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Abstract - We present algorithms for fast segmentation and 

classification of sparse 3D point clouds from rotating LIDAR 

sensors used for real-time applications such as autonomous 

mobile systems. Such systems must continuously process large 

amounts of data with update rates as high as 10 frames per 

second which makes complexity and performance of the 

algorithms very critical. Our approach to the segmentation of 

large and sparse point clouds is efficient and accurate which 

frees system resources for implementing other more 

demanding tasks such as classification. Segmentation is the 

emphasis of this paper as a necessary important first step for 

subsequent classification and further processing. We propose 

methods for segmenting sparse point clouds from rotating 

LIDAR sensors such as the Velodyne HDL-64E using 

rectangular and radial grids. The main part of the 

segmentation is performed on small grid images instead of 

large point clouds which makes the process computationally 

fast, simple, and very efficient. The proposed algorithms do 

not require flat horizontal structure of the ground and they 

demonstrate stable performance in different urban conditions 

and scenes for detection of different street objects including 

pedestrians, cars, and bicyclists. 

Keywords: Real-Time LIDAR, 3D-Segmentation, 3D-

Classification 

 

1 Introduction 

   In this paper we address the problem of segmentation of 

large sparse LIDAR 3D point clouds in real time for 

subsequent classification. Advances in LADAR scanner 

technologies such as the Velodyne HDL-64E allow the 

development of experimental autonomous mobile systems 

described in [1,2]. Such systems contain a multi-beam rotating 

Velodyne LIDAR scanner mounted on top of a vehicle. The 

LIDAR sensor produces a continuous high data rate stream of 

3D points, typically exceeding one million points per second. 

This stream of points is parsed into frames, where each frame 

corresponds to one complete rotation of the sensor; the frame 

rate is close to 10Hz. Each of the 64 lasers in the Velodyne 

sensor performs a circular scan of the environment, which 

results in a non-uniform spatial density of the scanned objects. 

The objects close to the sensor are represented with more 

dense point clouds vs. far objects that are represented with 

much sparser point clouds.  

While progress has been made, researchers continue to look 

for new alternative algorithms for segmentation and 

classification. The goal of segmentation is to parse each 

separate distinct object in the point clouds for subsequent 

classification. The main challenges in this process are: high 

data rate, sparsity of the data, and non-uniform density of the 

scanned object data. The methods proposed in this paper 

extend to real-time applications the approach originally 

developed under DARPA URGENT contract [3,4] for 

automatic classification of urban objects in large static 3D 

point clouds collected by aerial and ground LIDARs.  

2 Related Work 

Efficient real-time object recognition is an important 

capability for autonomous robots and systems. This drives 

researchers to make these systems fast, efficient, and accurate. 

The relevant issues have been analyzed from different 

perspectives and approaches by various researchers to 

improve aspects of the system and shed more light on the 

problems that need to be solved. A number of papers were 

published in recent years that consider different aspects of 

real-time segmentation and classification of 3D point clouds 

[1,2-5-9]. The results presented in [1, 2] demonstrate systems 

that perform segmentation and classification in real or close to 

real time. Paper [5] shows good segmentation results using the 

convexity criterion with promising speed results for real time 

operation. Paper [6] considered using 3D models to improve 

classification performance but the overall speed of the system 

was not sufficient for real-time operations. The research in [7] 

focused on dense point clouds generated by a flash LIDAR 

which produces more uniformly dense scans of the objects, 

unlike spinning LIDARs such as the Velodyne HDL-64E. The 

approaches in [8] work on both dense and sparse point clouds 

with close to real-time performance. Another interesting 

approach to segmentation and classification is presented in 

[9], the results present Matlab implementation based timing 

which is promising for real-time operation. Computational 

complexity of the segmentation is the most significant 

limitation of the current methods mentioned above, especially 

for the future low cost embedded applications. The next two 

sections describe our 3D point cloud segmentation methods 

based on two different types of grids and a 3D classification 



algorithm adapted from DARPA URGENT program [4]. We 

then draw conclusions and compare our results with published 

results. 

