
Vision-Based Localization and Text Chunking of Nutrition Fact 

Tables on Android Smartphones 

 

Vladimir Kulyukin
1
, Aliasgar Kutiyanawala

1
, Tanwir Zaman

1
, and Stephen Clyde

2
 

1
Department of Computer Science, Utah State University, Logan, UT, USA 

2
MDSC Corporation, Salt Lake City, UT, USA 

 
 

Abstract—Proactive nutrition management is considered 

by many nutritionists and dieticians as a key factor in reducing 

and controlling cancer, diabetes, and other illnesses related to 

or caused by mismanaged diets. As more and more individuals 

manage their daily activities with smartphones, smartphones 

have the potential to become proactive diet management tools. 

While there are many vision-based mobile applications to 

process barcodes, there is a relative dearth of vision-based 

applications for extracting other useful nutrition information 

items from product packages, e.g., nutrition facts, caloric 

contens, and ingredients. In this paper, we present a vision-

based algorithm to localize aligned nutrition fact tables 

(NFTs) present on many grocery product packages and to 

segment them into text chunks. The algorithm is a front end to 

a cloud-based nutrition management system we are currently 

developing. The algorithm captures frames in video mode 

from the smartphone’s camera, localizes aligned NFTs via 

vertical and horizontal projections, and segments the NFTs 

into single- or multi-line text chunks. The algorithm is 

implemented on Android 2.3.6 and Android 4.2. Pilot NFT 

localization and text chunking experiments are presented and 

discussed. 

Keywords—computer vision; image processng; vision-based 

nutrition information extraction; nutrition management 

I.  Introduction  
According to the U.S. Department of Agriculture, U.S. 

residents have increased their caloric intake by 523 calories 

per day since 1970. A leading cause of mortality in men is 

prostate cancer. A leading cause of mortality in women is 

breast cancer. Mismanaged diets are estimated to account for 

30-35 percent of cancer cases [1]. Approximately 47,000,000 

U.S. residents have metabolic syndrome and diabetes. 

Diabetes in children appears to be closely related to increasing 

obesity levels. Many nutritionists and dieticians consider 

proactive nutrition management to be a key factor in reducing 

and controlling cancer, diabetes, and other illnesses related to 

or caused by mismanaged or inadequate diets. 

Surveys conducted by the American Dietetic Association 

(http://www.eatright.org/) demonstrate that the role of 

television and printed media as sources of nutrition 

information has been steadily falling. In 2002, the credibility 

of television and magazines as sources of nutrition 

information were estimated at 14% and 25%, respectively. In 

contrast, the popularity of the Internet increased from 13% to 

25% with a perceived credibility of 22% in the same time 

period.  Since smartphones and other mobile devices have, for 

all practical purposes, become the most popular gateway to 

access the Internet on the go, they have the potential to 

become proactive diet management tools and improve public 

health.  

Numerous web sites have been developed to track caloric 

intake (e.g., http://nutritiondata.self.com), to determine caloric 

contents and quantities in consumed food (e.g., 

http://www.calorieking.com), and to track food intake and 

exercise (e.g., http://www.fitday.com).  Unfortunately, many 

such sites either lack mobile access or, if they provide it, 

require manual input of nutrition data. Manual input 

challenges on smartphones are well documented in the 

literatures (e.g., [2], [3]).  

One smartphone sensor that can alleviate the problem of 

manual input is the camera. Currently, the smartphone 

cameras are used in many mobile applications to process 

barcodes. There are free public online barcode databases (e.g.,  

http://www.upcdatabase.com/) that provide some product 

descriptions and issuing countries’ names. Unfortunately, 

since production information is provided by volunteers who 

are assumed to periodically upload product details and to 

associate them with product IDs, almost no nutritional 

information is available and some of it may not be reliable. 

Some applications (e.g., http://redlaser.com) provide some 

nutritional information for a few popular products. 

