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Abstract - Four-Part Classifier (FPC) is a system for 

classifying four-part music based on the known classifications 

of training pieces.  Classification is performed using metrics 

that consider both chord structure and chord movement and 

techniques that score the metrics in different ways.  While in 

principle classifiers are free to be anything of musical interest, 

this paper focuses on classification by composer. FPC was 

trained with music from three composers – J. S. Bach, John 

Bacchus Dykes, and Henry Thomas Smart – and then tasked 

with classifying test pieces written by the same composers. 

Using all two-or-more composer combinations (Bach and 

Dykes; Bach and Smart; Dykes and Smart; and Bach, Dykes, 

and Smart), FPC correctly identified the composer with well 

above 50% accuracy.  In the cases of Bach and Dykes, and 

Bach and Smart, training piece data clustered around five 

metrics – four of them chord inversion percentages and the 

other one secondary chord percentages – suggesting these to 

be the most decisive metrics.  The significance of these five 

metrics was supported by the substantial improvement in the 

Euclidean distance classification when only they were used. 

Keywords: Four-Part Music, Classification, Metrics, 

Clustering 

1 Introduction 

  The Four-Part Classifier system (FPC) began as an 

experiment in randomly generating four-part music that would 

abide by traditional four-part writing rules.  The essential 

rules were quickly coded along with the beginnings of a 

program for producing valid chord sequences.  But as the 

program evolved, it was moved in a new direction – one that 

could reuse the rules already written.  The idea of creating a 

classification system which could be trained with music by 

known composers and tested with other music by the same 

composers became the driving force behind the development 

of this tool.  

1.1 Related Work 

 While computer classification of music is nothing new, 

research is lacking in the domain of classifying four-part 

music.  As for four-part-specific music systems, the 1986 

CHORAL system created by Kemal Ebcioglu [5] comes 

closest to FPC’s precursor program geared toward 

composition.  Ebcioglu’s system harmonizes four-part 

chorales in the style of J. S. Bach via first order predicate 

calculus.  Newer research by Eric Nichols et al. [1] most 

closely matches the mature version of FPC but is not four-

part-specific.  Like FPC, their system operates in high 

dimensional space (FPC will be shown to be 19-space) but 

parameterizes the musical chord sequences of popular music.  

FPC does not consider the order of chords in its analysis but 

focuses instead on chord structure and the movements 

between parts. 

1.2 Explanation of Musical Terms 

 In order for FPC to be understood in the steps that 

follow, a basic level of musical knowledge is required. 

 There are 12 pitches in a chromatic scale from which are 

derived 12 major keys.  The names of each key range from A 

to G and include some intermediate steps between letters such 

as Bb or F#.  Most important to the listener, the key serves as 

a musical “anchor” for the ear.  All pitches can be understood 

in relation to the syllable do (pronounced “doh”), and all 

chords in relation to the I chord (the tonic).  Both do and the I 

chord are defined by the key. 

 Although each key contains 12 pitches (or steps), only 

seven of them make up the diatonic scale (figure 1) – the scale 

used most often in western music (do, re, mi, fa, sol, la, ti, 

do).  From bottom to top, the distances between the notes of 

the diatonic scale follow the pattern “whole step, whole step, 

half step, whole step, whole step, whole step, half step.”  

Whether traversing the diatonic scale requires multiple sharps 

or flats is determined by the key signature at the beginning of 

the piece. 

 
Fig. 1. Diatonic scale in C 

 From these seven diatonic notes, seven diatonic chords 

are possible.  In four-part music, each chord is made up of 

four voices: soprano, alto, tenor, and bass.  The arrangement 

of these voices produces chords in specific positions and 

inversions.  For the sake of simplicity, the exact procedure for 

determining chord names and numbers has been omitted. 

 Notes differ not only by pitch but by duration.  The 

shortest duration FPC handles is the eighth note followed by 



the quarter note, the dotted quarter note, the half note, the 

dotted half note, and lastly the whole note.  The time signature 

dictates the number of beats in a measure and what type of 

note constitutes one beat.  For example, in 3/4 time, there are 

three beats in a measure and a quarter note gets one beat.  

