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Abstract— Autonomous hover control of a low-cost Micro
Air Vehicle (MAV) is considered in this paper. To avoid the
long-term drift during hover, the ‘snapshot’ idea is practiced,
where an image of the ground under the MAV is stored as
the reference image, and the following images are directly
compared with this reference image for estimating horizontal
position. For hover control, the measured position is used in
conjunction with the speed estimated from frame-to-frame
image motion. All computations are performed onboard
the vehicle and controller parameters are roughly tuned in
the experiments. Flight tests carried out both indoors and
outdoors prove the effectiveness of the proposed method for
the hover control of a MAV.

Keywords: Visual hover control, Micro aerial vehicle, snapshot,
long-term drift.

1. Introduction
Much work has been devoted to the control of Micro

Aerial Vehicles (MAV) using vision. Visual sensors are
small, light-weight and have a large field of view and
low power consumption, making them an ideal choice for
platforms with limited payload. Visual means can act as a
good complement to, if not replace, other navigation sensors
for improving their positioning accuracy and reliability.

The relative movement of a MAV to the environment can
be inferred from the frame-to-frame image motion known
as optic flow (OF). Using a ventral camera and assuming
altitude is available, horizontal velocity can be computed
from OF and fed back to provide a speed damping effect
during hover [1], [2]. If horizontal speed is provided by other
sensors, OF can be utilized to estimate height for maintaining
terrain-clearance [3]. OF is also used in other aspects like
landing [2] and obstacle avoidance [4], [5], by exploiting the
divergent flow pattern.

A big challenge for MAVs is that altitude (scale) informa-
tion of the vehicle should be determined during flight. GPS
signal coverage is easily lost in a confined space. A laser
range finder is too heavy and power-demanding for MAV.
Stereo vision can be used [6], however a minimum baseline
is required that makes miniaturization difficult. Besides,the
computational cost using two cameras is expected to be
much more than that using just one camera. An approach
in [7] makes an attempt to estimate height by doing texture
analysis on a downward-looking camera. This method is

proven to work only at low altitude environments with
rich texture. With a monocular camera installed on their
Pelican quadrotor, altitude is estimated [8] by combining
Simultaneous Localization and Mapping (SLAM) algorithm
with Inertial Measurement Unit (IMU). It is found in their
experiments that the map is lost from time to time, and
it takes a long time for the algorithm to recover. A short
hovering period has to be inserted every few seconds to
adjust the map with the gravity vector.

With only speed control using OF, the vehicle still drifts
away over time in hovering because there is no absolute
position feedback. A simple and unique pattern of known
geometry is painted on the ground in [9] so that the MAV
can identify the pattern to estimate altitude and horizontal
position at the same time for hover control. This technique
limits the operation of the vehicle to artificial environments
while we target natural landscapes. Using a global map, the
SLAM algorithm has the ability to correct for long-term drift
[8], [10]. However, to store and update the map, SLAM
is very time and memory consuming, usually requiring a
powerful processing unit that is not available on a low-cost
MAV.

The idea of visual snapshot is proposed in [11], where
during hover, an image of the ground is captured and
stored as the reference (snapshot) image, against which the
following images are compared to calculate the absolute
snapshot displacement for providing position feedback. In
this paper, onboard hover control using both optic flow
and snapshot algorithms is successfully implemented on an
AR Drone version 1.0 quadrotor, which is a very cost-
effective platform. Actual height is measured by the onboard
ultrasonic sensor. A number of flight tests in both indoor
and outdoor environments shows that the proposed approach
can effectively prevent long-term drift against external dis-
turbances.

