
An Approach to Classifying Four-Part Music

Gregory Doerfler, Robert Beck

Department of Computing Sciences

Villanova University, Villanova PA 19085

gdoerf01@villanova.edu

Abstract - Four-Part Classifier (FPC) is a system for

classifying four-part music based on the known classifications

of training pieces. Classification is performed using metrics

that consider both chord structure and chord movement and

techniques that score the metrics in different ways. While in

principle classifiers are free to be anything of musical interest,

this paper focuses on classification by composer. FPC was

trained with music from three composers – J. S. Bach, John

Bacchus Dykes, and Henry Thomas Smart – and then tasked

with classifying test pieces written by the same composers.

Using all two-or-more composer combinations (Bach and

Dykes; Bach and Smart; Dykes and Smart; and Bach, Dykes,

and Smart), FPC correctly identified the composer with well

above 50% accuracy. In the cases of Bach and Dykes, and

Bach and Smart, training piece data clustered around five

metrics – four of them chord inversion percentages and the

other one secondary chord percentages – suggesting these to

be the most decisive metrics. The significance of these five

metrics was supported by the substantial improvement in the

Euclidean distance classification when only they were used.

Keywords: Four-Part Music, Classification, Metrics,

Clustering

1 Introduction

 The Four-Part Classifier system (FPC) began as an

experiment in randomly generating four-part music that would

abide by traditional four-part writing rules. The essential

rules were quickly coded along with the beginnings of a

program for producing valid chord sequences. But as the

program evolved, it was moved in a new direction – one that

could reuse the rules already written. The idea of creating a

classification system which could be trained with music by

known composers and tested with other music by the same

composers became the driving force behind the development

of this tool.

1.1 Related Work

 While computer classification of music is nothing new,

research is lacking in the domain of classifying four-part

music. As for four-part-specific music systems, the 1986

CHORAL system created by Kemal Ebcioglu [5] comes

closest to FPC’s precursor program geared toward

composition. Ebcioglu’s system harmonizes four-part

chorales in the style of J. S. Bach via first order predicate

calculus. Newer research by Eric Nichols et al. [1] most

closely matches the mature version of FPC but is not four-

part-specific. Like FPC, their system operates in high

dimensional space (FPC will be shown to be 19-space) but

parameterizes the musical chord sequences of popular music.

FPC does not consider the order of chords in its analysis but

focuses instead on chord structure and the movements

between parts.

1.2 Explanation of Musical Terms

 In order for FPC to be understood in the steps that

follow, a basic level of musical knowledge is required.

 There are 12 pitches in a chromatic scale from which are

derived 12 major keys. The names of each key range from A

to G and include some intermediate steps between letters such

as Bb or F#. Most important to the listener, the key serves as

a musical “anchor” for the ear. All pitches can be understood

in relation to the syllable do (pronounced “doh”), and all

chords in relation to the I chord (the tonic). Both do and the I

chord are defined by the key.

 Although each key contains 12 pitches (or steps), only

seven of them make up the diatonic scale (figure 1) – the scale

used most often in western music (do, re, mi, fa, sol, la, ti,

do). From bottom to top, the distances between the notes of

the diatonic scale follow the pattern “whole step, whole step,

half step, whole step, whole step, whole step, half step.”

Whether traversing the diatonic scale requires multiple sharps

or flats is determined by the key signature at the beginning of

the piece.

Fig. 1. Diatonic scale in C

 From these seven diatonic notes, seven diatonic chords

are possible. In four-part music, each chord is made up of

four voices: soprano, alto, tenor, and bass. The arrangement

of these voices produces chords in specific positions and

inversions. For the sake of simplicity, the exact procedure for

determining chord names and numbers has been omitted.

 Notes differ not only by pitch but by duration. The

shortest duration FPC handles is the eighth note followed by

the quarter note, the dotted quarter note, the half note, the

dotted half note, and lastly the whole note. The time signature

dictates the number of beats in a measure and what type of

note constitutes one beat. For example, in 3/4 time, there are

three beats in a measure and a quarter note gets one beat.

Since FPC only considers music in 3/4 or 4/4 time, a quarter

note always gets one beat.

