not include
the time required to detect symmetry.

Ckt Ord. M.P. Conj. C.M.P. Total
c432 10 0 0 0 10
c499 0 40 64 0 104
c880 5 12 18 2 37
c1355 104 104 0 0 208
c1908 14 2 99 0 115
c2670 14 11 72 2 99
c3540 173 11 52 9 245
c5315 29 46 139 22 236
c6288 480 464 0 0 944
c7552 53 126 310 44 533

Figure 12. Anti-Symmetries

Ckt Ord. M.P. Conj. C.M.P. Total
c432 47 45 9 2 103
c499 110 24 40 0 174
c880 133 4 13 2 152
c1355 14 24 0 104 142
c1908 138 4 4 0 146
c2670 279 10 11 58 358
c3540 198 169 74 23 464
c5315 298 12 120 239 669
c6288 0 0 480 0 480
c7552 710 16 108 119 953

Figure 13. Classical Symmetries.

Ckt Classical Anti Total
c432 103 0 103
c499 174 0 174
c880 152 19 171
c1355 142 104 246
c1908 146 0 146
c2670 357 34 357
c3540 463 5 468
c5315 664 32 696
c6288 480 464 944
c7552 951 99 1050

Figure 14. Classical and Anti-Symmetries

Ckt None Anti Classical Combined
c432 2.54 2.52 2.35 2.28
c499 3.75 3.43 3.20 3.20
c880 5.54 5.49 4.85 4.78
c1355 5.30 4.91 5.17 5.08
c1908 5.12 5.01 5.04 4.95
c2670 17.77 17.57 17.06 16.97
c3540 12.37 12.20 11.18 11.20
c5315 26.71 26.23 24.11 24.12
c6288 18.81 17.29 19.30 18.47
c7552 31.38 30.73 29.09 29.12

Figure 15. Running Times.

Several conclusions can be drawn from Figure 15. First, using
either classical symmetries or anti-symmetries in isolation gives a
substantial benefit. Second, combining the two gives improved
performance in some cases, and roughly the same performance as
Classical symmetries in other cases. When detecting symmetries,
each variable pair can be assigned at most one type of symmetry.
However for many variable pairs, there is a choice of which type of
symmetry to assign. In this respect, the simulator is sensitive to the
order in which symmetries are detected. For c6288, anti-symmetries
give better performance than either classical symmetries or combined

anti and classical symmetries. We corrected this problem by changing
the order in which symmetries were detected. For Figure 15, for each
pair of variables, we first detected classical symmetries and then anti-
symmetries. We later changed the order to intersperse the detection
of classical and anti-symmetries. This caused the anti-ordinary and
anti-multiphase symmetries to be detected before the classical single-
variable symmetries. This reduced the “combined” time for c6288 to
roughly the same as that for anti-symmetries.

7 Conclusion
Detecting and using anti-symmetries can be of benefit for

simulation performance. For all of our circuits, simulation detection
was essentially instantaneous, even after adding the code for
detecting anti-symmetries, so the cost of detecting anti-symmetries is
worth the benefit. This is especially true because our simulator is a
compiled simulator, and the cost of symmetry detection can be
amortized over many hours of simulation. Furthermore, the ability to
pick and choose among several different types of symmetry permits
us to weigh several different detection options against one another
and pick the best. Again, the cost of doing this can be amortized over
many simulations. Even in a situation where the circuit is undergoing
rapid changes, the cost of detecting symmetry is barely noticeable
and will not substantially affect compilation time.

Because of these benefits, anti-symmetry detection is now a
permanent part of our simulation engine.

8 References
1. C. E. Shannon, "The synthesis of two-terminal switching circuits,"

Bell System Technical Journal, Vol.28, No.1, pp. 59-98, 1949.
2. C. R. Edwards and S. L. Hurst, "A digital synthesis procedure

under function symmetries and mapping methods," IEEE
Transactions on Computers, Vol.27, No.11, pp. 985-997, 1978.

3. D. Moller, P. Molitor, R. Drechsler and J. W. G. U. Frankfurt,
"Symmetry based variable ordering for ROBDDs," IFIP
Workshop on Logic and Architecture Synthesis, pp. 47-53, 1994.

4. C. Scholl, D. Moller, P. Molitor and R. Drechsler, "BDD
minimization using symmetries," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol.18, No.2, pp. 81-100, 1999.

5. T. Sasao, "A new expansion of symmetric functions and their
application to non-disjoint functional decompositions for LUT
type FPGAs," IEEE International Workshop on Logic Synthesis,
pp. 105-110, 2000.

6. V. N. Kravets and K. A. Sakallah, "Constructive library-aware
synthesis using symmetries," Design Automation and Test in
Europe, pp. 208-213, 2000.

7. P. M. Maurer, "Conjugate Symmetry," Formal Methods Syst. Des.,
Vol.38, No.3, pp. 263-288, 2011.

8. V. N. Kravets and K. A. Sakallah, "Generalized symmetries in
boolean functions," IEEE International Conference on Computer
Aided Design, pp. 526-532, 2000.

9. J. Mohnke, P. Molitor and S. Malik, "Limits of using signatures for
permutation independent Boolean comparison," Formal Methods
Syst. Des., Vol.21, No.2, pp. 167-191, 2002.

