
Illumination and Rotation Invariant Texture Representation

Xiangyan Zeng, Masoud Naghedolfeizi, Sanjeev Arora,
Nabil Yousif, Ramana Gosukonda, Dawit Aberra

Department of Mathematics and Computer Science, Fort Valley State University, Fort Valley, GA, USA

Abstract— In this paper, we propose a new feature for
texture representation that is based on pixel patterns and is
independent of the variance of illumination and rotation. A
gray scale image is transformed into a pattern map in which
edges and lines used to characterize the texture information
are classified by pattern matching. The Gabor filters can
enhance edge features, however, are not effective in edge
pattern classification. We extract the pattern templates from
image patches by Principal Component Analysis (PCA).
Based on the pattern maps, the feature vector is comprised
of a sorted histogram. The calculation of the features is
simple and computationally efficient compared with other
illumination and rotation invariant texture schemes
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1. Introduction
Texture analysis is important for many research topics of

computer vision and pattern recognition. Two main cate-
gories of techniques are texture classification and texture
segmentation, which have applications in content-based im-
age retrieval, surface inspection, remote sensing and medical
image analysis. In the real world problems, textures occur
irregularly at arbitrary resolutions and orientations with
possibly varied illumination. Therefore, an effective texture
measure should be resolution, gray-scale and rotation invari-
ant. For texture segmentation problems, low computational
complexity is another important consideration.

In the last two decades, many algorithms have been
proposed for texture analysis. The research work can be
categorized into three lines, including statistical analysis[1],
filtering including wavelet transform [2][3], and local pattern
methods[4][5]. Some have incorporated at least one prop-
erty of resolution, gray-scale and rotation invariance. For
instance, methods based on local patterns generally construct
the features from the pattern of a small neighborhood (3x3 or
5x5) instead of pixel gray scale values and naturally remove
the illumination variance influence. An up-to-date successful
representative is the methods based on the local binary
pattern (LBP). These methods obtain the feature vector from
the histogram of binary patterns representing comparison of
pixels gray scales in a circular local neighborhood. Rotation
invariance is achieved by either circularly shifting the circles
or performing a global match of the histograms.

In this paper, we extend a method that was proposed in
[6] for texture representation that is very simple to calculate
and free of the influence of illumination and rotation. A
gray scale image is first transformed into a pattern map in
which edges and background pixels are classified by pattern
matching which is implemented by convolution. Fast Fourier
transform can speed up this operation. Then, the feature
vector is obtained from the sorted histogram of the pattern
map within the texture window. The local spatial feature is
extracted through pattern matching and structural rotation
effect is removed by sorting the histogram. The statistics of
this one map is much simpler than the up-to-date rotation
invariant texture features.

To get a pattern map, we need to design a set of pattern
templates and assign a pixel to a pattern that matches the
neighbor region best. Gabor filter bank can extract texture
features, however, it is demonstrated by our experiments that
Gabor filters [7] are not effective as the pattern templates in
the case that the textures are irregular and non-periodic. A
natural way to get the templates is to analyze the image
coding process and utilize the basis functions. We apply
PCA to nature scene patches and use the basis functions
as templates for pattern matching. The differences between
these PCA basis functions and those of gradient operators
are in that: instead of being designed by mathematics, they
are obtained from the statistical analysis and represent the
neighbor relationship of real images. As we will see in the
following sections, pattern maps obtained by using PCA
basis functions generally reflect edge and line features rather
well. Hence PCA basis functions are good candidates for
templates in pattern matching.

This paper is organized as follows. Section 2 briefly
describes the background of texture representation using
local binary patterns. In section 3, a texture feature based
on pattern maps is proposed for texture representation. In
section 4, experimental results are presented to demonstrate
the effectiveness of the new method. Section 5 gives the
conclusion.

2. Texture Feature Extraction by Local
Binary Pattern (LBP)
2.1 Illumination invariant LBP

LBP is a texture descriptor for gray scale images. In
the following discussion of LBP, we assume that a local
neighborhood is centered on pixel gc. The P pixels in the



neighborhood form a clockwise circular chain with a radius
R and are indexed as (g0, g1, . . . , gP−1) . LBP feature is
illumination invariant. For each pixel gc , the gray scale value
is first transformed into a binary chain through thresholding:

(s (g0 − gc) , s (g1 − gc) , . . . , s (gP−1 − gc)) (1)

where

s(x) =

{
1 x > 0

0 x < 0
(2)

And the LBP feature of the pixel is obtained by multiplying
each binary value with a binomial factor:

LBPP,R =

P−1∑
p=0

s(gp − gc)2
p (3)

After identifying the LBP pattern of each pixel, a N ×M
texture image is represented by the histogram:

H(k) =

N∑
i=0

M∑
j=0

f(LBPP,R(i, j), k), k ∈ [0,K] (4)

where

f(x, y) =

{
1 x = y

0 otherwise
(5)

and K = 2P is the maximum LBP pattern value. H(k)
quantifies the frequency of individual patterns corresponding
to certain micro-features and represents the spatial structure
of textures in the image.