 

3 Segmentation 

 Our earlier 3D point cloud segmentation method [3, 4] 

developed under the DARPA URGENT program produced 

satisfactory segmentation results but it did not meet the real-

time requirements that are imposed by the spinning multi-

beam LIDARs such as the Velodyne HDL-64E. In this section 

we present novel methods for real-time segmentation of large 

sparse point clouds produced by spinning multi-beam LIDAR 

sensors, requiring processing rates of a million points per 

second and higher. The novelty of this algorithm is the 

projection of points onto rectangular or radial grids that allow 

maintaining point densities in each bin for LIDAR scanning 

sensors. Segmentation of objects and obstacles is performed 

by analyzing the minimum and maximum height maps (called 

Min and Max images) on these grids. 

A typical autonomous driving system is based on a spinning 

multi-laser LIDAR such as the Velodyne HDL-64E which 

generates point clouds by an array of rotating lasers producing 

circular scan lines around the sensor. The Velodyne HDL-64E 

delivers a 360-degree horizontal field of view and 26.8 degree 

vertical field of view using 64 laser beams. This type of sensor 

can provide more than 1 million points per second, detecting 

all directions of environment around it. It has become a 

popular sensor for building and testing autonomous driving 

systems. A typical scan pattern of this kind of LIDAR as seen 

from above is shown in Figure 1. The vertical array of lasers 

rotates with a constant speed and produces a fixed number of 

scan lines (actually circles on the horizontal plane) per spin. 

That results in uneven spatial density of the scan lines, in 

particular, the scan line density decreases with the distance 

from the sensor. Since each scan line contains the same 

number of points, the density of the points within the scan 

lines also decreases with the distance from the sensor. These 

properties of the LIDAR lead to highly sparse point clouds at 

longer ranges compared to shorter ranges. 

 

 

Figure 1 A typical Velodyne scan pattern shown in horizontal 

plane. Only five laser lines are shown. 

We investigated the segmentation performance of two types of 

sampling grids:  rectangular and radial. The initial processing 

of each grid is very similar.  Every complete spin of the lasers 

produces a complete point cloud or frame of the scene. Each 

frame is projected into the grid along the z-axis, and is 

represented by minimum and maximum height maps called 

Min image and Max image, respectively. The Min and Max 

images have the same size defined by the type, size and 

parameters of the grid. A separate structure of the same size as 

the images is used to hold the associated points for each grid 

cell. This association is necessary to perform the reverse 

lookup to efficiently extract point cloud segments from these 

images. The processing of each grid is based on the general 

procedure shown in Figure 2. 

 

 

 

Figure 2 Block diagram of the grid processing of a single 

frame 

The Min and Max images are 8-bit images representing 256 

height gradations. Before processing a point cloud frame, all 

pixels of these images are set to 255 for the Min image and to 

0 for the Max image. 

 

 

3.1 Rectangular Grid 

 Let’s define the max distance from the sensor as  and  

as the lateral size of the grid cell. The dimensions of the Max 

and Min images in terms of rows  and columns  will be 

 

+1. 

Parameter  defines the vertical resolution of the grid. Typical 

values for the vertical and lateral resolutions for automotive 

applications are: , . The block 

diagram shown in Figure 3 describes the process of filling the 



Min and Max images and associating the point with a grid-

cell. 

 

Figure 3 Bock diagram of filling the Min and Max images for 

the rectangular grid 

Examples of Min, Max images for the rectangular grid are 

shown in Figure 4 (a) and (b), respectively. We then process 

the Min and Max images to obtain the Diff image, non-zero 

pixels of which contain elevated cells of the grid.  The process 

of finding these locally elevated objects does not require a flat 

ground plane due to the procedure defined below. The Diff 

image is created by the procedure based on the small sliding 

windows of size MxM running in parallel in both Min and 

Max images. Typical size M for this window is from 1 to 5 for 

the grid cell sizes presented in this paper. The size of the 

window should be adjusted accordingly for different sizes of 

the grid cells to be able to capture local ground. The following 

steps describe the procedure of filling the Diff image: 

 

1. For location of the window <i,j> find the min pixel value 

Pmin in the Min image.  

2. Mark Diff image location <I,j> as 255 if abs(Pmin-

Pmax(I,j) >= T and the cell is not empty 

3. Move window to the next location.   

The resulting Diff image is shown in Figure 4c. The Diff 

image is then processed with 8-connected component analysis 

that will label the blobs as shown in Figure 4d. 

 

 

 

 

 



 

Figure 4 Rectangular grid: (a) - Min image, (b)- Max image, 

(c) - Diff image, (d) - Blob image. The sensor is located in the 

center of the image. Intensities of images (b) and (c) are 

inverted for better clarity. 

