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Abstract— Most works on camera calibration are di-
rected to the stage of parameter estimation, while the
phase matching is not always addressed. Most of applica-
tions assume that the correspondences are established in
advance or require user intervention. Since the automatic
applications require that the entire pattern is detected,
which is difficult in most cases. This work aims to identify
patterns of camera calibration automatically where the
pattern can not be fully detected. Therefore, a corner
detection and a topological filter are presented. The cor-
respondence is done using neighboring properties on a
geometric mesh and the sub-pixel location is threshold
independent. The results show that the algorithm provides
a robust detection even when the pattern is partially
occluded.
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1. Introduction
The camera calibration aims to determine the geomet-

ric parameters of the image formation process [1]. This is
a crucial step in computer vision applications especially
when metric information about the scene is required.
In these applications the camera is generally modeled
with a set of intrinsic parameters (focal length, principal
point, skew of axis) and your orientation is expressed
by extrinsic parameters (rotation and translation). Both
intrinsic and extrinsic parameters are estimated by linear
or non-linear methods using known points in the real
world and their projections in the image plane [2]. These
points are presented as a calibration pattern with known
geometry, usually a flat chessboard.

Many studies have given attention to the camera
calibration area, most of them are dedicated to the
parameters estimation phase and refinement location of
the calibration points [3], [4], [5], [6]. Tsai [7] and Zhang
[8] are examples of the most cited papers related to
this area. They propose closed form solutions for the
estimation of intrinsic and extrinsic parameters using 3D
and 2D calibration patterns respectively. Hamayed [9]
and Salvi et al. [10] present reviews about some related
works.

Camera calibration is a much discussed topic but the
lack of robust algorithms for features detection difficults
the construction of automatic calibration process. Cal-
ibration pattern recognition is a hard task, where the
lighting problems and high level of ambiguities are the
principal challenges. For this reason, the algorithms often
require user intervention for a reliable detection of the
calibration points. The hand tuning of points is tedious,
imprecise and require user skill [11].

Some tools for automatic camera calibration are avail-
able. The Bouguet MatLab Toolbox [12] implements a
semi-automatic calibration process. The application asks
the user to define four extreme points that represent
the area where an algorithm searches for the calibration
points, given the number of rows and columns of the
pattern. The OpenCV library [13] is a very popular
computer vision library that offers an automatic way to
detect chessboard patterns in images by the findChess-
boardCorners() function. The method performs succes-
sive morphological operators until a number of black and
white contours be identified, subsequently the corners
of the contours make up the calibration point set. The
pattern is recognized only if all rectangles are identified.
In an online system this restriction causes a considerable
loss of image frames, since is not always possible to detect
all the chessboard rectangles.

Fiala and Shu [14] use an array of fiducial markers,
each one with a unique self-identifying pattern. The
described methodology is robust to noise and it is not
necessary to identify the entire calibration pattern. In
the other hand, the markers are complex and require a
special algorithm to recognize them.

Escalera and Armingol [15] identify the calibration
points as the intersections of lines. The methodology
uses a combined analysis of two consecutive Hough trans-
forms to filter the collinear points inside the pattern. The
assumption that all points of interest are collinear makes
this algorithm very sensitive to distortions, limiting its
use only to cameras with low radial distortion.

The system named CAMcal [16] uses the Harris corner
detection and a topological sort of squares within a geo-
metric mesh. Harris corner detection is time consuming,
sensible to noise, needs an empirical threshold to select



interesting points and does not produce good results
to the specific features of the chessboard image [17].
Furthermore, the system must to detect three circles to
determine orientation of the pattern.

This work presents a system for automated detection
of chessboard patterns for camera calibration. Initially a
fast and specific x-shaped corner operator is performed
to retrieve the interesting points. A geometric mesh is
created from all the x-corners by Delaunay triangulation.
A topological filter is proposed. Are taken as valid the
triangles that match with the regularity of the pattern.
The color and the neighborhood of the triangle are
analyzed. Each remaining point defines a valid x-corner
and a refinement location is performed locally.

The calibration process does not depend on full detec-
tion of the calibration pattern. When a minimum number
of points is identified the calibration algorithm may be
executed, in this case the Zhang’s algorithm [8].

2. X-Corner Detector
The first stage of the algorithm is the features de-

tection. Corners x-shaped are identified analyzing the
alternations of high contrast in the neighborhood of each
pixel.

