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Abstract - The aim of this article is to outline possibilgtief
sound and its physical properties during shootifigrmving
objects. Attention was devoted to the specific tlonaof a
fixed point in the space and time. We present tvopgsed
methods that are based on neural networks. Wematsoosed
appropriate topologies of the systems that dependthe
required accuracy, acoustic properties and selecsedind
technologies. At first, we identified a distancewsen an
active transmitter and a receiver on the basisafral pulses
transmitted from transmitters in the defined domaifier that
a neural network uses obtained distances betwearstnitters
and a receiver as its inputs to determine an acphgaition of

the receiver in space. We developed two modelsgchwhi

outcomes are compared in conclusion.
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very easy generated and its transmission over ithais
signal is multiple. Just these sound waves formbhgis of
motion capture systems that are aims of this articl
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Keywords: Acoustic signal processing, neural networksFigure 1: A sound pulse as a rectangular signgl [11

motion capture system, Fourier transform.

1 Sound waves processing

When sound impacts on the solid barrier, it caute
reflection or bending which depend on the rationeen the
size of the barrier and the wavelength of soundthd
dimension of the barrier is bigger than the wavegle of the
sound, the sound is reflected according to the flilee angle
of reflection equals the angle of incidenceind this

phenomenon can be simply viewed as the problem on

propagation of light rays. Value of intensity (sl energy)
of reflected sound signal is defined by the phygicaperties
of the material and it is different for differentowsd
frequencies. Generally speaking, for the lower dewy
absorption coefficient is smaller, with increasifigquency
coefficient of absorption is increasing. We writg: (

1)

where:

a - sound absorption coefficient at reflection
i - intensity of the reflected waves

ig - intensity of the incident wave

2 Acoustic motion capture systems

Capturing motion or motion tracking (MoCap) is dise
provide a digital recording using the markers. €ntly, there
are several techniques for tracking. Computer softvwhich
is provided to the motion capturing record posgioangles,
velocity, acceleration, and pulse points in thel temae. For
now, an unused option of the Motion Capture is stesy for
determining the positions of points in the spac&iises the
ysical properties of audible sound. Since thedmd sound
propagation in the environment is constant, it'ssgae to
calculate an audio signal’'s absolute distance aaogrto the
degree of its delay. If this happens for at ledsted
transmitters, receivers can determine the posifahe spatial
coordinates via triangulation. Several motion ceptu
technologies have been proposed in the last twadéesc The
advantages and disadvantages of the dominant ap@E®are
argued in several excellent surveys [3, 5].

Acoustic systems use the time-of-flight of an audi
signal to compute the marker locations. Most cursystems
are not portable and handle only a small numbenarfkers.
With the Bat system [13], an ultrasonic pulse emits worn
by a user, while multiple receivers are placed iaedf
locations in the environment. A system by Hazas ‘fatd

~ Fig. 1 shows the sound pulse as a rectangularlsign[4] extends ultrasonic capabilities by using braatbsignals;
which is generated from the sum of odd harmonicyallidis [9] alleviates occlusion problems with gread-

frequencies with a prescribed amplitude. Additibnait is

spectrum approach; Olson and colleagues [7] aeetaltrack



receivers without known emitter locations. The &eic
location system [8] fills the environment with anmoer of
ultrasonic beacons that send pulses along withigfaks at
random times in order
interference. This allows multiple receivers to Ibealized
independently. A similar system is presented bydefirand
Muller [10], in which the beacons emit pulses irtession
using a central controller. Lastly, the WearTragktem [3],
developed for augmented reality applications, uses
ultrasonic beacon placed on the user’s finger aneketfixed
detectors placed on the head-mounted display. 3ystem
can track the location of the finger with respecttte display,
based on time-of-flight measurements.