 Finally, harmonic rhythm describes the shortest regular

chord duration between chord changes. For example, in 4/4 a

quarter-note-level harmonic rhythm means that chords change

at most every beat. Harmonic rhythm is one of the most

important components of traditional four-part analysis, its

reliability crucial to correctly identifying chords and chord

changes. For this project, only music with quarter-note-level

harmonic rhythms was chosen, removing the need to identify

harmonic rhythms programmatically.

2 Collecting the Pieces – Training and

Test Pieces

 A collection of four-part MusicXML files was created

for use as training and test data by the FPC system. Four-part

pieces were collected from websites in two different formats:

PDF and MusicXML – with the PDFs later converted to

MusicXML. A few hymns were entered by hand in Finale

2011, a music notation program capable of exporting to

MusicXML.

2.1 Downloading and Converting Files

 The two main websites used were Hymnary.org and

JSBChorales.net. Hymnary.org is a searchable database of

hymns, many of which are offered for download in PDF and

MusicXML formats. For the purpose of this project,

Hymnary’s PDF files were found to be preferable to the

compressed, heavily-formatted MusicXML files that proved

difficult to touch-up. A few of the hymns entered by hand

were taken from scans Hymnary made available on the site

when it had information on a particular hymn but no

character-containing electronic documents (e.g., native PDFs).

The other site, JSBChorales.org, offers a collection of Bach

chorales entirely in MusicXML format. These MusicXML

files were found to be suitable.

 XML and PDF files were downloaded from these sites

and renamed using the format “title – classifier.pdf” or “title –

classifier.xml” where “title” is the hymntune or other unique,

harmonization-specific name of the composition and

“classifier” is the composer. This naming convention was

maintained throughout the project. Individually, the PDF files

from Hymnary were converted to MusicXML using a

software program called PDFtoMusic Pro. PDFtoMusic Pro

is not a text-recognition program, so it can only extract data

from PDFs created by music notation software, which all of

them were. The free trial version of PDFtoMusic Pro

converts only the first page of PDF files, which fortunately

created no issue since all but a few of the downloaded hymns

were single page documents. The XML files PDFtoMusic

Pro produced carried the .mxl file extension and were

compressed.

2.2 Formatting the MusicXML

 Before the XML files could be used, it was necessary to

adjust their formatting and, in the case of the .mxl variety,

remove their compression. This was done with Finale. Once

open in Finale, lyrics, chord charts, and any extraneous or

visually interfering markings were removed manually. If the

piece was written in open staff, as was the case with every

Bach chorale, a piano reduction (two staves) was created in its

place. Measures with pick-up notes were deleted and if beats

had been borrowed from the last measure, they were added

back. For these reinstated beats, the last chord of the piece

was extended.

 Any time two layers exist in the same staff of the same

measure, FPC expects them to start and finish out the measure

together. However, publishers and editors do not like to see

note stems split multiple times in a single measure because

one beat required it and so tend to add or drop layers mid-

measure strictly for appearance (figure 2). When this

happened, measures were adjusted by hand (figure 3).

Fig. 2

Fig. 3

 If two parts in the same staff double a note in unison but

the staff did not use two layers to do it (figure 4), the parts

were rewritten for that measure (figure 5). Any rests present

were replaced with the corresponding note(s) of the previous

chord.

Fig. 4

Fig. 5

 Lastly, all measures were copied and pasted into a new

Finale document to remove any hidden formatting. The files

were then exported with the same naming convention as

before and saved in a specific training piece or test piece

directory for use by FPC.

Fig. 6. Flow chart for collecting pieces

 The next few sections describe how FPC works in

general. Section 6 returns to the specific way FPC was used

in this experiment.

3 Parsing MusicXML – Training and

Test Pieces

 By clicking the “Load Training XML” or “Load Test

XML” button, the user kicks-off step 1 of the data-loading

process: Parsing the XML.

Fig. 7. FPC upon launch

3.1 Reading in Key and Divisions

 First, FPC parses the key from each file, then the

divisions. The number of divisions is an integer value

defining quarter note duration for the document. All other

note types (half, eighth…etc.) are deduced from this integer

and recognized throughout the document. If a quarter note is

found to be two, a half note is four.

3.2 Reading in Notes

 MusicXML organizes notes by layers within staves

within measures. In other words, layer 1 of staff 1 of measure

1 comes before layer 2 of staff 1 of measure 1, which

precedes layer 1 of staff 2 of measure 1, and so on. Last is

layer 2 of staff 2 of the final measure. If a staff contains only

one layer in a particular measure, the lower note of the two-

note cluster (alto for staff 1, bass for staff 2) is read before the

upper note (soprano or tenor respectively). Since a measure

might contain a staff with one layer and another with two,

FPC was carefully designed to handle all possible

combinations.