While there are many vision-based applications to process 

barcodes, there continues to be a relative dearth of vision-

based applications for extracting other types of useful nutrition 

information from product packages such as nutrition facts, 

caloric contents, and ingredients. If successfully extracted, 

such information can be converted it into text or SQL via 

scalable optical character recognition (OCR) methods and 

submitted as queries to cloud-based sites and services.  

http://nutritiondata.self.com/
http://www.calorieking.com/
http://www.fitday.com/
http://www.upcdatabase.com/
http://redlaser.com/


Another problem and challenge for mobile computing is 

eyes-free access to nutrition information for visually impaired 

(VI), blind, and low vision smartphone users. One tool that is 

frequently mentioned in the literature for eyes-free access to 

print matter is the K-NFB reader (www.knfbreader.com). The 

K-NFB reader is a mobile OCR software tool for Nokia 

mobile phones.  Given lower incomes of many VI and blind 

individuals, the cost of this technology ($2,500 per phone 

installation), quite possibly, puts it out of reach for many VI 

users. K-NFB users are required to learn to effectively align 

print matter with the camera, which may not be a problem for 

dedicated users but may dissuade others from adopting this 

technology. More importantly, K-NFB users are required to 

use small mobile phone keys for navigation and input. The 

speaker volume is too low for use in outdoors and noisy places 

such as shopping malls.  

In a series of evaluation experiments conducted by the K-

NFB system’s developers and published at the company’s web 

site, the system accurately identified simple black on white 

text but did not perform well on documents with color 

graphics and images, large signs, mixed and italic fonts.  The 

current version of the system cannot read round containers 

such as cans or products with colored fonts and images and 

can read flat top boxes only if the text is plain black on white, 

which is a serious limitation for grocery products, because 

most of grocery product packages contain colorful images and 

variable fonts. 

The Utah State University (USU) Computer Science 

Assistive Technology Laboratory (CSATL) is currently 

developing a mobile vision-based nutrition management 

system for smartphone users. The system will enable 

smartphone users to specify their dietary profiles securely on 

the web or in the cloud. When they go shopping, they will use 

their smartphones to extract nutrition information from 

product packages with their smartphones’ cameras. The 

extracted information includes not only barcodes but also 

nutrition facts, such as calories, saturated fat, sugar content, 

cholesterol, sodium, potassium, carbohydrates, protein, and 

ingredients.  

Our ultimate objective is to match the extracted 

information to the users’ dietary profiles and to make dietary 

recommendations to effect behavior changes. For example, if 

a user is pre-diabetic, the system will estimate the amount of 

sugar from the extracted ingredients and will make specific 

recommendations to the user.  The system, if the users so 

choose, will keep track of their long-term buying patterns and 

make recommendations on a daily, weekly or monthly basis. 

Dieticians will also be able to participate in and manage the 

system’s data flow. For example, if a user exceeds his or her 

total amount of saturated fat permissible for the specified 

profile, the system will notify the user and, if the user’s profile 

has appropriate permissions, the user’s dietician. 

In this paper, we present a vision-based algorithm to 

localize aligned NFTs and to segment them into single- or 

multi-line text chunks. The algorithm captures frames in video 

mode from the phone camera, localizes aligned NFTs via 

vertical and horizontal projections, and segments text chunks 

from localized NFTs. The latter part is referred to in this paper 

as text chunking. These segmented text chunks can 

subsequently be input into OCR engines. However, scalable 

mobile OCR is beyond the scope of this paper.  The algorithm 

has been implemented and tested on the Android 2.3.6 and 

Android 4.2 platforms.  

The remainder of our paper is organized as follows. Section 

2 presents related work. Section 3 discusses the localization of 

aligned NFTs. Section 4 covers how single- or multi-line text 

chunks are segmented from localized NFTs. Section 5 

discusses NFT localization and text chunking experiments. In 

Section 6, the experimental findings are discussed and several 

future work directions are outlined. 

II. Related Work 
Many current R&D efforts aim to utilize the power of 

mobile computing to improve proactive nutrition management. 
In [4], the research is presented that shows how such mobile 
applications can be designed for supporting lifestyle changes 
among individuals with type 2 diabetes and how these changes 
were perceived by a group of 12 patients during a 6-month 
period. In [5], an application is presented that contains a 
picture-based diabetes diary that records physical activity and 
photos taken with the phone camera of eaten foods. The 
smartphone is connected to a glucometer via Bluetooth to 
capture blood glucose values. A web-based, password-secured 
and encrypted short message service (SMS) is provided to 
users to send messages to their care providers to resolve daily 
problems and to send educational messages to users. 