Considering V = {p1,p2, · · · ,pn} the neighborhood
of a central pixel pc, defined by all the pixels in the
border of a Breseham’s circle [18], the number of alter-
nations of high contrast is computed by the Equation
1.

Nalt =
n∑

i=1


1, I(pi) > Th & I(pi−1) < Tl

1, I(pi) < Tl & I(pi−1) > Th

0, otherwise

(1)

where pi ∈ V , I(pi) represents the pixel intensity of pi,
Tl and Th are the inferior and superior threshold respec-
tively. Alternatively, both thresholds can be defined by:
Tl = m−gate and Th = m+gate, with m = 1

n

∑n
1 I(pi).

The pixel pc is classified as a x-corner if Nalt = 4 and
Tl < I(pc) < Th. For the Equation 1, if i = 0, i− 1 = n
is assumed. The Figure 1 shows the considered area by
this detector.
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Fig. 1: Typical x-corner neighborhood.

The variable gate models the operator sensibility.
Considering a previously blurred image, the number of

alternations imposes large part of the restriction required
for a proper classification. Thus the variable gate has
little effect on the final result. In this work gate is defined
with 10 empirically.

This detector can be seen as a specification of the
proposed detector in Rosten and Drummond [19], which
is considered high performance. Since only a small por-
tion of the neighborhood of the pixel is analyzed, the
computational cost of this operation is reduced. Another
similar detectors can be found in Zhao et al. [17] and
Sun et al. [20]. The Figure 2 shows a typical result of
this detector over the original image.

Fig. 2: X-corner operator response.

The formulation of this operator does not guarantee
that only one pixel is classified as a x-corner in its neigh-
borhood. To deal with this problem, the cost described
by the Equation 2 is associated with each corner and a
non-maximum suppression is performed [21].

max

 ∑
pi∈ dark

|I(pi)−m|,
∑

pi∈ light

|I(pi)−m|

 (2)

The classes dark and light contains the dark and light
pixels respectively. The right corner is the one with the
highest associated cost.

3. Topological Filter
The identification of valid corners is an important step

because not all x-corners present in the image belong to
the calibration pattern. In this work, the identification
of valid x-corners is made considering the regularity
neighborhood of the chessboard image. This problem can
be extended to the problem of creating geometric meshes
in computer graphics. In a mesh composed of basic
components such as triangles, vertices are connected
according to their neighborhood [22].

The Delaunay triangulation is a classic problem in
computational geometry. Given a set of points in a
plane, the only valid triangulation is one where the
circumcircle of each triangle contains no other vertex
[23]. This feature ensures that the triangles are formed
by the more closely vertexes. Guibas et al. [24] present an
algorithm for incremental triangulation that that runs in
time O(n log(n)).



With the creation of the mesh the neighborhood of
each feature is defined. Figure 3 gives an example of this
triangulation.
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D

C
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Aresta inválida

Fig. 3: Considering A, B, C and D four image cor-
ners, the valid triangulation if formed by the triangles
∆(A,B,C) and ∆(A,C,D).

Using the geometric mesh, the vertices and triangles
are submitted to a topological filter to exclude those not
satisfying the regularity of the pattern. The corners (or
vertexes) share internal triangles of different colors in a
regular manner. Each square of the chessboard pattern
is represented by two triangles of the same color. Each
triangle has no more than two neighboring triangles that
form two squares with different colors alike. The internal
vertexes have in common a maximum of eight triangles.
Valid triangles have its interior filled with a single color.

Even after the projected image plane, the neighbor-
hood relationship between the corners is still maintained.
This restriction allows us to evaluate if the corners
really belong to the calibration pattern. Thus, they are
considered valid:

1) those triangles that do not have color transitions
in your interior;

2) only those triangles that have a neighbor with the
same color;

3) those triangles that have only two neighbors of the
same color and different color triangle taken as a
reference;

This filter is applied to the grid until there are no
more invalid triangles. In the end, the vertices that do
not form any triangle are also removed.

To avoid the use of thresholds in the comparison of
colors, this filter uses a binarized version of the image.
This is an important step in validating points. If bina-
rization fails, noisy points can be identified and actual
points can be disregarded. To minimize these effects this
work uses adaptive binarization described in the work of
Bradley and Roth [25]. This algorithm handles well with
large variations in illumination and runs in linear time
for any window size.