Since FPC only considers music in 3/4 or 4/4 time, a quarter 

note always gets one beat. 

 Finally, harmonic rhythm describes the shortest regular 

chord duration between chord changes.  For example, in 4/4 a 

quarter-note-level harmonic rhythm means that chords change 

at most every beat.  Harmonic rhythm is one of the most 

important components of traditional four-part analysis, its 

reliability crucial to correctly identifying chords and chord 

changes.  For this project, only music with quarter-note-level 

harmonic rhythms was chosen, removing the need to identify 

harmonic rhythms programmatically. 

2 Collecting the Pieces – Training and 

Test Pieces 

 A collection of four-part MusicXML files was created 

for use as training and test data by the FPC system.  Four-part 

pieces were collected from websites in two different formats: 

PDF and MusicXML – with the PDFs later converted to 

MusicXML.  A few hymns were entered by hand in Finale 

2011, a music notation program capable of exporting to 

MusicXML. 

2.1 Downloading and Converting Files 

 The two main websites used were Hymnary.org and 

JSBChorales.net.  Hymnary.org is a searchable database of 

hymns, many of which are offered for download in PDF and 

MusicXML formats.  For the purpose of this project, 

Hymnary’s PDF files were found to be preferable to the 

compressed, heavily-formatted MusicXML files that proved 

difficult to touch-up.  A few of the hymns entered by hand 

were taken from scans Hymnary made available on the site 

when it had information on a particular hymn but no 

character-containing electronic documents (e.g., native PDFs).  

The other site, JSBChorales.org, offers a collection of Bach 

chorales entirely in MusicXML format.  These MusicXML 

files were found to be suitable. 

 XML and PDF files were downloaded from these sites 

and renamed using the format “title – classifier.pdf” or “title – 

classifier.xml” where “title” is the hymntune or other unique, 

harmonization-specific name of the composition and 

“classifier” is the composer.  This naming convention was 

maintained throughout the project.  Individually, the PDF files 

from Hymnary were converted to MusicXML using a 

software program called PDFtoMusic Pro.  PDFtoMusic Pro 

is not a text-recognition program, so it can only extract data 

from PDFs created by music notation software, which all of 

them were.  The free trial version of PDFtoMusic Pro 

converts only the first page of PDF files, which fortunately 

created no issue since all but a few of the downloaded hymns 

were single page documents.  The XML files PDFtoMusic 

Pro produced carried the .mxl file extension and were 

compressed. 

2.2 Formatting the MusicXML 

 Before the XML files could be used, it was necessary to 

adjust their formatting and, in the case of the .mxl variety, 

remove their compression.  This was done with Finale.  Once 

open in Finale, lyrics, chord charts, and any extraneous or 

visually interfering markings were removed manually.  If the 

piece was written in open staff, as was the case with every 

Bach chorale, a piano reduction (two staves) was created in its 

place.  Measures with pick-up notes were deleted and if beats 

had been borrowed from the last measure, they were added 

back.  For these reinstated beats, the last chord of the piece 

was extended. 

 Any time two layers exist in the same staff of the same 

measure, FPC expects them to start and finish out the measure 

together.  However, publishers and editors do not like to see 

note stems split multiple times in a single measure because 

one beat required it and so tend to add or drop layers mid-

measure strictly for appearance (figure 2).  When this 

happened, measures were adjusted by hand (figure 3). 

 
Fig. 2 

 
Fig. 3 

 If two parts in the same staff double a note in unison but 

the staff did not use two layers to do it (figure 4), the parts 

were rewritten for that measure (figure 5).  Any rests present 

were replaced with the corresponding note(s) of the previous 

chord. 



 
Fig. 4 

 
Fig. 5 

 Lastly, all measures were copied and pasted into a new 

Finale document to remove any hidden formatting.  The files 

were then exported with the same naming convention as 

before and saved in a specific training piece or test piece 

directory for use by FPC. 

 
Fig. 6. Flow chart for collecting pieces 

 The next few sections describe how FPC works in 

general.  Section 6 returns to the specific way FPC was used 

in this experiment. 