The presented NFT localization algorithm is based on 
vertical and horizontal projections used by numerous 
computer vision researchers for object localization. For 
example, in [6], projections are used to successfully detect and 
recognize Arabic characters. The presented text chunking 
algorithm also builds on and complements multiple projects in 
mobile computing and mobile computer vision that capitalize 
on the ever increasing processing capabilities of smartphone 
cameras. In [7], a system is presented for mobile OCR on 
mobile phones. In [8], an interactive system is presented for 
text recognition and translation. 

III. NFT Localization 

A. Vertical and Horizontal Projections 

 Images captured from the smartphone’s video stream can 
be divided into foreground and background pixels. In general, 
foreground pixels are defined as content-bearing units in a 
domain-dependent manner. For example, content can be 
defined as black pixels, white pixels, pixels with specific 
luminosity levels, specific neighborhood connection patters 
(e.g., 4-connected, 8-connetected), etc. Background pixels are 
those that are not foreground.  



 Horizontal projection of an image (HP) is a sequence of 
foreground pixel counts for each row in an image. Vertical 
projection of an image (VP) is a sequence of foreground pixel 
counts for each column in an image. Figure 1 shows horizontal 
and vertical projections of a black and white image with three 
characters. 

   

 Suppose there is an m x n image I where foreground pixels 
are black, i.e.,   ,0, yxI  and the background pixels are 

white, i.e.,    .255, yxI  Then the horizontal projection of 

row y and the vertical projection of column x can defined as 

 yf  and  xg , respectively: 
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 For the discussion that follows it is important to keep in 
mind that the x axis in the image is the column dimension 
whereas the y axis is the row dimension. In other words, the 
vertical projections computed by  xg   along the x axis are 

used in computing the vertical boundaries of NFTs while the 

horizontal projections computed by   yf  along the y axis are 

used in computing the NFTs’ horizontal boundaries. 

B. Horizontal Line Filtering 

 In detecting NFT boundaries, three assumptions are 
currently made: 1) a NFT is present in the image; 2) the NFT 
present in the image is not cropped; and 3) the NFT is 
horizontally or vertically aligned. Figures 2 shows 
horizontally and vertically aligned NFTs. The detection of 
NFT boundaries proceeds in three stages. Firstly, the first 
approximation of vertical table boundaries is computed. 
Secondly, the vertical boundaries computed in the first stage 
are extended to the left and to the right. Thirdly, the upper and 
lower horizontal boundaries are computed. 

The objective of the first stage is to detect the approximate 
location of the NFT along the horizontal axis  ., ''

es xx   This 

approximation starts with the detection of horizontal lines in 
the image, which is accomplished with a horizontal line 
detection kernel (HLDK) that we developed in our previous 
research and described in our previous publications [9]. It 
should be noted that other line detection techniques (e.g., 

Hough transform [10]) can be used for this purpose. Our 
HLDK is designed to detect large horizontal lines in images to 
maximize computational efficiency. On rotated images, the 
kernel is used to detect vertical lines.  The left image of Figure 
3 gives the output of running the HLDK filter on the left 
image shown in Figure 2. 

 

 

C. Detection of Vertical Boundaries 

Let HLFI be a horizontally line filtered image, i.e., the image 
put through the HLDK filter or some other line detection filter. 
Let  HLFIVP   be its vertical projection, i.e., the projections 

of white pixels computed by for each column of HLFI.  The 
right image in Figure 2 shows the vertical projection of the 

HLFI on the left. Let  VP  be a threshold, which in our 

application is set to the mean count of the white foreground 

pixels in columns. In Figure 3 (right),  VP  is shown by a gray 

horizontal line in the lower part of the image. It can be 
observed that the foreground pixel counts in the columns of 
the image region with the NFT are greater than the threshold. 
Once the appropriate value of the threshold is selected, the 
vertical boundaries of an NFT are computed as follows: 
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The pairs of the left and right boundaries that are two close to 
each other, where ‘too close’ is defined as the percentage of 
the image width covered by the distance between the right and 
left boundaries. It has been experimentally found that the first 

  
Figure 3. HLFI of Fig. 2 (left); its VP (right). 

 

 

 

 

Figure 2. Vertically & Horizonally Aligned Tables.  
Figure 1. Horizontal & Vertical Projections. 

 

 



approximation along the vertical boundaries are often 
conservative (i.e., text is cropped on both sides) and must be 
extended left, in the case of '

lx , and right, in the case of '

rx . 