3 Acoustic motion capture systems based

on neural networks

We present two proposed MoCaps that are based
neural networks, e.g. their appropriate topologfied depend
on the required accuracy, acoustic properties aidcted
sound technologies. At first, we identified a dista between
an active transmitter and a receiver on the bakisoand
pulses transmitted in the defined domain. Afteit thaneural
network uses obtained distances between transsitted a
receiver as its inputs to determine an actual jposiof the
receiver in space.

3.1 System design

The article introduces experimental study of adilsle
MoCap system developed via neural networks. Desigiai
measurement system has been defined the followiitili
requirements [12]:

< Active area (domain), where the captured objecteembas
to be so large to be able to cover the range ofimgov
objects.

« Active area should not restrict the moving objects.

« The system accuracy must be constant throughoutcties
area.

* The system must be able to adapt to environmehtaiges
(e.g. change in temperature).

e The system must be able to detect measurement exnor
correct them.

e The output of the system must be data that shoeld
acceptable in other systems (e.g. 3D programs).

¢ The system should be able to work in real time.

e The whole system, including technology,
applicable in any environment.

According to the initial requirements, we proposed
system topologies containing five or three trantarst
positioned around the space. All transmitters wareinto a
horizontal plane so that the plane split the spatcetwo half-
space, namely the half-space above the floor alfesphace
under the floor. We introduced a coordinate systetm the

half space above the floor, see Fig. 2,3. Our pegcystem
is based on speakers that generate a signal thratdsded
sensor. Gradually we emit an acoustic pulse froffergint

to minimize possible signatransmitters into the microphone. As the spacesfindd with

microphone placement transmitters, we are sure ¢imet
sound pulse leaves the room with a microphone &efore
then second transmitter in turn sends its pulseisTin the
area one pulse is only in the current time.
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Figure 2: A coordinate system 3 transmitters' parsit (V1 -
V3).
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Figure 3: A coordinate system 5 transmitters' parsét (V1 -

should beVb).

We had to fulfill the following conditions of sounmhrameters
in order to system worked well [6]:
» The system used sound waves at a frequency of 4410

* Sound pulse, used as a measurement medium and it is

radiated by any transmitter, must leave the dorbaiiore
any other transmitter starts sending its impul$éss is the
most important condition for the proper system fioming.



* Sound pulse must be adequately long to receivénet tband remains unchanged, while the other zoneseaet. iThen
satisfaction in receiver and process it. we perform the inverse FFT and after that we géttered
« Sound pulse must be adequately short not to owdpace sample (Fig. 4). In such a filtered sample we sjnfpld the
domain by reflections from walls or objects in them. maximum, which then determines the onset of thadqulse
in the sample.
There were made measurements in domains shown in _ _ _ o
Fig. 2,3 where we changed the receiver position €ach This neural network is able to find the beginnofgthe
measurement and we obtained 33 audio recordsallpjti sound pulse of transmitter and transform this imition into
receiver was placed in the static points in spacerder to @ numerical value expressing the distance betwden t
cover the edge of the domain too. Then the receivas transmitter and receiver. We used a multilayer alenetwork
moving so we recorded its dynamic movement in timVith one hidden layer that was adapted by backmaian
Recorded material was transferred to the steree paere 2algorithm [2]. Input data of the training set indéd fixed
the left channel contained impulses of transmittéd V5 and  'ange of values of one sample with the length @& (main)

right channel contained a record from the receiiregrder to  S€duénce, which contained 882 pattefsmber of patterns
create training and test sets of neural networks. in the training set was 1744. Neural network agttitre is the

following: 88 units in input layer, 120 units indgien layer, 44
3.2 Sound wave identification units in output layer.