2.2 Rotation invariant LBP
The LBP feature was modified to achieve rotation invari-

ance.

LBP ri
P,R = min{ROR (LBPP,R, i) , i = 0, 1, . . . , P − 1}

(6)
where ROR (x, i) performs a circular bit-wise right shift i
times on the P bits of x.

2.3 Uniform patterns in LBP
The pattern value range in the above LBP is very wide.

It has shown that LBP with the full range of patterns does
not provide good discrimination[4]. It has been noticed that
certain patterns are fundamental properties of textures. They
are the “uniform” patterns which have very few (≤ 2) 0/1
bitwise transitions. For patterns of 8 bits, 00001000 has 2
bitwise transitions and is a uniform pattern, while 00101000
is not because it has 4 transitions. The number of “uniform”
patterns is very manageable. For instance, 8 bits only have 9
distinct “uniform” patterns: 00000000, 00000001, 00000011,
00000111, 00001111, 00011111, 00111111, 01111111, and
11111111. These patterns can be represented by the numbers
of ‘1’s regardless of their locations. Therefore, the binomial

factor in Equ. (3) is not needed. The new LBP descriptor that
only uses the “uniform” patterns and is rotation invariant is
defined as:

LBPuri
P,R =


P−1∑
p=0

s(gp − gc) U(LBPP,R) ≤ 2

P + 1 otherwise

(7)

where the U value of an LBP pattern is defined as the
number of 0/1 bitwise transitions in that pattern

U (LBPP,R) = |s (g0 − gc)− s (gP−1 − gc) |
+
∑P−1

p=1 |s (gp − gc)− s (gp−1 − gc) | (8)

“Uniform” patterns resemble flat areas and edges of varying
curvature in images. “Nonuniform” patterns generally have
much low frequency and will be grouped into one bin in the
histogram.

3. A New Feature for Texture Represen-
tation
3.1 Texture feature extraction by pattern
matching

In this section, we propose a new template pattern feature
extraction method. The idea is also representing image
textures by the frequency of certain patterns. However, the
patterns are solid instead of consisting of only rim pixels
as in LBP. Pattern labels are obtained through a template
matching process.

A gray scale image is first transformed into a pattern
map in which edges and background pixels are classified by
pattern matching. Given a gray scale image X, convolution
is performed with a set of K pattern templates of size S×S
{wi, i = 1, . . . ,K} ,

Ci = wi ∗ X (9)

The pattern label of a pixel (i, j) is obtained:

PL (i, j) = k (10)

where

Ck (i, j) = max{Cl (i, j) , l = 1, . . . ,K} (11)

The value of a pixel in the pattern map PL is the pattern
label of its neighborhood in the original gray scale image
X. After identifying the pattern of each pixel, a N × M
texture image is represented by the histogram of patterns:

His (k) =

N∑
i=1

M∑
j=1

f (PL (i, j) , k) , k ∈ [1,K] (12)

where

f(x, y) =

{
1 x = y

0 otherwise
(13)



Fig. 1: 348× 348 nature scene images

3.2 Rotation invariant texture feature
The above feature is easily modified to achieve rotation

invariance. Pixels assigned to the same pattern will be
assigned to another but still the same pattern after rotation.
Based on this observation, a sorted histogram is rotation
invariant.

SORT (His (k)) , k ∈ [1,K] (14)

3.3 Pattern templates obtained by principal
component analysis

Pattern templates represent the spatial features in an image
and reflect that how a pixel is related to its neighboring
pixels. A common method in statistics for analyzing inter-
relations between variables is principal component analysis
(PCA). Imagine that each image has been formed by a
linear combination of basis functions that are the same
for all images. The basis functions obtained from principal
component analysis of a series of image patches represent
the general relationship among neighboring pixels. Han-
cock has conducted principal component analysis of natural
images and found that the basis functions resemble the
derivatives of Gaussian operators [8]. In our work, PCA basis
functions are used as the templates in the pattern matching
process. We randomly choose 15000 4 × 4 block samples
from two 348 × 348 nature images shown in Fig. 1 and
obtain sixteen basis functions shown in Fig. 2. An important
question concerns the selection of templates. Since PCA
basis functions are sorted in order of decreasing variances,
the templates of lower spatial frequencies account for the
main part of the variance and are located in the front. It
is logical to select the first several PCA templates which
represent the most dominant relationships. The first basis is
a Gaussian operator and is excluded in pattern matching.