The binarization phase can be influenced by problems
from the acquisition of images due to lighting variations
and also by the fluctuation of the intensities of the pixels.
In the regions near to the edges a range of values may be

wrongly considered black or white pixels. This behavior
can generate white triangles with black borders and
black triangles with white edges. In practice, verification
color transition is made in a region of the innermost
triangle, ignoring the edges. Figure 4 shows the result
of the topological filtering.

4. Point Correspondences
The next step of the algorithm associates each vertex

to the real coordinates of the pattern. This is done by
analyzing the relative position of each corner. First two
neighboring triangles of the same color are arbitrarily
selected: T1 and T2. Three vertices make up the triangle
T1, the origin of the coordinate system is defined by
the vertex that has T2 as its opposite triangle. For the
remaining vertices are assigned the directions x and y of
the Cartesian plane (Figure 5).

The propagation of coordinates consists in establishing
the relative coordinates of the vertices neighbors. Given
a triangle T whose vertices have already defined coordi-
nates, where the origin is vo, vx and vy are the vertices
with the x and y directions respectively. Tv is defined as
a neighbor triangle of T with a different color. If Tv and
T are neighbors then they share an edge e and Tv has a
opposite vertex to the T , called vv. The coordinates of
the opposite vertex needs to be determined, thus:

• If vx ∈ e, then vv = [v
(x)
t 2v

(y)
t − v(y)y ]

′
;

• If vy ∈ e, then vv = [2v
(x)
t − v(x)y v

(y)
t ]

′
;

It is understood by v(.) the coordinate (.) of vertex v.
Similarly, Top shares a border eop with Tv, then vop =

[v
(x)
h v

(y)
v ]

′
, where vh is the third vertex of Tv and vop

is the opposite vertex to eop.
For each visited triangle, the vertexes coordinates of

the current and opposite triangles are propagated. The
algorithm performs recursively for each neighbor triangle
to the pair Tv and Top. It makes the algorithm O(n

2 ),
where n is the number of triangles in the mesh.

5. Location Refinement
The use of the detector described in section 2 identifies

the position of corners with low accuracy where the only
information available is the position of discrete pixels.
Since the quality of the calibration is directly dependent
to the precision with which the position of features is
found, there is a need for a technique refinement [1].

Traditional algorithms such as Harris and Stephens
detector [26] and Shi and Tomasi [27], run throughout
the image and use thresholds to select the features of
interest. The sub-pixel precision is achieved by maximiz-
ing functions fitted to the square of the intensity profile
of the local neighborhood of each pixel. The threshold
has a direct impact on the quality of response of these
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Fig. 4: Example of the detection and topological filter results. a) X-corners. b) Triangulation and binarized image.
c) The valid triangles after the topological filter.
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Fig. 5: The triangles T1 and T2 define the origin and
the direction of coordinates.

detectors, so corners are usually classified as the N pixels
with greater response to the operator.

Chen et al. [4] propose a new detector specially de-
signed to fit corners of X-shape. Considering the neigh-
borhood of a pixel as a surface, its Hessian matrix can
be expressed as:

H =

[
Ixx Ixy
Ixy Iyy

]
(3)

where Ixx, Ixy and Iyy are the second partial derivatives
of pixel I(x, y). Thus, the x-corner detector is described
as:

S = λ1 · λ2 = IxxIyy − I2xy. (4)

where, λ1 and λ2 are the eigenvalues of H.
In order to avoid unnecessary computation, this op-

erator is only applied in regions defined by the valid
vertices of triangle mesh. The x-corner can be detected
by identifying the largest negative value of S and the
refined coordinates (x0 + s, t+ y0) is given by:

s =
IyIxy − IxIyy
IxxIyy − I2xy

, t =
IxIxy − IxIxx
IxxIyy − I2xy

(5)

6. Experimental Results
In this section, the detector response is evaluated

considering an image database and by means of experi-
mental tests with two different cameras.

The image database is provided by the toolbox for
MatLab prepared by Bouguet [12]. This database con-
sists of 20 images of a chessboard calibration pattern, ac-
counting 156 x-corners arranged as 12×13 matrix, being
presented in different orientations. This set represents a
common situation to most of systems where the pattern
images are first captured and calibration is performed in
an offline manner.