3 Parsing MusicXML – Training and 

Test Pieces 

 By clicking the “Load Training XML” or “Load Test 

XML” button, the user kicks-off step 1 of the data-loading 

process: Parsing the XML. 

 
Fig. 7. FPC upon launch 

3.1 Reading in Key and Divisions 

 First, FPC parses the key from each file, then the 

divisions.  The number of divisions is an integer value 

defining quarter note duration for the document.  All other 

note types (half, eighth…etc.) are deduced from this integer 

and recognized throughout the document.  If a quarter note is 

found to be two, a half note is four. 

3.2 Reading in Notes 

 MusicXML organizes notes by layers within staves 

within measures.  In other words, layer 1 of staff 1 of measure 

1 comes before layer 2 of staff 1 of measure 1, which 

precedes layer 1 of staff 2 of measure 1, and so on.  Last is 

layer 2 of staff 2 of the final measure.  If a staff contains only 

one layer in a particular measure, the lower note of the two-

note cluster (alto for staff 1, bass for staff 2) is read before the 

upper note (soprano or tenor respectively).  Since a measure 

might contain a staff with one layer and another with two, 

FPC was carefully designed to handle all possible 

combinations. 

 A note’s pitch consists of a step and an octave (e.g., Bb 

and 3).  A hash map is used to relate pitches to integers (e.g., 

“Bb3”�18), and these integers are used to represent each 

voice of a four-part Chord object. 

3.3 Handling Note Values 

 In 3/4 and 4/4 time, a quarter-note-level harmonic 

rhythm means that chords change at most each beat.  



Therefore the chord produced by the arrangement of soprano, 

alto, tenor, and bass voices at the start of each beat carries 

through to the end of the beat.  This also means shorter notes 

moving between beats cannot command chords of their own.  

Quarter notes, which span a whole beat, are then the ideal 

notes to capture as long as they fall on the beat, which they 

always did. Likewise, eighth notes that fall on the beat are 

taken to be structurally important to the chord, so their 

durations are doubled to a full beat and their pitches captured 

whereas those that fall between beats are assumed to be 

passing tones, upper and lower neighbors, and other non-

chord tones, so they are ignored.  For simplicity’s sake, 

anything longer than a quarter note is considered a repeat 

quarter note and sees its pitch captured more than once.  For 

instance, a half note is treated as two separate quarter notes 

and a whole note four separate quarter notes.  A dotted 

quarter note is assumed to always fall on the beat, so it is 

captured as two quarter notes; the following eighth note is 

ignored.  While it is possible for something other than an 

eighth note to follow a dotted quarter, it is highly unlikely in 

3/4 or 4/4, and it did not happen in any of the music used. 

3.4 Results 

 Finally, for each XML file, FPC creates a Piece object 

comprising at the moment a key, classifier, and sequence of 

Chords.  For each piece, it also produces a CSV file with the 

same information.  The CSV files serve purely as logs. 

 
Fig. 8. Flow chart for creating Piece objects 

4 Collecting Piece Statistics 

 After the XML has been parsed, FPC moves 

immediately to the next step: Collecting Piece Statistics. 

4.1 Metrics 

 Statistics are collected for each piece via 19 Boolean 

tests on each chord or chord change.  These Boolean tests 

produce the following metrics: 

ThirdAppearsOnlyOnceInSATRule: The percent of chords 

whose third appears only once in the upper three voices.  In 

classical writing, it is preferable that the third appear just once 

in the upper three voices. 

 

ThirdNotDoubledInUnisonRule: The percent of chords 

whose third is not doubled in unison.  Doubling the third in 

unison is usually avoided unless necessary. 

 

FifthDoubledInSecondInversionRule: The percent of 

second-inversion chords whose fifth is doubled.  It is 

preferable that the fifth be doubled in second inversion. 

 

CrossOverRule: The percent of chords not containing 

overlapping parts.  It is preferable that voices do not cross 

over.  Doubling in unison is fine. 

 

SATOctaveRule: The percent of chords whose soprano and 

alto pitches as well as alto and tenor pitches differ by not more 

than an octave.  This is a fairly strict rule in classical, four-part 

writing.  The distance between the bass and tenor does not 

matter and may be great. 