Input vector of the training sétcluded88 values from
the interval <0, 1>. Values present standard malxiamal
minimal subsequence values of 20 samples from than m
sequence, e.g. pairs of maximum from positive nusilaad
minimum from negative numbers. The last two samfries
the main sequence were omitted. Output vectoretriining
, set included 44 values from the set {0, 1}. If weide the
\W main sequence into 44 parts (each part includesagtples),
|
i

Each speaker sends a signal (Fig. 5), which fseshby
optional time interval to the remaining generatoBy
optimization we can achieve such detection whichnag
dependent on the size of the scanning space, ledhease
signals are clearly distinguishable.

then the part, which contains a front edge flaghef pulse
\ equals 1 and all other values remain this value.
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Figure 6: Non-filtered audible signal with enviroent noise
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I‘:igure 5: Shift of the individual audio signals rinoeélh o2
speakers '
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To the filtered sound sample scanned by the receind  Figyre 7: Visualization of the output training vect
to the detection the sound pulse’s onset we use-theier
transformation, specifically FFT - Fast Fourier fiséorm [1]. Choice of format of input data (input vector) was
At 4410 Hz sample rate (set to sound card) anchtimeber of important moment, see Fig. 6. We preferred maxiarad
samples 1024 (2 - necessary for FFT) scanned sample is thefinimal values of subsequences, because their geealues
processed by the transformation matrix and therseiected gig not give desired results. Similarly, the fornudtoutput
only zone with frequency of the sound pulse (4430H2  qata (output vector) was proposed as a no decgpasiction



with the skip point in front edge flag of the pul$eg. 7). Fig.
8 shows calculation of random sequences that féwventest
set.

Experimental setting — 5 transmitters' positions

The neural network was adapted by set of 400@ibgi

The proposed network was able to recognize frquatin VECLOrs, whose uniformly cover the all domain spgig. 2).

data the pulse signal with an accuracy of 20 sasnfdeg

The suggested parameters of our experimental warkhee

20*07cm= 154cm ), Which is higher than the level of our following:

desired accuracy.
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Figure 8: Test sequences (S1 - S4)

3.3 Coordinates generation

In our experimental study, we used a multilayeurak
network with one hidden layer that was adapted
backpropagation algorithm [2] for the task of cédtimg the
coordinates of points in space.

The philosophy of the application is simple. Thstahce
between the individual transmitter and receivecasculated
from given coordinates of three or five transmgteand
randomly generated three-dimensional coordinatdtidnal
receiver, which is located in the domain Fig. 2\ must
transform these values to the coordinatesy(z). Both data
represent a training set which are used duringuaaheetwork
adaptation. Each training pattern consists of tlorefeve input
components (the distance from three transmitteesraxeiver)

and three output componenssy, andz coordinates in space).

The actual distance is then determined by Euclidistance
calculations.

Experimental setting — 3 transmitters' positions

The neural network was adapted by set of 300@itgui
vectors, whose uniformly cover the all domain spéeg. 2,
3). The suggested parameters of our experimentdl are the
following:

* Input layer: 3 units

« Hidden layer: 6 units

e OQutput layer: 3 units

« Activate function: a sigmoid
e Learning rate: 0,3

* Input layer: 5 units

» Hidden layer: 12 units

» Output layer: 3 units
 Activate function: a sigmoid
* Learning rate: 0,3

——deltax =——deltaz deltay

VAN

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Figure 9: Measurement results - neural networkreimocm
(axes x: 100 test sequences). 3 transmitters'iposit

3.4 Coordinates generation

In test phase, we used the adapted neural nefaorkal
data which were obtained from an audio sample.dDdfse it
is necessary to normalize this data and becausik wb
determine the maximum distance at which the receive
(microphone) can occur. Distances are normalizedht®
interval <0, 1>.

Test set includes 100 patterns. Measurement sesalte
shown in Fig. 9 (3 transmitters' positions) and.Fi@ (5
transmitters' positions). Both experimental resuats very
similar. We are able to summarize them as follows:

——delta x ——rlplta 7 delta y
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Figure 10: Measurement results - neural networkrerr cm
(axes x: 100 test sequences). 5 transmitters'iposit

» Calculating accuracy dfiorizontal coordinates X, z) was,
on average, 2,5 cm.



