
Acoustic signal processing via neural network towards 
motion capture systems 

 
E. Volná, M. Kotyrba, R. Jarušek 

Department of informatics and computers, University of Ostrava, Ostrava, Czech Republic 
 
 

Abstract - The aim of this article is to outline possibilities of 
sound and its physical properties during shooting of moving 
objects. Attention was devoted to the specific location of a 
fixed point in the space and time. We present two proposed 
methods that are based on neural networks. We also proposed 
appropriate topologies of the systems that depend on the 
required accuracy, acoustic properties and selected sound 
technologies. At first, we identified a distance between an 
active transmitter and a receiver on the basis of sound pulses 
transmitted from transmitters in the defined domain. After that 
a neural network uses obtained distances between transmitters 
and a receiver as its inputs to determine an actual position of 
the receiver in space. We developed two models, which 
outcomes are compared in conclusion. 

Keywords: Acoustic signal processing, neural networks, 
motion capture system, Fourier transform. 

 

1 Sound waves processing 
  When sound impacts on the solid barrier, it causes its 
reflection or bending which depend on the ratio between the 
size of the barrier and the wavelength of sound. If the 
dimension of the barrier is bigger than the wave length of the 
sound, the sound is reflected according to the rule: "The angle 
of reflection equals the angle of incidence“ and this 
phenomenon can be simply viewed as the problem of 
propagation of light rays. Value of intensity (residual energy) 
of reflected sound signal is defined by the physical properties 
of the material and it is different for different sound 
frequencies. Generally speaking, for the lower frequency 
absorption coefficient is smaller, with increasing frequency 
coefficient of absorption is increasing. We write (1): 

  (1) 

where: 
a - sound absorption coefficient at reflection 
i - intensity of the reflected waves 
i0 - intensity of the incident wave 

 Fig. 1 shows the sound pulse as a rectangular signal, 
which is generated from the sum of odd harmonics 
frequencies with a prescribed amplitude. Additionally, it is 

very easy generated and its transmission over sinusoidal 
signal is multiple. Just these sound waves form the basis of 
motion capture systems that are aims of this article. 

Figure 1: A sound pulse as a rectangular signal [11] 

2 Acoustic motion capture systems 
 Capturing motion or motion tracking (MoCap) is used to 
provide a digital recording using the markers. Currently, there 
are several techniques for tracking. Computer software which 
is provided to the motion capturing record positions, angles, 
velocity, acceleration, and pulse points in the real time. For 
now, an unused option of the Motion Capture is a system for 
determining the positions of points in the space which uses the 
physical properties of audible sound. Since the speed of sound 
propagation in the environment is constant, it's possible to 
calculate an audio signal’s absolute distance according to the 
degree of its delay. If this happens for at least three 
transmitters, receivers can determine the position of the spatial 
coordinates via triangulation. Several motion capture 
technologies have been proposed in the last two decades. The 
advantages and disadvantages of the dominant approaches are 
argued in several excellent surveys [3, 5].  

 Acoustic systems use the time-of-flight of an audio 
signal to compute the marker locations. Most current systems 
are not portable and handle only a small number of markers. 
With the Bat system [13], an ultrasonic pulse emitter is worn 
by a user, while multiple receivers are placed at fixed 
locations in the environment. A system by Hazas and Ward 
[4] extends ultrasonic capabilities by using broadband signals; 
Vallidis [9] alleviates occlusion problems with a spread-
spectrum approach; Olson and colleagues [7] are able to track 



receivers without known emitter locations. The Cricket 
location system [8] fills the environment with a number of 
ultrasonic beacons that send pulses along with RF signals at 
random times in order to minimize possible signal 
interference. This allows multiple receivers to be localized 
independently. A similar system is presented by Randell and 
Muller [10], in which the beacons emit pulses in succession 
using a central controller. Lastly, the WearTrack system [3], 
developed for augmented reality applications, uses one 
ultrasonic beacon placed on the user’s finger and three fixed 
detectors placed on the head-mounted display. This system 
can track the location of the finger with respect to the display, 
based on time-of-flight measurements. 

3 Acoustic motion capture systems based 
on neural networks 

 We present two proposed MoCaps that are based on 
neural networks, e.g. their appropriate topologies that depend 
on the required accuracy, acoustic properties and selected 
sound technologies. At first, we identified a distance between 
an active transmitter and a receiver on the basis of sound 
pulses transmitted in the defined domain. After that a neural 
network uses obtained distances between transmitters and a 
receiver as its inputs to determine an actual position of the 
receiver in space. 