To put it differently, the left boundary is extended to the 
first column to the left of the current left boundary, for which 
the projection is at or above the threshold, whereas the right 
boundary is extended to the first column to the right of the 
current right boundary, for which the vertical projection is at 
or above the threshold. Figure 4 (left) shows the initial vertical 
boundaries (VBs) extended left and right. 

 

D. Detection of Horizontal Boundaries 

The computation of the horizontal boundaries of the NFT 
is confined to the image region vertically bounded by the 
extended vertical boundaries  ., rl xx   Let   HLFIHP  be the 

horizontal projection of the HLFI in Figure 2 (left) and let 
HP  

be a threshold, which in our application is set to the mean 
count of the foreground pixels in rows, i.e.,  

    .0|  yfyfmeanHP  Figure 4 (right) shows the 

horizontal projection of the left HLFI in Figure 2. The gray 
vertical line in Figure 4 (right) shows  .HP   

The horizontal boundaries of the NFT are computed in a 
manner similar to the computation of its vertical boundaries 
with one exception – they are not extended after the first 
approximation is computed. There is no need to extend the 
horizontal boundaries up and down, because the horizontal 
boundaries do not have as much impact on subsequent OCR of 
segmented text chunks as vertical boundaries. The horizontal 
boundaries are computed as follows: 
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Figure 5 (left) shows the nutrition table localized via 
vertical and horizontal projections and segmented from the left 
image in Figure 2. 

IV. Text Chunking 
A typical NFT includes text chunks with various caloric 

and ingredient information, e.g., “Total Fat 2g 3%.” To 
optimize the performance of subsequent OCR, which is 
beyond the scope of this paper, these text chunks are 
segmented from localized NFTs. This approach is flexible in 
that segmented text chunks can be wirelessly transmitted to 
cloud servers for OCR. As can be seen in Figure 5 (left), text 
chunks are separated by black colored separators. Formally, 
text chunks are defined as text segments separated by 
horizontal black separator lines.  

 

Text chunking starts with the detection of these separator 
lines. Let N be a binarized image with a segmented NFT and 
let    ip  denote the probability of image row i containing a 

black separator. If such probabilities are reliably computed, 

text chunks can be localized. Toward that end, let 
jl  be the 

length of the j-th consecutive run of black pixels in row i 
above a length threshold 

l .  If m be the total number of such 

runs, then  ip   is computed as the geometric mean of  

 .,...,, 10 mlll  The geometric mean is more indicative of the 

central tendency of a set of numbers than the arithmetic mean. 
If     is the mean value of all positive values of  normalized 

by the maximum value of    ip  for the entire image, the start 

and end coordinates,  
sy and 

ey , respectively, of every 

separator along the y axis can be computed by detecting 
consecutive rows for which the normalized values are above 
the  threshold as follows: 
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Once these coordinates are identified, the text chunks can 
be segmented from either the binarized or grayscale image, 
depending on the requirements of the subsequent of OCR. As 

  
Figure 4. VB Extension (left); HP of Left HFLI in 

Fig. 2 (right). 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Figure 5. Localized NFT (left); Text Chunks (right). 



can be seen from Figure 5 (right), some text chunks contain 
single text lines while others have multiple text lines. 

V. Experiments 
The NFT localization algorithm was implemented on 

Android 2.3.6 and Android 4.2. Forty five images were 
captured on a Google Nexus One (Android 2.3.6) in a local 
supermarket. The average running time of the algorithm is 
approximately one second per frame. All images were checked 
by a human judge to ensure that an NFT is present in the 
image, is not rotated, and is not cropped along any of its four 
sides. These images were then placed on a Google Nexus One 
smartphone (Android 2.3.6) and on a Galaxy Nexus (Android 
4.2) smartphone with the installed application to obtain images 
with segmented NFTs and save them on the smartphones’ 
SDK cards. The processed images were then analyzed by a 
human judge. On each original image, the four corners of an 
NFT were manually marked to obtain the ground truth to 
evaluate the segmentation process.  

 

Figures 6 and 7 show the error histograms for the starting 
and ending positions of the segmented NFTs along the 
images’ x-axis, respectively. In both figures, the x-axis 
encodes the error as a fraction of the NFT width while the y-
axis encodes the number of images with a specific error value. 