2. Quadrotor Platform
2.1 Hardware and Software

The AR Drone 1.0 shown in Fig. 1 is a small battery-
powered quadrotor. The four rotors, driven through brushless
motors, control thrust by changing the Revolutions Per
Minute (RPM) of each rotor. Onboard sensors are: (a) an
ultrasonic sensor which has a range up to 6 m updating
at 25Hz; (b) Bosch BMA150 3-axis accelerometers; (c) a



2-axis IDG500 gyroscope measuring pitch and roll rate, a
single-axis EPSON XV3700 gyroscope for yaw rate [12].
As one of the mainboards, the navigation board has a 16-
bit 40MHz PIC micro-controller that samples the inertial
sensors at 200Hz. Another mainboard is the motherboard
which features a 468MHz ARM9 processor, a 128MB RAM
running at 200MHz and also a Wi-Fi chip. Multiple threads
are managed by a BusyBox v1.14.0 version of the Linux
operating system.

Fig. 1: Parrot ARDrone 1.0 with indoor hull and a laptop as
the ground station.

The drone has two cameras: one is downward-looking
with a 45◦×35◦ field of view providing a color image
of 176×144 pixels; the other is forward-looking with a
75◦×60◦ field of view providing a color image of 640×480
pixels. The two cameras are connected to the ARM9 pro-
cessor which encodes and sends the data from the cameras
to a ground station through Wi-Fi link.

The downward-looking camera is of particular interest to
us for the hover control. We have previously tried to use
a laptop to process images transmitted from the drone and
then send back command to control the hover. It is found
that the hover performance is not so satisfactory, especially
in outdoor environments where there is wind disturbance.
Part of the reason may be the low frame rate available.
The ventral camera is able to capture images at 60fps
but due to the imposed Wi-Fi limitation, a client can only
receive images at 15fps, which will bring more latency
into the control system. The control signal also has to be
sent through Wi-Fi, causing a delay in the drone’s response.
Therefore, we have chosen to perform the visual control
onboard. This is achieved by building on an open source
C program found in the personal blog of Hugo Perquin1

that enables developers to have direct access to the onboard
sensors and motors. One can modify the code, cross compile
it into ARM executable files, open atelnet session to the
drone and FTP those files to the drone’s/data/video folder
as other folders ask forsudo access. Then, one can enter

1http://blog.perquin.com/blog/ar-drone-program-elf-replacement

Fig. 2: The defined coordinate system for AR Drone.

that directory and run the program onboard containing their
own algorithms instead of the original Parrot AR Drone
program. A user interface calledOpen Flight written in
C# is also included in the custom program that can send
commands to the drone and log navigation data to a ground
station. Starting from Perquin’s program, image processing,
sensor fusion and control algorithms have been added for
our project.

2.2 Vehicle Dynamics and Control Structure
The definition of the coordinate system for the Drone

is shown in Fig. 2. Generally, two coordinate systems are
made use of to describe the motion of a MAV. One is the
body coordinate system (Ob

− ZbXbY b) and the other is
the inertial (world) coordinate system (Oi

− ZiXiY i). A
quadrotor is an under-actuated system in that it has four
independent rotors and six degree of freedom. The vertical
motion is controlled by letting the four rotors change the
rotating speed at the same time. Pitch (θ) angle can be
adjusted through increasing (decreasing) the speed of rotor 3
and rotor 4 while decreasing (increasing) the speed of rotor1
and rotor 2 by the same amount. Rolling (φ) and yawing (ψ)
are regulated in a similar manner. The horizontal motion is
realized by making the vehicle change its roll angle or pitch
angle first. Therefore, a cascaded (inner-outer loop) structure
[17] is often adopted, where the outer loop regulates the
speed and position by sending attitude command to the inner
loop. The inner loop will seek to manipulate a difference in
the speed of the rotors for tracking the desired angle.

After the discussion above, the control commands sent to
the four motors can be simply defined as:

r1 = Ttotal/(cos(φ) · cos(θ)) + τφ − τθ + τψ (1)

r2 = Ttotal/(cos(φ) · cos(θ)) − τφ − τθ − τψ (2)

r3 = Ttotal/(cos(φ) · cos(θ)) − τφ + τθ + τψ (3)

r4 = Ttotal/(cos(φ) · cos(θ)) + τφ + τθ − τψ (4)