3.1 System design 

 The article introduces experimental study of an audible 
MoCap system developed via neural networks. Designing a 
measurement system has been defined the following initial 
requirements [12]: 

• Active area (domain), where the captured objects move, has 
to be so large to be able to cover the range of moving 
objects. 

• Active area should not restrict the moving objects.  
• The system accuracy must be constant throughout the active 

area. 
• The system must be able to adapt to environmental changes 

(e.g. change in temperature). 
• The system must be able to detect measurement errors and 

correct them.  
• The output of the system must be data that should be 

acceptable in other systems (e.g. 3D programs). 
• The system should be able to work in real time. 
• The whole system, including technology, should be 

applicable in any environment. 
 
 According to the initial requirements, we proposed two 
system topologies containing five or three transmitters 
positioned around the space. All transmitters were put into a 
horizontal plane so that the plane split the space into two half-
space, namely the half-space above the floor and half-space 
under the floor. We introduced a coordinate system into the 

half space above the floor, see Fig. 2,3. Our proposed system 
is based on speakers that generate a signal that is recorded 
sensor. Gradually we emit an acoustic pulse from different 
transmitters into the microphone. As the space is defined with 
microphone placement transmitters, we are sure that one 
sound pulse leaves the room with a microphone even before 
then second transmitter in turn sends its pulse. Thus, in the 
area one pulse is only in the current time. 
 

 
Figure 2: A coordinate system 3 transmitters' positions (V1 -
 V3). 
 

 
Figure 3: A coordinate system 5 transmitters' positions (V1 -
 V5). 
 
We had to fulfill the following conditions of sound parameters 
in order to system worked well [6]: 
• The system used sound waves at a frequency of 4410 Hz. 
• Sound pulse, used as a measurement medium and it is 

radiated by any transmitter, must leave the domain before 
any other transmitter starts sending its impulses. This is the 
most important condition for the proper system functioning. 



• Sound pulse must be adequately long to receive it the 
satisfaction in receiver and process it. 

• Sound pulse must be adequately short not to overload space 
domain by reflections from walls or objects in the room. 

 
 There were made measurements in domains shown in 
Fig. 2,3 where we changed the receiver position for each 
measurement and we obtained 33 audio records. Initially, 
receiver was placed in the static points in space in order to 
cover the edge of the domain too. Then the receiver was 
moving so we recorded its dynamic movement in time. 
Recorded material was transferred to the stereo base (where 
the left channel contained impulses of transmitted V1 - V5 and 
right channel contained a record from the receiver) in order to 
create training and test sets of neural networks. 

3.2 Sound wave identification 

 Each speaker sends a signal (Fig. 5), which is shifted by 
optional time interval to the remaining generators. By 
optimization we can achieve such detection which is not 
dependent on the size of the scanning space, because these 
signals are clearly distinguishable. 
 

 
Figure 4: Non-filtered audible signal with environment noise 

Figure 5: Shift of the individual audio signals from each 
speakers 
 
 To the filtered sound sample scanned by the receiver and 
to the detection the sound pulse’s onset we use the Fourier 
transformation, specifically FFT - Fast Fourier Transform [1]. 
At 4410 Hz sample rate (set to sound card) and the number of 
samples 1024 (210 - necessary for FFT) scanned sample is then 
processed by the transformation matrix and there is selected 
only zone with frequency of the sound pulse (4410Hz). A 

band remains unchanged, while the other zones are reset. Then 
we perform the inverse FFT and after that we get a filtered 
sample (Fig. 4). In such a filtered sample we simply find the 
maximum, which then determines the onset of the sound pulse 
in the sample. 

 This neural network is able to find the beginning of the 
sound pulse of transmitter and transform this information into 
a numerical value expressing the distance between the 
transmitter and receiver. We used a multilayer neural network 
with one hidden layer that was adapted by backpropagation 
algorithm [2]. Input data of the training set included fixed 
range of values of one sample with the length of one (main) 
sequence, which contained 882 patterns. Number of patterns 
in the training set was 1744. Neural network architecture is the 
following: 88 units in input layer, 120 units in hidden layer, 44 
units in output layer.  

 Input vector of the training set included 88 values from 
the interval <0, 1>. Values present standard maximal and 
minimal subsequence values of 20 samples from the main 
sequence, e.g. pairs of maximum from positive numbers and 
minimum from negative numbers. The last two samples from 
the main sequence were omitted. Output vector of the training 
set included 44 values from the set {0, 1}. If we divide the 
main sequence into 44 parts (each part includes 20 samples), 
then the part, which contains a front edge flag of the pulse 
equals 1 and all other values remain this value. 