10. P. M. Maurer, "An application of group theory to the analysis of
symmetric gates," Department of Computer Science, Baylor
University, Waco, TX 76798, http://hdl.handle.net/2104/5438,
2009.

11. V. N. Kravets and K. A. Sakallah, "Generalized symmetries in
boolean functions," Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science, The
University of Michigan, Ann Arbor, MI 48109,
http://web.eecs.umich.edu/techreports/cse/00/CSE-TR-420-
00.pdf, 2002.

12. C. C. Tsai and M. Marek-Sadowska, "Generalized Reed-Muller
forms as a tool to detect symmetries," IEEE Transactions on
Computers, Vol.45, No.1, pp. 33-40, 1996.

13. M. Chrzanowska-Jeske, A. Mishchenko and J. R. Burch, "Linear
Cofactor Relationships in Boolean Functions," IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
Vol.25, No.6, pp. 1011-1023, 2006.

14. C. C. Tsai and M. Marek-Sadowska, "Boolean functions
classification via fixed polarity Reed-Muller forms," IEEE
Transactions on Computers, Vol.46, No.2, pp. 173-186, 1997.

15. P. M. Maurer, "Extending symmetric variable-pair transitivities
using state-space transformations," Department of Computer
Science, Baylor University, Waco, Texas 76798,
http://hdl.handle.net/2104/8185, 2011.

16. F. Luccio and L. Pagli, "On a new Boolean function with
applications," IEEE Transactions on Computers, Vol.48, No.3,
pp. 296-310, 1999.

17. A. Bernasconi, V. Ciriani, F. Luccio and L. Pagli, "Synthesis of
Autosymmetric Functions in a New Three-Level Form," Theory
of Computing Systems, Vol.42, No.4, pp. 450-464, 2008.

18. P. M. Maurer. Efficient event-driven simulation by exploiting the
output observability of gate clusters. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on Vol.22,
No.11, pp. 1471-1486.

19. F. Brglez, P. Pownall and R. Hum. Accelerated ATPG and fault
grading via testability analysis. Presented at Proceedings of IEEE
Int. Symposium on Circuits and Systems.

A1. Appendix 1: Algorithms

Compute 00f , 01f , 10f and 11f and place them in a 2-dimensional

hypercube structure.
Repeat Until No variables remain

Test the back diagonals for ordinary symmetry
Test the back diagonals for anti-symmetry
If a symmetric variable pair is detected
 Collapse the structure by combining vertices along diagonals.
 Add any required corrective functions
Endif

 If uneliminated variables remain
 Compute two new cofactors from each existing cofactor
 Double the size of the structure increasing dimensions by 1.
 Insert the new cofactors into the new structure
 Endif

Figure A1. Symmetry Detection.

Remove all State-Space transformations.
Check Back diagonals, stop if symmetry is detected.
Reverse Hyper Linear structure along one dimension
Check Back diagonals, stop if symmetry is detected.
Restore Hyper Linear Structure
Reverse Odd Rows
Check Back diagonals, stop if symmetry is detected.
Restore Hyper Linear Structure
Reverse Odd Columns
Check Back diagonals, stop if symmetry is detected.
Restore Hyper Linear Structure
Reverse Hyper Linear structure along one dimension
Reverse Odd Rows
Check Back diagonals, stop if symmetry is detected.
Restore Hyper Linear Structure
Reverse Hyper Linear structure along one dimension
Reverse Odd Columns
Check Back diagonals, stop if symmetry is detected.

Figure A2. General Symmetry Pair Detection.

For each plane containing the pair to be tested

For each diagonal
Comparator = HeadVertex.function;
For V = each vertex after the head vertex
 If Comparator Not Equal V.function Then
 Report Failure
 Endif
Endfor

Endfor
Endfor
Report Success

Figure A3. Ordinary Symmetry Diagonal Check.

For each plane containing the pair to be tested
For each diagonal

Comparator = HeadVertex.function;
AntiComparator = Negate(Comparator)
Odd = 1;
For V = each vertex after the head vertex
 If Odd = 1 Then

 If AntiComparator Not Equal V.function Then
 Report Failure
 Endif
 Odd = 0;

 Else
 If Comparator Not Equal V.function Then
 Report Failure
 Endif
 Odd = 1;

 EndIf
Endfor

Endfor
Endfor
Report Success

Figure A4. Anti-Symmetry Diagonal Check.

GateState[i] = GateState[i] + PortState;
PortState = -PortState;
// note the contents of the Then and Else sections
If Value[GateState] Not Equal OldGateState Then
 If EventQueued Then
 Dequeue Event
 Else
 Queue Event
 Endif
Else
 Do Nothing;
Endif
OldGateState = Value[GateState];
GoTo NextEvent

FigureA5. Ordinary Symmetry Event Processor.

GateState[i] = GateState[i] + PortState;
PortState = -PortState;
// note the contents of the Then and Else sections
If Value[GateState] Not Equal OldGateState Then
 Do Nothing;
Else
 If EventQueued Then
 Dequeue Event

 Else
 Queue Event
 Endif
Endif
OldGateState = Value[GateState];
GoTo NextEvent

Figure A6. Anti-Symmetry Event Processor.