 

SevenChordDiminishedFifthRule: The percent of vii° 

chords with a fifth.  While the fifths of other chords are often 

omitted, the diminished fifth of a vii° chord adds an important 

quality and its presence is a strict requirement in classical 

writing. 

 

ParallelFifthsRule: The percent of chord changes free of 

parallel fifths.  This is a strict rule of classical writing. 

 

ParallelOctavesRule: The percent of chord changes free of 

parallel octaves.  This is also a strict rule. 

 

DirectFifthsInOuterVoicesRule: The percent of chord 

changes free of direct fifths in the outer voices.  This is a fairly 

important rule in classical writing. 

 

DirectOctavesInOuterVoicesRule: The percent of chord 

changes free of direct octaves in the outer voices.  This also is 

a fairly important rule. 

 

JumpRule: The percent of chord changes involving a part 

jumping by a major seventh, a minor seventh, or the tri-tone.  

Jumping the tri-tone in a non-melodic voice part is never 

acceptable in classical writing, but from time to time, leaps by 

major and minor sevenths and even tri-tones are permissible if 

in the soprano. 

 

StepwiseMovementsRule: The percent of chord changes in 

which at least one voice moves by no more than a major 

second.  While this is not a formal rule of classical writing per 

se, good writing generally has very few chord changes in 

which all four parts leap. 

 

StepwiseSopranoMovements: The percent of chord changes 

in which the soprano moves by no more than a major second. 

 

RootPosition: The percent of chords in root position (root in 

bass). 

 

FirstInversion: The percent of chords in first inversion (third 

in bass). 

 

SecondInversion: The percent of chords in second inversion 

(fifth in bass). 

 



ThirdInversion: The percent of chords in third inversion 

(seventh in bass). 

 

Suspensions: The percent of chord changes involving a 

suspended note that resolves to a chord tone. 

 

SecondaryChords: The percent of chords that are secondary 

dominants – chords borrowed from other keys that act as 

launch pads to chords that do belong in the key (diatonic 

chords).  FPC handles all “V-of” chords (i.e., V/ii, Viii, V/IV, 

V/V, V/vi) and all “V
7
-of” chords except V7/IV.  “V

7
-of” 

chords are simply recorded as “V-of” chords since they 

perform the same function. 

 After all 19 metrics are computed per piece, a TXT file 

is produced for backup. 

 
Fig. 9. Flow chart for collecting Piece statistics

 
Fig. 10. Sample TXT file for a Bach chorale containing 

19 metric values (percentages) 

5 Collecting Classifier Statistics – 

Training Pieces Only 

 The previous two steps – Parsing the XML and 

Collecting Piece Statistics – apply to the loading of both 

training and test data.  Step 3, however, applies to 

training data only.  If the user has clicked “Load 

Training XML,” FPC now begins the final step before it 

is ready to start classifying test pieces: Collecting 

Classifier Statistics. 

 In the sections that follow, “classifier” with a 

lowercase “c” refers to the Piece object’s string field 

while “Classifier” with a capital “C” refers to the 

Classifier object. 

5.1 Approach 

 For each training piece belonging to the same 

classifier, a Classifier object is created.  The mean and 

standard deviation are computed for each metric from 

all the pieces of the classifier and then stored in the 

Classifier object.  For any piece, metrics outside three 

standard deviations of the mean are thrown out, and the 

means and standard deviations recalculated.  Again, the 

whole piece is not thrown out, just the piece’s 

individual metric(s).  FPC updates each Classifier 

object with the new mean(s) and standard deviation(s) 

and then produces TXT files with the same information.  

Figure 11 provides an example to illustrate the process.   

 

 



 
Fig. 11. Flow chart for collecting Classifier statistics. 

Example: Pieces 1-10 belong to Classifier A, Pieces 11-20 to Classifier B, and Pieces 21-30 to Classifier C.  The mean for metric X from Pieces 

1-10 is calculated to be 15 (as in 15%) and the standard deviation is 5 (as in 5 percentage points).  If Piece 10’s metric X is 31, which is greater 

than 15 + 3 * 5 (z-test upper-bound), it is an outlier.  Piece 10’s metric X is therefore discarded and the mean and standard deviation for metric 

X are recomputed using Pieces 1-9.  Classifier A then receives the new mean and standard deviation for metric X, and a TXT file is written.  