The point cloud frame and the segmentation results based on 

the procedure described above for the rectangular grid are 

shown in Figure 5. Each segmented cue is colored with 

distinct random color. The ground points and points that do 

not belong to any other object are black. 

 

 

Figure 5 Segmentation results of our method with the 

rectangular grid, the connected segments are randomly 

colored; the ground points have black color. We can see that 

our method of segmentation handles different object correctly, 

including thin rail surrounding the patio.  

We found that value of threshold T=1 produces good result 

for a variety of scenes and objects. After that, each blob is 

processed to generate the segmented point cloud. This process 

is accomplished by extracting the pixels that belong to the 

same blob and collecting the indices of the points in the 

original point cloud. 

 

3.2 Radial Grid 

 A part of the radial grid is shown in Figure 6. This grid is 

better aligned with Velodyne scan pattern shown in Figure 1 

and it produces less fragmentation of the segments.  

 

 

Figure 6 Fragment of radial grid on horizontal plane 

The width W and height H of the Min and Max images are 

determined as    

 

W = 360/ResDeg, 
 

H = (MaxRadius-MinRadius)/RangeRes. 
 

Where, ResDeg is the angular resolution and RangeRes is the 

range resolution. The block diagram of filling the Min and 

Max images for the radial grid is shown in Figure 7. The Diff 

and Blob images and the association of the points are created 

the same way as it was described for the rectangular grid. 

 

 

 
 

Figure 7 Block diagram of filling the Min and Max images for 

the radial grid 



 

Figure 8 Radial grid: (a) - Min image, (b) - Max image, and 

(c) - Diff image, (d) Blob image. Intensities of images (b) and 

(c) are inverted for better clarity. 

Overall segmentation of the data is less for the radial grid 

compared to the rectangular one. Horizontal axes define 

azimuth direction and vertical axis - the distance from the 

sensor.  The sensor is located in the middle of the top row or 

above it depending on parameter that defines the minimum 

distance from the sensor. Forward direction points downward 

from the middle of the top row. Backward direction points 

downward at the left and right edges of the image. The objects 

that are directly behind the sensor need to be stitched because 

their parts appear on the right and left edges of the images. 

 

 

 

Figure 9 Demonstration of the stitching for the radial grids. 

Only “connected” blobs need to be merged, unconnected and 

internal blobs do not need merging. 

The radial grid Min, Max, Diff and Blob images are shown in 

Figure 8. When radial grid is used, we need to stich some of 

the blobs at the right and left edges (see more details in the 

caption under Figure 8). These edges represent locations 

behind the sensor and are split by the line representing ±180 

degree in azimuth. The blobs that need to be stitched are 

located on the left (col=0) and right (col=N-1) sides of the 

Blob image. Only objects that got cut by the ±180 degree 

azimuth need to be stitched. In the first step of the stitching 

process we select blobs that connect to the left and right edges 

of the image Figure 8 (d). After that we find the blobs that 

have overlapping vertical pixel coordinates for pixels 

belonging to the first and last columns, left and right of the 

image, correspondingly. These blobs are marked “connected” 

as it is shown in Figure 9 and they are merged into one blob 

representing a single object behind the sensor. This process is 



applied to all border blobs to correctly represent the objects 

located directly behind the sensor.  

 

An example of a point cloud frame and segmentation with the 

radial grid is shown in Figure 10.  

 

Figure 10 Segmentation results of our method with the radial 

grid, the connected segments are randomly colored; the 

ground points have black color. We can see that our method of 

segmentation handles different object correctly, including thin 

rail surrounding the patio. 

 

The radial grid requires 20-30% fewer cells compared to the 

rectilinear one, which leads to faster processing speed. It also 

produces less fragmentation of the objects. An illustration of 

the fragmentation for a typical sequence of frames acquired 

while urban driving is shown in Figure 11. The chart shows 

that the average number of fragments is 12-13% fewer for the 

radial grid. 

 

 
 

Figure 11 Charts showing number of fragments in each frame 

for a typical urban sequence for the radial and rectangular 

grids. Each type of grid has two charts: one for the total 

number of fragments in a frame and one for the number of 

fragments that are greater than one grid cell.   

Table 1 Comparison of the fragmentation for rectangular and 

radial grids. The table shows that overall fragmentation of the 

segments for the radial grid 12-13% fewer than for the 

rectangular grid. 