Figure 6: Non-filtered audible signal with environment noise 

Figure 7: Visualization of the output training vector 
 
 Choice of format of input data (input vector) was an 
important moment, see Fig. 6. We preferred maximal and 
minimal values of subsequences, because their average values 
did not give desired results. Similarly, the format of output 
data (output vector) was proposed as a no decreasing function 



with the skip point in front edge flag of the pulse (Fig. 7). Fig. 
8 shows calculation of random sequences that form the test 
set. 
 The proposed network was able to recognize from input 
data the pulse signal with an accuracy of 20 samples (e.g. 

cm4,15cm7,0*20 =&  ), which is higher than the level of our 

desired accuracy. 

Figure 8: Test sequences (S1 - S4) 

3.3 Coordinates generation 

 In our experimental study, we used a multilayer neural 
network with one hidden layer that was adapted by 
backpropagation algorithm [2] for the task of calculating the 
coordinates of points in space.  

 The philosophy of the application is simple. The distance 
between the individual transmitter and receiver is calculated 
from given coordinates of three or five transmitters and 
randomly generated three-dimensional coordinates of fictional 
receiver, which is located in the domain Fig. 2, 3. We must 
transform these values to the coordinates (x, y, z). Both data 
represent a training set which are used during a neural network 
adaptation. Each training pattern consists of three or five input 
components (the distance from three transmitters to a receiver) 
and three output components (x, y, and z coordinates in space). 
The actual distance is then determined by Euclidean distance 
calculations. 

Experimental setting – 3 transmitters' positions 

 The neural network was adapted by set of 3000 training 
vectors, whose uniformly cover the all domain space (Fig. 2, 
3). The suggested parameters of our experimental work are the 
following: 

• Input layer: 3 units  
• Hidden layer: 6 units 
• Output layer: 3 units  
• Activate function: a sigmoid 
• Learning rate: 0,3 
 

Experimental setting – 5 transmitters' positions 

 The neural network was adapted by set of 4000 training 
vectors, whose uniformly cover the all domain space (Fig. 2). 
The suggested parameters of our experimental work are the 
following: 

• Input layer: 5 units  
• Hidden layer: 12 units 
• Output layer: 3 units  
• Activate function: a sigmoid 
• Learning rate: 0,3 

Figure 9: Measurement results - neural network error in cm 
(axes x: 100 test sequences). 3 transmitters' positions 

3.4 Coordinates generation 

 In test phase, we used the adapted neural network for real 
data which were obtained from an audio sample. Of course it 
is necessary to normalize this data and because of it we 
determine the maximum distance at which the receiver 
(microphone) can occur. Distances are normalized to the 
interval <0, 1>.  

 Test set includes 100 patterns. Measurement results were 
shown in Fig. 9 (3 transmitters' positions) and Fig. 10 (5 
transmitters' positions). Both experimental results are very 
similar. We are able to summarize them as follows: 

Figure 10: Measurement results - neural network error in cm 
(axes x: 100 test sequences). 5 transmitters' positions 
 
• Calculating accuracy of horizontal coordinates (x, z) was, 

on average, 2,5 cm. 
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• Calculating accuracy of the vertical coordinate (y) was, on 
average, 5,5 cm. This reality was due to real disposition of 
transmitters, where the change about 1 cm in height 
indicated minimal changing of distance from transmitters. 
In the case that the vertical coordinate was close to zero, 
the network error was increased in the calculation. 

 

4 Conclusion 
 The objective of the paper helps to outline the 
possibilities of using sound and its physical properties during 
shooting of moving objects in space and time for the purpose 
of converting these movements into virtual space. We found 
out that Motion Capture Systems using sound can be applied 
in real conditions, and physical properties of sound we can 
really use. Crucial component of the system are neural 
networks, thanks to their ability of generalization and 
information filtering, the system was allowed to process mixed 
and noisy data.  

 To solve data extraction from sound waves, we propose a 
new structures of training sets corresponding to the original 
structure that means it is used to separate all difficult 
recognizing patterns from the training data set, therefore the 
main emphasis of this paper is focused on the fact, how to 
properly design training set for given neural networks. This 
work deals with determining of receivers’ positions in space 
and time. The proposed systems also solve specific moving 
objects. Here, the limiting factor is only a number of 
transmitters, the domain size and average acoustics properties 
in room. Number of receivers can be in this configuration 
theoretically unlimited, we have to provide sufficient 
computing power. We developed two models with 3 or 5 
transmitters. Both models were compared and we received 
very similar experimental outcomes. As the vertical coordinate 
was close to zero, both models’ errors were greater than in 
horizontal direction. For this reason, we are going to develop 
3D MoCap system, which could be able to reduce inaccuracies 
in vertical direction too. 
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