Figure 6 shows some examples of these images and Ta-
ble 1 summarizes the results obtained for each one. The
results are generated by applying the algorithm in each
image and counting the number of corners identified. For
Table 1, the vast majority of points is detected.

The mean accuracy of the algorithm is 85.38% however
two images (Image 5 and 18) deserve attention by the low
percentage of success. They represent situations where
the calibration plane is very inclined to the camera. In
this case it is expected that the corners are uncharac-
terized by high perspective distortion and lack of focus
in the image. Another aspect to be considered is that
the images in this database have low contrast, which
complicates the identification of alternations of high
contrast.

In general, the algorithm was able to find the most
calibration points. If the two worst images are discarded,
the accuracy of success rises to 90.88%, which reflects
the efficiency of the methodology. The Figure 7 shows
the worst and best results of the algorithm.

For the online experiments, we used two different cam-
eras: (1) Philips Webcam SPC990NC e (2) Microsoft We-
bcam HD 5000. The calibration pattern used is formed
by squares with 2.5cm of width and forms a matrix of
11 × 7 x-corners. For each camera, were tested 14 real
images of the calibration pattern in various orientations
and distances.

The algorithm runs on a sequence of captured frames.
The amount of detected points, presented in the second
and fourth column of Table 2 corresponds to the average
of the points detected in 10 frames for each position of



(a) Image 1 (b) Image 2 (c) Image 4 (d) Image 9 (e) Image 17 (f) Image 19

Fig. 6: Images of the Bouguet database.

Image 1 2 3 4 5 6 7 8 9 10
Corners 151 154 147 153 51 149 132 110 143 153

(%) 96.79 98.72 94.23 98.08 32.69 95.51 84.62 70.51 91.67 98.08

Image 11 12 13 14 15 16 17 18 19 20
Corners 152 155 156 138 121 154 155 61 111 118

(%) 97.44 99.36 100.00 88.46 77.56 98.72 99.36 39.10 71.15 75.64

Table 1: Results for the Bouguet database.

(a) Image 5 (b) Image 18 (c) Image 13 (d) Image 17

Fig. 7: Worst (Image 5 and 18) and best (Image 13 and 17) results in the Bouguet database.

HD 5000 SPC900nc
x-corners % x-corners %

Image 00 77 100 73 94.80
Image 01 77 100 77 100
Image 02 77 100 77 100
Image 03 73 94.80 76 98.70
Image 04 77 100 73 94.70
Image 05 77 100 77 100
Image 06 77 100 76 98.70
Image 07 77 100 77 100
Image 08 77 100 77 100
Image 09 77 100 76 98.70
Image 10 75 97.40 72 93.50
Image 11 70 90.90 76 98.70
Image 12 72 93.50 75 97.40
Image 13 70 90.90 77 100

Mean: 97.68 98.23

Table 2: Results for the online detection.

the calibration pattern.
The Figure 8 shows some of the images used in the

second experiment. Once the pattern is completely visi-
ble, the algorithm has a high hit rate, while the missed
corners tend to arise when there is a more accentuated

inclination of the plane in relation to the camera. In these
images no false positives were identified, which confirms
the robustness of the filter used.

To illustrate the efficiency of the filter topological and
propagation of coordinates, Figure 9 illustrates the result
of the algorithm using complex backgrounds and partial
occlusion of the pattern. The occluded corners do not in-
terfere in the propagation of correct coordinates. Thus, it
is possible to use the maximum of features identified for
the estimation of camera parameters. The last column
shows the reprojection plan calibration calculated from
the detected points.

7. Conclusions
This work proposes a methodology for detecting cal-

ibration patterns. The experimental results show that
it is possible to detect these patterns in a robust and
automatic without the use of thresholds. Furthermore, a
low computational cost is achieved, since the refinement
of X-corners is directed to specific regions of the image.
The filtering of topological corners-X allows handle cam-
eras with radial distortion and high immunity to noise. A



partial identification of the pattern allows the calibration
process is considering giving maximum points detected.
In conditions where few points are detected, most picture
frames are utilized.
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Fig. 8: Example of images used in the second test. The left column shows all x-cornes and the triangulation. The
right column shows the topological filter result.

Fig. 9: Results with complex backgrounds and partial occlusion.
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