where the commandsτφ and τθ are the output of PID
controller in the inner loop for the drone to reach the
desired attitude. Note that AR Drone 1.0 does not have a
magnetometer. Perquin’s program uses a PI controller to
control yaw. The yawing motion appears to be small in
flight, so at the moment, we have not tried to make any
change.Ttotal is composed of two parts: one is the trim
value (Ttrim) during hover and the other is output of a PD
controller regulating height. A PI controller is utilized in the
control of the horizontal speed to provide speed damping
effect and bound the speed in hovering to a small value. A
P controller is then used to control horizontal position based
on the position estimation from snapshot displacement. The
controller structure is shown in Fig. 3 with the control
parameters roughly tuned in the experiments. In the figure,
p, q, r are respectively the pitch rate, roll rate and yaw rate,
Vx, Vy, Vz, Px, Py, Pz are the estimated speed and position.
θd, φd are the desired attitude command set by the outer
loop.

Fig. 3: Controller structure for hover control of the quadrotor
with the controller parameters roughly tuned in the experi-
ments.

3. Image Processing

For the frame-to-frame optical flow calculation, the Image
Interpolation Algorithm (I2A) [13] was used because it is
robust to noise, fast to implement and able to give sub-pixel
accuracy. For a better accuracy, an average filter is usually
applied to images before usingI2A. Because only part of
the image is needed in the motion estimation, filtering is
thus only performed on the region of interest to save time.
However, I2A is not chosen for calculating snapshot dis-
placement, as it is found to be very sensitive to illumination
change. This creates a problem for the snapshot computation
since lighting conditions may vary over time due to moving
cloud interfering with the sunlight or self-shadowing of the
vehicle. The Incremental Sign Correlation (ISC) [14] was
demonstrated to be robust against illumination variation and
chosen for the computation of snapshot displacement in
this work. ISC is essentially a binary template matching
algorithm that derives a binary image from the intensity

Fig. 4: The binary image is processed in a way that4
successive bits are coded to an integer and stored in a
new image. When calculating the NNMP for two binary
templates, a look up table can help reduce the computation.

image:

Ib(i, j) =

{

1 if I(i, j + 1) > I(i, j),

0 otherwise.
(5)

where I(i, j) is the intensity value,Ib(i, j) is the binary
value. When comparing two templates after the binary trans-
formation, the Number of Non-Matching Points (NNMP) is
used as the similarity measure. For binary template match-
ing, logical operations can replace arithmetic operations,
making the algorithm much faster than normal template
matching, especially in hardware implementation. In order
to further speed up the computation, the binary image was
preprocessed in this way [15] that a location(i, j) in the new
imageIB stores an integer, which encodes the bits from(i, j)
to (i, j + n) in the original binary image. This technique is
explained in Fig. 4, for example,IB(i, j) is 11 if the bits
from (i, j) to (i, j +n) in the binary image is ‘1011’ withn
being 4. A Look up Table (LUT) with a size of2n

×2n can be
constructed beforehand, from which one can directly know
the number of different bits that two integers have. In this
way, when computing the NNMP for two templates of 8 bits
(see Fig. 4) withn being 4, only 2 look-up-table operations
and 1 addition are required for this technique while direct
comparison needs 8 XOR operations and7 additions. With
the template size unchanged, a choice of a largen seems
to reduce the number of operations afterwards, but also
consumes more memory and time in storing the coded image
and a large LUT size.n is set to be 8 in the paper. Partial
Distortion Search (PDS) [16] is also employed to reduce
execution time. The idea is to terminate the calculation for
a search point if the accumulated NNMP is larger than the
minimum NNMP computed at that moment.