4. Experimental Results
To demonstrate the effectiveness of the new texture feature

extraction algorithm, we conducted simulation experiments
of texture segmentation and compare the results with those
of rotation invariant LBP. In the texture classification phase,
different similarity measures have been used in the literature.

Fig. 2: Sixteen 4× 4 PCA basis functions

In the segmentation circumstance, we use K-means which is
a simple and efficient way to cluster data. In all the cases,
we assume the number of cluster is known a priori.

Two images of 512× 512 shown in Fig. 3 were tested in
the experiment. The first image has five small scale textures
which are relatively regular, while the second image has
large scale textures. Both images contain a center portion
which is a rotated texture. We selected the first 10 PCA
templates except the Gaussian filter to transform the gray
scale images into pattern maps. Template matching was
performed using PCA basis functions and the pattern maps
are shown in Fig. 4. Even though the value range of PCA
pattern maps is much smaller than that of the original
gray scale images, the structure of the textures are visually
clear. The illumination variance in the fourth quadrant of
image1 was removed in the corresponding PCA pattern map
as shown in Fig. 4 (a). Based on the PCA pattern maps,
the feature defined in Section 3.2 was determined within a
N × M neighborhood window of each pixel, and the K-
means algorithm was used for clustering the feature vectors
into 4 classes. To focus on the spatial structure characteris-
tics in texture classification/segmentation, we discarded the
contrast (i.e. gray-scale variance) used in other related works
[4][5]. We also segmented the images using rotation invariant
LBP8,1 , and LBP16,2 . The segmentation results of the two
images using the three texture descriptors are shown in Fig.
5 and 6, in which white dotted lines are displayed to show
the boundaries between textures. Most misclassified pixels
are near the boundaries of textures, which can be alleviated
by more sophisticated classification methods.

As shown in the results, LBP8,1 was very effective in dis-
criminating small scale textures but not large scale textures.
For the second image with larger scale textures, LBP16,2

was used to achieve reasonable segmentation result. With the
similar classification performance, the texture feature of LBP
methods was much more computationally intensive. This is
due to the complicated pixel-based operations for obtaining
the pattern labels. In the meantime, the template matching
in the proposed method is basically a convolution process,
which is very fast and the computation time does not increase



(a) (b)

Fig. 3: Original texture images (a) image1, (b) image2

(a) (b)

Fig. 4: PCA maps of (a) image1, (b) image2

(a) (b) (c)

Fig. 5: Segmentation results of image1 with a texture window of 60× 60.
(a) the proposed feature, (b) LBP8,1, (c) LBP16,2

significantly with a different template size. The computation
time of the three texture features for an image of 512× 512
is shown in Table 1, which includes three different feature
window sizes.

The feature window size affected the segmentation ac-
curacy as it does in other segmentation approaches. In
this experiment, we compared the performance of the three
texture descriptors using 60 × 60, 80 × 80, and 100 × 100



(a) (b) (c)

Fig. 6: Segmentation results of image2 with a texture window of 100× 100.
(a) the proposed feature, (b) LBP8,1, (c) LBP16,2

windows. The results are shown in Table 2 and 3. It is
noted that smaller windows give better results for small scale
textures in the first image, and larger windows yield better
results for large scale textures in the second image.

5. Conclusion
Illumination and rotation invariance are highly desired for

texture analysis in real world problems. Most approaches
achieve these properties at the cost of intensive computation.
This paper proposed a method that is simple yet effective in
discriminating texture images. Using PCA basis functions
of nature images as pattern templates can extract edges
which are important components of textures. Sorting the
histogram of pattern labels provides invariance to rotation.
Compared to LBP methods whose computational cost dra-
matically increase with the neighborhood size, the proposed
method is computational efficient for pattern templates of
different sizes. The proposed texture feature can be used
for texture segmentation and classification. The simulation
experiments in texture segmentation indicated that it may be
complementary to LBP in discriminating large and irregular
textures. A future research direction is to combine both to
achieve the best performance.
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