
Voxel-based object representation by means of edging trees

L. A. Martínez1, E. Bribiesca2, and A. Guzmán3

1Instituto de Astronomía,
Universidad Nacional Autónoma de México,

México, D. F., México
2Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,

Universidad Nacional Autónoma de México,
México, D. F., México

3Centro de Investigación en Computación,
Instituto Politécnico Nacional,

México, D. F., México

Abstract— A method is described for representing voxel-
based objects (VBOs) by means of edging trees (EdTs).
Given a VBO, an EdT is a tree which traces the borders
of the object. The vertices of the EdT correspond to the
vertices of the enclosing surface where some of them have
been conveniently hidden in order to get a 1D representation.
The computed EdT is represented by a base-five digit chain
code descriptor suitably combined by means of parentheses.
The EdT notation is invariant under rotation and translation,
using this notation it is possible to obtain the mirror image of
any VBO with ease. The EdT notation preserves the shape of
VBOs. The proposed EdT notation is a good tool for storing
of VBOs. Due to their features, EdTs can be considered as
a 1D alternative to skeletons for representing VBOs.

Keywords: Voxel-based objects, edging trees, chain coding, 3D
tree representation

1. Introduction
Representation of voxel-based objects (VBOs) is an im-

portant topic in computer vision and pattern recognition;
accordingly, getting means of representation that provide an
object of lower dimension that can be used for analysis
and recognition has attracted attention of many research
groups. Several methods with different approaches have been
proposed to get representations of this kind of objects. One
of such representations consists of line-like that can be
transformed into 1D representations [1], by means of chain
codes, convenient for tasks related with pattern recognition.

Recently a new method to represent VBOs was proposed
by Bribiesca et. al. [2]. In this representation a base-five
digit chain code so-called 5OT that describes orthogonal
direction changes of straight-line segments is used to define
an enclosing tree (EcT) that traverses all the vertices of a
VBO. The vertices of an EcT correspond to the vertices of
the enclosing surface of the analyzed VBO. Although EcTs
can be used for pattern recognition, they may over-represent

a VBO specially on planar faces where convenient hidden
vertices lead to a simplified tree without loss of information.

We are proposing a method for representing VBOs by
means of edging trees (EdTs), as a first step in the de-
velopment of an optimal representation based on the EcTs
idea, which trace the borders of the object. The main aim of
EdTs is to obtain a rough draft, as is the case of skeletons,
of an object and representing it by means of the 5OT
code. The EdT notation has several interesting properties
such as to be invariant under rotation and translation, it is
possible to obtain the mirror image of any VBO with ease.
EdTs preserve the geometrical information of the underlying
object and it can be recovered with ease from its EdT. In this
connection, it should be noted that the 5OT chain code has
shown be useful to represent 3D tree objects [3], to define a
measure for shape dissimilarity of 3D curves [4] as well as to
conduct compression efficiency studies of three-dimensional
discrete curves [5], among other applications.

In order to offer a preliminary comparison, Figure 1 shows
different representations for a given 3D object consisting of
11 × 11 × 11 voxels (a): (b) is the skeleton obtained with
the clasical prairie fire transformation [6], (c) is an EcT, and
(d) the proposed EdT.

The paper is organized as follows. Section 2 presents the
5OT chain code and some preliminary definitions. Section
3 gives the method for generating EcTs. In Section 4, the
definition of EdTs is presented, as well as some examples.
Some properties of EdTs are given in Section 5.

2. The 5OT chain code
Before moving into the description of the 5OT chain

code there are some preliminary concepts and remarks to be
presented in this section. It is assumed that we will work only
with VBOs. The length of each edge of voxels is considered
equal to one, therefore the area of every face of each voxel is
considered equal to one. There are three ways of connecting
voxels: by edges, vertices, and faces. In the context of this



(a)

(b)

(c)

(d)

Fig. 1: Comparison of different representations of a given
3D voxel-based object (a): (b) is the praire fire skeleton, (c)
is an enclosing tree and (d) an edging tree.

paper, we only consider face-connected voxels, i.e. voxels
with six-connectivity. The area of the enclosing surface of
an object composed of a finite number of voxels, corresponds
to the sum of the areas of the voxels located on the visible
faces of the solid. The chain descriptor of an object is
defined by the computation of the chain elements using the
nested-parentheses notation for trees. Following graph theory
basic definitions, EcTs and EdTs describe trees of maximum
degree six in three dimensions, this is due to the fact that
EdTs only represent face-connected VBOs.

A chain a is an ordered sequence of n elements, and is
represented by a = a1a2a3 . . . an = {ai : 1 ≤ i ≤ n}.
An element ai ∈ {0, 1, 2, 3, 4} of a chain in the 5OT code
indicates the orthogonal direction change of the contiguous
straight-line segments of the 3D branch in that element
position. Two contiguous straight-line segments of a branch
define a direction change and two-direction changes define
a chain element. If the consecutive sides of the reference
angle have directions b and c as shown in Figure 2(b), and
the side from the vertex to be labeled has direction d (from
here on, by direction, we understand a vector of length 1),
then the chain element is given by the following function:

chain element(b, c, d) =



0 if d = c,

1 if d = b× c,

2 if d = b,

3 if d = −(b× c),

4 if d = −b,

(1)

where × denotes the vector product in R3. The elements
b and c constitute the handle.