 Calculating accuracy of theertical coordinate \) was, on [4] Hightower, J., and Borriello, G. (2001). Location
average, 5,5 cm. This reality was due to real dijpm of Systems for ubiquitous computing. Computer 34, 8\
transmitters, where the change about 1 cm in heigh?—66.
indicated minimal changing of distance from trartsens.
[5] Huber, D., M., Runstein, R., E. (2005) Modern

In the case that the vertical coordinate was ctoseero, | . : )
the network error was increased in the calculation. Recording TechniquesSixth edition, Focal Press. ISBN:
0240806255.

4 Conclusion [6] Olson, E., Leonard, J., and Teller, S. (2006). Rbbu

o . range only beacon localization. Journal of Oceanic
The objective of the paper helps to outline thepgineering 31, 4 (Oct.), 949-958.

possibilities of using sound and its physical prtipse during

shooting of moving objects in space and time fer prpose 7] priyantha, N., Chakraborty, A., and Balakrishnan, H

of converting these movements into virtual space. fMund (2009). The cricket location-support system. Iretnational

out that Motion Capture Systems using sound caeppdied  Conference on Mobile Computing and Networking, 32—4

in real conditions, and physical properties of gsbuve can

really use. Crucial component of the system arerateu [8] Vallidis, N. M. (2002). WHISPER: a spread spectrum

networks, thanks to their ability of generalizaticand
information filtering, the system was allowed topess mixed
and noisy data.

To solve data extraction from sound waves, we @se@
new structures of training sets corresponding ® dhginal
structure that means it is used to separate aficulif
recognizing patterns from the training data setrdfore the
main emphasis of this paper is focused on the famiy to
properly design training set for given neural neksgo This
work deals with determining of receivers’ positidnsspace
and time. The proposed systems also solve speauifizing
objects. Here, the limiting factor is only a numbef
transmitters, the domain size and average acoystigerties
in room. Number of receivers can be in this configion
theoretically unlimited, we have to provide suffict
computing power. We developed two models with 35or
transmitters. Both models were compared and weivete
very similar experimental outcomes. As the vert@adrdinate
was close to zero, both models’ errors were gretitan in
horizontal direction. For this reason, we are gdimglevelop
3D MoCap system, which could be able to reducecimacies
in vertical direction too.

5 References
[1]

New York: Prentice-Hall.

[2] Fausett, L., (1994),: “Fundamentals of Neural Nek#kio
1st ed. Prentice Hall, ISBN: 0-13-334186-0.

(3]
ultrasonic location system. In International Coafae on
Ubiquitous Computing, 264—280.

approach to occlusion in acoustic tracking. PhDsithe
University of North Carolina at Chapel Hill.

[9] Randell, C., and Muller, H. L. (2001). Low cost dudt
positioning system. In International ConferenceJmquitous
Computing, 42—48.

[10] Voln4, E., JaruSek, R., Kotyrba, M., Jano3ek, Md an
Kocian, V. (2011). Data extraction from sound wai@sards
neural network training set. In R. MatouSek (eBrpceedings
of the 17th International Conference on Soft Conmgyt
Mendel 2011, Brno, Czech Republic, pp. 177-184 N&B 8-
80-214-4302-0, ISSN 1803-3814.

[11] Voln4, E., JaruSek, R., Kotyrba, M. and Rucky, D.
(2013) ,Dynamical Motion Capture System Involvingav
Neural Networks“. In Banerjee, S. and ErcetinS. (eds.)
The proceedings of Symposium of Chaos, Complexity a
Leadership, ICCLS2012 (Springer Complexity series)n
press.

[12] Ward, A., Jones, A., and Hopper, A. (1997). A new
location technique for the active office. Personal
Communications 4, 5 (Oct.), 42—-47.

[13] Welch, G., and Foxlin, E. (2002). Motion trackimp
silver bullet, but a respectable arsenal. Comp@emaphics
and Applications 22, 6 (Nov./Dec.), 24-38.

Brigham, E. O. (2002). The Fast Fourier Transform.

Hazas, M., and Ward, A. (2002). A novel broadband