Figures 8 and 9 show the error histograms for the starting and 
ending positions of the segmented NFTs along the images’ y-
axis, respectively. In Figure 8 and 9, the x-axis encodes the 
error as a fraction of the NFT height. Positive errors occur in 
segmented images where segmented NFTs contain extra 
background pixels whereas negative errors occur when NFTs 
are cropped.  

In general, positive errors are better for our purposes than 
negative ones because negative errors signal information loss 
that may result in subsequent OCR or image classification 
errors. It should be observed that the performance of the NFT 
localization algorithm has a mean error of 1% on the sample 
of images. There was one notable outlier, for which the start 
position on the x-axis error was 12.5% and the end position 
error on the x-axis was 14%.  The same image was the outlier 
for the segmentation errors of the start and end positions along 
the y-axis. 

Figure 10 shows the outlier image that caused the 
segmentation errors along both axes. It can be observed that 
the NFT in this image lacks a black colored bounding box that 
is usually present around nutrition fact tables. It is the absence 
of this box that caused the algorithm to fail to obtain the exact 
location of the NFT in the image. 

 

 
Figure 6. Start Position Errors along X-axis. 

 
Figure 7. End Position Errors along X-axis. 



 
Figure 8. Start Position Errors along Y-axis. 

 
Figure 9. End Position Errors along Y-axis. 

The performance of the NFT localization algorithm along 
the y-axis has the mean errors of 5% and 7% for the start and 
end positions, respectively. Most errors, along both axes, are 
caused by NFTs that are not bounded by boxes, one of which 
is shown in Figure 10.  

The preliminary evaluation of the text segmentation 
algorithm was done on a set of 15 NFT images. A total of 303 
text chunks (text segments between separator bars) were 
manually identified. Of these manually detected chunks, the 
algorithm detected 163, which gives a detection rate of 53.8%. 
The average running time of the text chunking algorithm is 
approximately half a second per localized NFT. 

A statistical analysis of text chunk segmentation was 
executed. All text chunks readable by a human judge were 
considered as true positives. There were no true negatives 
insomuch as all text chunks had text. Text chunks which could 
not be read by a human judge were reckoned as false 
positives. False positives also included detection of separator 
bars between text chunks. Figure 11 contains a true positive 
example and two examples of false positives.  

There were no false negatives in our sample of images, 
because all text chunks either contained some text or did not 
contain any text. The performance of the text chunking 
algorithm was evaluated via precision, recall, specificity and 
accuracy were calculated. The average values for these 
measures over the entire sample are given in Table 1. 

VI. Discussion 
The NFT localization algorithm had a mean error of 1% on 

the sample of NFT images. The average accuracy of the text 

chunking algorithm on the sample of images with localized 

NFTs is 85%. While we readily acknowledge that these results 

must be interpreted with caution due to small sample sizes, we 

believe that the approaches presented in the paper show 

promise as a front end vision-based nutrition information 

extraction module of a larger nutrition management system.  

 

One limitation of the presented approach to NFT 

localization is that an image is assumed to contain a 

horizontally or vertically aligned NFT. We are currently 

working on relaxing this constraint to localize skewed NFTs in 

captured frames. 
 

 

 

Table I. Average Recall, Precision, Specificity, Accuracy. 

Precision Recall Specificity Accuracy 

0.70158 0.9308 0.88978 0.8502 

 

The detection of skewed NFTs will make the system more 

accessible to users that require eyes-free access to visual 

information. However, it should be noted in passing that, 

 
Figure 10. NFT Localization Outlier. 

 

 

 

 

 

 

 



 
 

 
 

 
Figure 11. True Positive (top); Two False Positives (middle, 

bottom). 

while visually impaired, low vision, and blind populations 

continue to be a major target audience of our R&D efforts, 

nutrition management is of vital importance to millions of 

sighted individuals who will not have a problem aligning their 

smartphone cameras with NFTs on product packages. 

 

Another important improvement is to couple the output of 

the text chunking algorithm to an OCR engine (e.g., Tesseract 

(http://code.google.com/p/tesseract-ocr) or OCRopus 

(https://code.google.com/p/ocropus)). We have integrated the 

Android Tesseract library into our application and run several 

tests but were unable to analyze the collected data before the 

submission deadline. We plan to publish our findings in a 

future publication. 

 

Finally, we would like to bring the combined frame 

processing time to under one second per frame. This will 

likely be accomplished by moving current code bottlenecks to 

the Android NDK or using OpenCV Android libraries. 
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