Figure 2 summarizes the rules for labeling the vertices
depending on the position of such an angle with respect
to the preceding handle in the path. Figure 2(a) shows an
example of a tree plotted over a VBO, and how function
(1) is used to define its 5OT chain code descriptor. The
dot indicates the initial tree vertex. Using the only five
possible chain elements of Figure 2(b) given by function
(1), a tree descriptor is constructed as new tree vertices are
being discovered.

The procedure to find the tree descriptor is as follows:

1) Select an arbitrary end vertex of the tree as the origin.
In Figure 2(c) the selected origin is represented by a
sphere.

2) Compute the chain elements of the tree. Figure 2(c)
shows that the first computed element of the chain
corresponds to a “0” because the first straight-line
segment follows the direction of the last segment. The
second element corresponds to the chain element “1”
and the handle is still the same as for the first chain
element. Note that the dotted arrows indicate only



(a) An example of tree plotted over a voxel-based
object.

b

c

d=1

d=2
d=3

d=0

d=4

(b) Given the handle and vectors b
and c, the five possible chain ele-
ments are shown.

0

1
4

2
0

2

1

4

3

0

(c) The first four chain elements of an example
of a tree and its corresponding partial descrip-
tor: 0142.

0

1
4

2

3

4

1

2

3

1

0

0

3

(d) The chain elements of the same tree and its
complete tree descriptor: 0142(1002)(33).

Fig. 2: Example of a chain elements computation defined by
function (1).

three of the five directions. At the end of this stage
the chain is as follows: 0142.

3) It is a known fact that trees can be represented by
a notation that uses nested parentheses. Using this
notation the next chain element of the tree will be
computed. In Figure 2(d) a vertex which is a junction
has been reached. In order to decide what direction
to go, in the case of Figure 2(d), there are only two
possible ways represented by the chain elements “1”
and “3” as indicated by the function (1) applied to the
new handle. Note that around a branch, it is necessary
to know what nonzero element was the last one to
define the next element. This ensures that orientation is
not lost. The directions are selected in numerical order.
Thus, the first selected direction is represented by the
chain element “1” and 0142(1002) is the descriptor
at this stage. The nested parentheses describe the
branch whose chain is (1002). After coming back to
the junction node and compute the chain of the next
branch, the tree descriptor is equal to 0142(1002)(33).

3. Enclosing trees
The enclosing trees (EcTs) were proposed as a 5OT chain

code based alternative to represent VBOs [2]. EcTs are trees
which cover each vertex of the visible surface of VBOs and
provide a base-five digit strings suitably combined by means
of parentheses 1D representation. The vertices of the EcTs
correspond to the vertices of the enclosing surface of the
analyzed object.

The EcTs computation process using the trees descriptor
is as follows:

1) Select an arbitrary vertex of the enclosing surface of
the VBO as the origin of the EcT.

2) Choose an arbitrary direction to define the chain
elements. The first direction change is composed by
two contiguous straight-line segments that will form
the first reference handle.

3) Compute the chains that form the enclosing tree:
a) Following the numerical order determined by the

directions obtained in the previous step, search
for the neighbor vertices of the enclosing surface
of the object.

b) Repeat the above step until all vertices of the
enclosing surface have been reached by the en-
closing tree.

Figure 3 illustrates the example of the smallest EcT that
can be computed. This is the case for an object consisting
of only one voxel. Figure 3(a) shows the original voxel, the
initial vertex and the arbitrary direction chosen to conform
the first handle to starting the EcT. Figure 3(b) displays
the first junction node with the only two possible ways to
continue the tree which coincide with chain elements “3”
and “4”. In this stage the tree descriptor is (3)(4). In the



(a) Initial handle (b) (3)(4)

4

1

3

4

(c) (3(1)(4))(4)

4

1

3

3

4

(d) (3(1(3))(4))(4)

Fig. 3: Enclosing tree computation process for a voxel.

next stage, the processing restarts over the path indicated by
the chain “3” because it is the lowest number. Figure 3(c)
shows the neighbor vertices reached through the vertex that
represents the chain element “3”. Those vertices match with
the chains “1” and “4”. Thus the tree descriptor in this stage
is (3(1)(4))(4). The tree descriptor cannot follow through the
chain element “4” because all its neighbor vertices have been
previously visited. Figure 3(d) shows the final stage of the
EcT, and its tree descriptor is as follows: (3(1(3))(4))(4).

Figure 4 presents another example of EcT, in this case the
underlying object is a pivoted lever. For a complete review
of EcTs and their properties, see Ref. [2].