These steps are repeated for Classifiers B and C. 

 

6 Classifying Test Pieces 

 Three techniques were used to classify test pieces from 

metric data: Unweighted Points, Weighted Points, and 

Euclidean Distance. 

6.1 Classification Techniques 

 Unweighted Points is the simplest technique.  It treats 

each metric equally, assigning a single point to a Classifier 

each time one of its metrics best matches the test piece.  The 

classifier with the most points at the end is declared the 

winner and is chosen as the classification for the test piece. 

 Weighted Points was an original approach.  It works 

similarly to Unweighted Points except metrics can be worth 

different amounts of points.  First it calculates metric 

differences from the Classifiers:  For each metric, it finds the 

Classifier with the highest value and the one with the lowest 

value.  It subtracts the lowest value from the highest value, 

and the difference becomes the number of “points” that metric 

is worth.  Then, like Unweighted Points, it looks to see which 

Classifier is closest to the test piece for each particular metric, 

only instead of assigning a single point, it assigns however 

many points the metric is worth. 

 Euclidean Distance is a standard technique for 

calculating distances in high-dimensional space.  Here it 

focuses on one Classifier at a time, taking the square root of 

the sums of each metric difference (between test piece and 

classifier) squared.  This is illustrated by the following 

formula where p is the classifier, q is the test piece, and there 

are n metrics. 

 

 Euclidean distance is calculated for each classifier, and 

the classifier with the smallest distance from the test piece is 

chosen as the classification. 

6.2 User Interface 

 A row of four buttons allows the user to load training 

XML, load test XML, classify test pieces, and clear results.  

Above these buttons sit textboxes displaying the paths to files 

FPC will read or write on the user’s machine during use.  At 



the very top of the UI is a checkbox allowing FPC to select 

the training and test pieces from the collection randomly.  

Randomizing training and test pieces requires XML to be 

loaded each time a trial is run (since Classifiers will likely 

contain different data).  Therefore, checking this box disables 

the “Load Training XML” and “Load Test XML” buttons, 

moving their combined functionality into the “Classify Test 

Pieces” button.  Below the row of buttons is an information 

area, which displays the results of each step including test 

piece classification.  To the right of the information area can 

be found a panel of checkboxes, which gives the user control 

over the metrics.  Metrics can be turned on or off to see which 

combinations produce the most accurate results.  At the very 

bottom of FPC sits a status bar that reflects program state. 

6.3 Classification Steps 

 When the user clicks “Classify Test Pieces,” test piece 

data from the TXT files created in step 2 (collecting piece 

statistics) is read and loaded into memory.  It is true that if the 

user has performed steps in the normal order and loaded 

training XML before test XML, the test piece data would still 

be in memory, and reading from file would not be necessary.  

However, due to the sharing of Piece objects between training 

pieces and test pieces, if steps were done out of order, the 

Piece objects, if still in memory, might contain training data 

instead of test data.  And because each TXT file is small, 

reading in the data proves a reliable way to ensure good 

system state if, for example, the user were to load training and 

test data, exit the program, and launch FPC again hoping to 

start classifying test pieces immediately without reloading.  

Here, reading from files is the simplest solution. 

 Next, if the Classifiers are not already in memory, the 

data is read in from the Classifier TXT files produced in step 

3 (collecting classifier statistics).  For each test piece, its 

metric values are compared with those of each Classifier.  

Each classification technique then scores the metrics and 

handles the results in its own, unique way. 

6.4 Testing the Classification Techniques 

 Four-part music was selected comprising three 

composers: J. S. Bach, John Bacchus Dykes, and Henry 

Thomas Smart.  Dykes and Smart were 19
th

 century English 

hymnists while Bach was an early 18
th

 century German 

composer.  Dykes and Smart were chosen for their similarities 

with one another while Bach was chosen for his differences 

from them. 