In our implementation, optic flow is calculated at 60



fps. The search window for template matching can not be
too small for good tracking performance, but larger search
window means more computational cost. Search window is
set to be [-10,10] and the previous snapshot displacement is
used to provide an initial guess for the next search. Given
the limited processing power onboard, the calculations for
ISC were spread over several frame intervals. Snapshot dis-
placement can be updated by accumulating optic flow during
intermediate frames and corrected once the calculation for
ISC is finished. It is not guaranteed that every update from
ISC is correct and so a confidence measure (conf ) should be
introduced to reject those false measurements. Image motion
is calculated for several templates in the snapshot image
and assuming yaw angle is small during hover, the standard
deviation of the motion vectors for those templates can
indicate the reliability of that measurement. The confidence
measure is computed as:

conf =

√

∑

i(xi − x̄)2

m
+

√

∑

i(yi − ȳ)2

m
(6)

where m represents number of templates,xi, yi are the
image displacement calculated with ISC in the X and Y
direction for each template, and̄x, ȳ are the mean dis-
placement for these templates. If the confidence measure
is below a threshold, the result is used to correct for snap-
shot displacement and predict the next search, otherwise,
the accumulation of optic flow is trusted. Sometimes with
repeated pattern such as bricks or tiles, the algorithm may
falsely track a similar region. This can be avoided by ruling
out a sharp jump in the estimation. If the confidence measure
remains beyond the threshold for a certain period of time,
another snapshot image is taken as the new reference image.

4. Pose Estimation

4.1 Attitude

A simple complementary filter was used to estimate pitch
and roll angle from the inertial sensors output:

θ−n = θ+

n−1 + p · dt (7)

θ+
n = k · θa + (1 − k) · θ−n−1 (8)

φ−

n = φ+

n−1 + q · dt (9)

φ+
n = k · φa + (1 − k) · φ−

n−1 (10)

where equation (7) and (9) predict pitch angle and roll angle
with pitch rate p and roll rateq while equation (8) and
(10) corrects the estimation by accelerometer measurement
(φa = atan(ay/az), θa = atan(−ax/az), ax, ay, az are the
accelerometer output with the unit beingg). k is set at0.015
in the subsequent experiments.
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Fig. 5: Calibration for optic flow scale factor

4.2 Speed and Position
Optic flow in the X and Y direction, denoted asOFx and

OFy, is measured inpixel/frame, before it can be used in
the estimation of horizontal speed, the scale factor (kx, ky)
that convert it toradian/s should be found. The scale factor
can be extracted according to the camera geometry (field of
view and resolution), but it is prudent to re-calibrate it due
to optic distortion and other errors. A treadmill was used
for this calibration. Please refer to [1] for the detail of this
experiment. Fig. 5 gives the calibration result. After that,
horizontal speed (vx, vy) and position (px, py) using OF and
snapshot displacement (Sx, Sy) is computed as:

vx = (OFx/kx + p) · Pz (11)

vy = (OFy/ky − q) · Pz (12)

px = (Sx/kx + θ) · Pz (13)

py = (Sy/ky − φ) · Pz (14)

where pitch rate and roll rate should be subtracted from
the measured OF, and pitch angle and roll angle are sub-
tracted from the snapshot displacement. Speed calculated
from optic flow in equation (11) and (12) does not suffer
from long-term drift but is very noisy. Speed integrated
from acceleration is smooth but drifts over time. So once
again these two are combined in the same way that pitch
and roll angle are estimated, as in equation (7) to (10).
Likewise, horizontal position during hover can be predicted
using speed measurement and corrected with the position
estimation from snapshot displacement. Perquin’s program
estimated vertical speed by linear regression based on height
measurement from the ultrasonic sensor. Similar to the hor-
izontal speed and position estimation, vertical acceleration
can be incorporated to have a smoother vertical speed and
height estimation. When pitch angle and roll angle are small,
the actual accelerations (Ax, Ay, Az) in the Xi, Y i andZi

direction can be approximated by [17]:

Ax = g · (θ + ax) (15)

Ay = g · (−φ + ay) (16)

Az = g · (az − 1) (17)
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Fig. 6: Horizontal position and confidence measure during
an indoor hover under external disturbance.