4. Edging trees
There are solids whose surfaces can be represented with-

out going through all the vertices that make up those
surfaces. In these cases, it can be considered that EcTs over-
represent the VBO. Figure 1(c) shows an EcT and Figure
1(d) presents an EdT for a 11 × 11 × 11 voxel VBO in
which the EcT is considerably more complex than the EdT.
The aim of EdTs is to cover VBOs traveling through their
edge and represent it by means of a tree descriptor. The basic
idea is to obtain a representation similar to a 1D skeletal
representation via the 5OT chain code in which the planar
faces of the 3D object have replaced by the border of the
face. Figure 5 shows an example in which its EdT can be a
more convenient representation than the corresponding EcT,
especially for manufactured parts. Figure 7 presents another
example of VBO and its respectie EdT. The chain descriptors
of Figures 4, 5 and 7 were omited.

(a)

(b)

Fig. 4: A pivoted lever (a) with its computed enclosing tree
(b).

Fig. 5: Edging tree computed for the pivoted lever shown in
Figure 4.

In order to compute an EdT it is necessary to omit some
vertices in the computation process described in section 3.
The candidates are those that have a planar neighborhood.
The xy-planar neighborhood of v, denoted by Nxy(v), is
the set of 6 and 18-neighbors of v which lie on a plane
parallel to the plane z = 0. Nxz(v) and Nyz(v) are the
planar neighborhoods parallel to planes y = 0 and x =
0, respectively (see Figure 6(a) for an example of planar
neighborhood). Figure 6(b) shows a planar neighborhood
of v. Also it is a shown a vertex w which has no planar
neighborhoods.

It should be noted that if a vertex has a planar neigh-



v

(a) Planar neighborhood of v.

v

w

(b) Planar neighborhood of w on a 2× 2× 2
voxel-based object. The vertex w has no planar
neighborhoods.

Fig. 6: Planar neighborhoods for a vertex v which lie over
the surface of a VBO.

borhood then it belongs to a face on the surface of the
VBO like v in Figure 6(b). Vertices that have no a planar
neighborhood like w will constitute the border. Thus, the
EdT computation process is the same as that used to compute
EcTs except it includes a step 0 in which vertices that have
a planar neighborhood are detected and omited from the
VBO vertices list before applying the procedure described
in section 3.

5. Some properties of edging trees
Given a VBO its EdT chain code notation is invariant

under rotation. Once the starting vertex and the handle have
been determined the EdTe is constructed using the relative
direction changes based on the local handle which is not
affected by a rotation of the underlying object [3].

Using the tree descriptor, the mirror image of any tree
is obtained with ease. If a is a tree descriptor, its mirror
descriptor can be obtained by replacing in a each occurrence
of “1” by “3” and vice versa [3].

Given the descriptor of an EdT, the surface vertex list
of the underlying 3D object can be recovered with the
exception of those vertices omited because having planar
neighborhoods. Due to the fact that the descriptor starts after
the initial handle, the coordinates recovering will depend on
the initial directions selected by the user in the first step
of the process. Notice that every opening parenthesis “("
represents a tree node. The nested parentheses notation for
trees used by the 5OT chain code corresponds to a pre-order
depth-first search traversing [7], as a result the list shall have
the same ordering.

(a)

(b)

Fig. 7: Another example of VBO and its corresponding
enclosing tree.

Whereas EcT notation may be used for lossless com-
pression of VBOs because it preserves information and
allows considerable data reduction [2]. EdTs can get a
higher compression ratio. A priori is difficult to establish
the reduction in the descriptor length when EdTs are used
instead of EcTs due to the fact that the number of vertices
to be deleted changes and varies according to the processed
VBO. As a consequence of the selective deleting of surface
vertices on planar faces, EdTs can reach every vertex in
zones of VBOs that cannot be simplified. In fact, in the
worst case when no vertices can be suppressed, EdTs are
the same as EcTs.

6. Acknowledgments
L.A.M. acknowledges a DGAPA-UNAM grant and sup-

port from Instituto de Astronomía, Universidad Nacional
Autónoma de México. This work is part of a doctoral
dissertation under the direction of Prof. Bribiesca.

References
[1] A. Guzmán, “Canonical shape description for 3-d stick bodies”, MCC

Technical Report, Austin, TX. 78759, Tech. Rep. ACA-254-87, 1987.
[2] E. Bribiesca, A. Guzmán A and L. A. Martínez, “Enclosing trees”,

Pattern Anal. Applic., vol. 15, pp. 1-17, 2012.



[3] E. Bribiesca, “A method for representing 3D tree objects using chain
coding”, J. Visual Commun. Image Represent., vol. 19, pp. 184-198,
2008.

[4] E. Bribiesca and W. Aguilar, “A measure of shape dissimilarity for
3D curves”, Int. Journal of Contemp. Math. Sci., vol. 15, pp. 727-751,
2006.

[5] H. Sánchez-Cruz and E. Bribiesca, “Study if compression efficiency
for three-dimensional discrete curves”, Opt. Eng. . 47 (7), 077206, july
2008.

[6] R. O. Duda and P. Hart, Pattern Classification and Scene Analysis,
Wiley, New York, 1973.

[7] D. Knuth, The Art of Computer Programming, Volume 1: Fundamental
Algorithms, 3rd ed., Addison-Wesley, 1997.