 Using all 19 metrics, 20 trials were run per composer 

combination: (1) Bach vs. Dykes, (2) Bach vs. Smart, (3) 

Dykes vs. Smart, and (4) Bach vs. Dykes vs. Smart.  The 

averages were then computed for each classification 

technique.  Later, 20 more trials were run for Bach vs. Dykes 

using a subset of metrics thought most important. 

 Forty-five pieces in all were used – 15 per composer – 

and randomization was employed on each trial so that training 

pieces and test pieces could be different each time. 

6.5 Classifying From Among Two Composers 

 For all three evaluation techniques, the averages of each 

trial, when classifying among two composers, came out well 

above 50% – the value expected from a two-composer coin 

toss.  In fact, no individual trial fell below 50%. 

Bach vs. Dykes – All Metrics 

Technique Correctness 

Unweighted Points 82.5% 

Weighted Points 86.8% 

Euclidean Distance 71.5% 

 

Bach vs. Smart – All Metrics 

Technique Correctness 

Unweighted Points 92.1% 

Weighted Points 89.3% 

Euclidean Distance 69.3% 

 

Dykes vs. Smart – All Metrics 

Technique Correctness 

Unweighted Points 74% 

Weighted Points 82.9% 

Euclidean Distance 69.3% 
 

 The best technique overall was Weighted Points, 

demonstrating the strongest performance in two out of the 

three classifications. 

6.6 Classifying From Among Three 

Composers 

 For all three evaluation techniques, the averages of each 

trial, when classifying among three composers, came out well 

above 33.3% - the value expected from random, three-way 

guessing.  In fact, no individual trial dipped below 33.3%.  

The technique that worked best was Unweighted Points 

followed by Weighted Points at a close second. 

Back vs. Dykes vs. Smart – All Metrics 

Technique Correctness 

Unweighted Points 71% 

Weighted Points 68.1% 

Euclidean Distance 57.1% 
 

6.7 Using Selective Metrics 

 If all 45 pieces were to be used to train the system, the 

resulting classifier data would represent what data from a 

randomized trial would look like on average.  In this case, one 

can see that Bach’s chord inversion statistics are far different 

from those of Dykes and Smart.  Bach also relies more 

heavily on secondary: 

Classifier Data from 45 Test Pieces 

Five 

Classifiers 

Bach Dykes Smart 

Root 

Position 

65.7% 62% 61.1% 



First 

Inversion 

22.1% 20% 22.02% 

Second 

Inversion 

2% 10.72% 10% 

Third 

Inversion 

1.1% .6% 1.9% 

Secondary 

Chords 

11.5% 4.4% 3.9% 

 

 To test if FPC could even more accurately distinguish 

between Bach and either of the others, twenty additional trials 

were run for Bach and Dykes using only root position, first 

inversion, second inversion, third inversion, and secondary 

chords metrics. 

Bach vs. Dykes – Five Metrics 

Technique Correctness 

Unweighted Points 80.7% 

Weighted Points 88.6% 

Euclidean Distance 89.3% 
 

 Although Unweighted Points was 1.8 percentage points 

less accurate, Weighted Points improved by 1.8 percentage 

points, and Euclidean Distance was a surprising 17.8 

percentage points more accurate.  Whereas before, Euclidean 

Distance performed worst, here, it actually performed best.  

Using only these five metrics likely removed considerable 

amounts of “noisy” data, which suggests Euclidean Distance 

performs best with low noise. 

7 Conclusions 

 It has been shown how FPC uses metrics based on chord 

structure and chord movement as input for three classification 

techniques.  Furthermore, it has been demonstrated that 

conducting multiple randomized trials with test pieces of 

known classification allows the accuracy of FPC’s guesswork 

to be easily measured. 

 The analyzed results from multiple trials indicate FPC is 

even more reliable than originally expected.  Root position, 

first inversion, second inversion, third inversion, and 

secondary chords metrics have proven, at least in one case, to 

be the most important factors in distinguishing composer 

writing styles.  A logical direction for future work would be to 

test FPC’s performance classifying four-part music by time 

period instead of composer. 
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