5. Flight Tests
A number of flight tests were conducted both indoors

and outdoors. During hovering in an indoor environment,
the drone was disturbed (mainly in the Y direction) by
hand three times. Once it is pushed away from the visual
anchor point, the confidence measure becomes very large
(Fig. 6), and during this time the snapshot displacement is
only updated using accumulation of OF. It is noted that for
the first two disturbances, the drone is able to come back
and lock onto the reference image. For the third case with
larger perturbation, the drone failed to make its way back
to the original hovering point but remains very close. In the
experiment, if the confidence measure stays larger than 2
for 2 seconds, a new snapshot image will be taken. As seen
from the zoomed figures pointed to by the dashed arrows in
Fig. 6, for the first two disturbances the confidence measure
remains larger than 2 for less than 2 seconds, but for the
third case, this period is longer than 2 seconds, thus another
reference image is captured and position estimation is reset
to 0 for another round of tracking. If the tolerance period is
raised (for example 3 seconds) for the confidence measure
larger than 2, the vehicle may be able to find ‘home’ again.
It seems that the use of a longer tolerance period is able to
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Fig. 7: Horizontal speed, pitch and roll response during an
indoor hover under external disturbance

handle stronger perturbation, however, the integration ofOF
may have drifted so much that the vehicle can not go back. In
fact, this tolerance period reflects how much the integration
of OF is trusted. It should be mentioned that we have not
tried to determine the optimal value for this tolerance period.
The horizontal speed estimation and attitude response are
displayed in Fig. 7. The desired attitude angle set by the
outer loop are tracked very well by the inner loop.

Fig. 8: AR Drone flying outdoors over a repeated pattern.

Fig. 9 gives the horizontal position estimation and confi-
dence measure during hovering outdoors as shown in Fig.
8. The confidence measure goes beyond the threshold more
frequently than in the indoor environments. That means new
snapshot images are taken more frequently. Despite that, the
drone is observed to stay in the vicinity of the original
hovering point. The vehicle is flying over an repetitive
pattern (Fig. 8) in this experiment, when blown away by
wind gust, it is possible to track a new region having
similar templates to those in the snapshot image. Because



for our case (image resolution, size of the templates, search
window), if the drone flies within the boundary of the
snapshot image, the snapshot displacement should be less
than 50 pixels. Note that in Fig. 10, a small value in
confidence measure is reported even when the displacement
is more than 100 pixels. This usually results in a sharp
jump in the displacement estimation and can be prevented
by imposing an upper limit on the variation of current update
with respect to previous update. Only when this variation and
the confidence measure are both smaller than the predefined
threshold will the calculation from ISC be trusted. The
horizontal speed and attitude response are shown in Fig. 11.
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Fig. 9: Horizontal position and confidence measure during
an outdoor hover with wind disturbance.

6. Conclusion
In this paper, the snapshot idea [11] is proven to be very

effective in eliminating the long-term drift of a rotorcraft in
hover. Based on an open source program, onboard imple-
mentation of visual algorithms, sensor fusion and controller
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Fig. 10: Snapshot displacement in the X direction versus the
confidence measure.
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Fig. 11: Horizontal speed, pitch and roll response during an
outdoor hover with wind disturbance.

design are successfully achieved. Flight tests demonstrate
the proposed method work satisfactorily both indoors and
outdoors even with repeated pattern and light wind distur-
bance. Although not proven in flight, the ISC algorithm has
the ability to deal with illumination change. However, the
limitation of the platform should also be mentioned. A strong
wind gust can easily drive the drone away from the scene
where snapshot image is captured. In fact, even moderate but
non-constant wind is difficult enough to deal with. A varying



wind condition will lead to a big variation in the attitude,
which is the only way that an AR Drone can resist external
disturbance. This is very likely to make the drone lose the
visual anchor point (may be the reason why the confidence
measure goes over the threshold more frequently outdoors
than indoors) due to the small field of view of the downward-
looking camera. In a dim-light condition, the image quality
will get worse and degrades the results. For a good hovering
performance under a wider range of circumstances, a better
camera with larger field of view is preferred, or the rotors
themselves can tilt [19] so that external disturbance can be
counteracted without causing much change in the attitude of
the vehicle.

Future work on this platform will focus on: (a) optimizing
the controller parameters; (b) optimizing the combination
of snapshot measurement with the integration of OF; (c)
exploiting the distribution of motion vectors [18] for the
purely visual control of height [11] and yaw angle as well
as horizontal positions.
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