Blobs type Average 

number of blobs 

Radial (all blobs) 398.6 

Radial (blobs bigger than 1 cell) 242.8 

Rectangular (all blobs) 451.0 

Rectangular (blobs bigger than  1cell) 271.8 

 

 

4 Integration of 3D Segmentation with 

Classification 

The block diagram of the segmentation/classification system 

we developed is shown in Figure 12. It consists of the 

Velodyne LIDAR, a converter from pcap format to XYZ point 

clouds, the 3D segmentation module described in the previous 

chapter, and the 3D classification module that is described 

below. 

 

 

Figure 12 Block diagram of the developed system. 

We used a modified 3D classifier [9] developed under the 

DARPA URGENT program for 17 urban objects. The core 

feature set for this classifier is based on size and rotation 

invariant volumetric features [3]. The classifier was developed 

to process dense point clouds acquired by aerial and ground 

LIDARs. More info and results for this classifier can be found 

in [3].  

In our current work, we defined four classes which are the 

most relevant to autonomous mobile systems. These classes 

are: car, pedestrian, bicyclist, and background. We used 75 

minimum points as the limit of the number of points in the cue 

as suggested in [2]. To validate the performance of the 

classifier we used the data set in [2] which contains significant 

numbers of labeled objects for car, pedestrian, bicyclist, and 

background. Overall performance of the classifier is presented 

in the table, Table 2. Each column in the table presents the 

result of the classifier trained on cues with minimum number 

of points 500, 250, 150, and 75. We used 5k examples for car, 

pedestrian, bicyclist, and 20k examples for background class. 

The table represents the performance of the classifiers on 

validation data sets that do not contain any training examples. 

The accuracy for pedestrian and bicyclist degrades about 5% 

with the reduction of minimum number of points in a cue from 

500 to 75. The results suggest that the overall performance of 

the classifier achieved for these four classes is close to the 

state of the art results [2].  

 



Table 2 Classification accuracy for car, pedestrian, bicyclist, 

and background. Each column represents classification 

accuracy for 500, 250, 150, and 75 minimum points in the cue. 

Min number of points 500 250 150 75 

     

Car  0.96 0.95 0.91 

Pedestrian 0.93 0.91 0.9 0.88 

Bicyclist 0.95 0.93 0.93 0.9 

Background 0.98 0.98 0.98 0.97 

 

 

5 Segmentation Results 

The goal of segmentation and classification of 3D data is to 

achieve accurate performance and in real time which is the 

necessary part of an autonomous mobile system. 

Due to unavailability of labeled data sets containing complete 

scans and difficulty of manual labeling of the data, we 

evaluated the performance of our system on our data 

qualitatively. The examples of the segmentations for 

rectangular and radial grids are presented in Figure 5 and 

Figure 10, respectively. We used different urban scenes with 

flat and inclined ground to evaluate the segmentation. We 

demonstrated that our methods handle variety of objects with 

different shapes and sizes correctly. The proposed methods of 

segmentation also handle thin objects like rails dividing the 

roads and sidewalks as well as roofs of the cars correctly; this 

importance was emphasized in [1]. Overall segmentation and 

classification results on Velodyne data were good with an 

acceptable amount of under and over segmentations. The time 

taken by the segmentation implemented on a single thread 

running on HP workstation Z400 was 30-40ms per frame 

depending on the grid parameters settings. We did not observe 

any significant fluctuations of processing time for different 

scenes and objects. This speed is more than enough to do the 

segmentation of Velodyne HDL-64E data in real time. 

We also evaluated the performance of the 3D classifier on a 

labeled public data set from [2].The results of this evaluation 

show that the performance of our modified URGENT 

classifier is very close to other state of the art results. 

 

6 Conclusions and Future Work 

 We developed a new 3D segmentation and classification 

framework that processes high volumes of LIDAR data in real 

time. The proposed segmentation algorithms can be applied to 

a variety of different applications and scenes; in particular, 

they can be used in autonomous mobile systems. We achieved 

good segmentation and classification quality and real-time 

performance of the system due to the novel approach to the 

segmentation of large sparse 3D point clouds. The core of the 

approach is based on processing of smaller images instead of 

large point cloud data. The methods proposed do not require a 

flat ground plane and they reliably handle a variety of complex 

urban environments and objects of interests. 

Our future work will consist of integrating additional features 

such as tracking of 3D objects and fusion between LIDAR and 

EO sensors to improve overall system performance. 
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