 A note’s pitch consists of a step and an octave (e.g., Bb

and 3). A hash map is used to relate pitches to integers (e.g.,

“Bb3”�18), and these integers are used to represent each

voice of a four-part Chord object.

3.3 Handling Note Values

 In 3/4 and 4/4 time, a quarter-note-level harmonic

rhythm means that chords change at most each beat.

Therefore the chord produced by the arrangement of soprano,

alto, tenor, and bass voices at the start of each beat carries

through to the end of the beat. This also means shorter notes

moving between beats cannot command chords of their own.

Quarter notes, which span a whole beat, are then the ideal

notes to capture as long as they fall on the beat, which they

always did. Likewise, eighth notes that fall on the beat are

taken to be structurally important to the chord, so their

durations are doubled to a full beat and their pitches captured

whereas those that fall between beats are assumed to be

passing tones, upper and lower neighbors, and other non-

chord tones, so they are ignored. For simplicity’s sake,

anything longer than a quarter note is considered a repeat

quarter note and sees its pitch captured more than once. For

instance, a half note is treated as two separate quarter notes

and a whole note four separate quarter notes. A dotted

quarter note is assumed to always fall on the beat, so it is

captured as two quarter notes; the following eighth note is

ignored. While it is possible for something other than an

eighth note to follow a dotted quarter, it is highly unlikely in

3/4 or 4/4, and it did not happen in any of the music used.

3.4 Results

 Finally, for each XML file, FPC creates a Piece object

comprising at the moment a key, classifier, and sequence of

Chords. For each piece, it also produces a CSV file with the

same information. The CSV files serve purely as logs.

Fig. 8. Flow chart for creating Piece objects

4 Collecting Piece Statistics

 After the XML has been parsed, FPC moves

immediately to the next step: Collecting Piece Statistics.

4.1 Metrics

 Statistics are collected for each piece via 19 Boolean

tests on each chord or chord change. These Boolean tests

produce the following metrics:

ThirdAppearsOnlyOnceInSATRule: The percent of chords

whose third appears only once in the upper three voices. In

classical writing, it is preferable that the third appear just once

in the upper three voices.

ThirdNotDoubledInUnisonRule: The percent of chords

whose third is not doubled in unison. Doubling the third in

unison is usually avoided unless necessary.

FifthDoubledInSecondInversionRule: The percent of

second-inversion chords whose fifth is doubled. It is

preferable that the fifth be doubled in second inversion.

CrossOverRule: The percent of chords not containing

overlapping parts. It is preferable that voices do not cross

over. Doubling in unison is fine.

SATOctaveRule: The percent of chords whose soprano and

alto pitches as well as alto and tenor pitches differ by not more

than an octave. This is a fairly strict rule in classical, four-part

writing. The distance between the bass and tenor does not

matter and may be great.

SevenChordDiminishedFifthRule: The percent of vii°

chords with a fifth. While the fifths of other chords are often

omitted, the diminished fifth of a vii° chord adds an important

quality and its presence is a strict requirement in classical

writing.

ParallelFifthsRule: The percent of chord changes free of

parallel fifths. This is a strict rule of classical writing.

ParallelOctavesRule: The percent of chord changes free of

parallel octaves. This is also a strict rule.

DirectFifthsInOuterVoicesRule: The percent of chord

changes free of direct fifths in the outer voices. This is a fairly

important rule in classical writing.

DirectOctavesInOuterVoicesRule: The percent of chord

changes free of direct octaves in the outer voices. This also is

a fairly important rule.

JumpRule: The percent of chord changes involving a part

jumping by a major seventh, a minor seventh, or the tri-tone.

Jumping the tri-tone in a non-melodic voice part is never

acceptable in classical writing, but from time to time, leaps by

major and minor sevenths and even tri-tones are permissible if

in the soprano.

StepwiseMovementsRule: The percent of chord changes in

which at least one voice moves by no more than a major

second. While this is not a formal rule of classical writing per

se, good writing generally has very few chord changes in

which all four parts leap.

StepwiseSopranoMovements: The percent of chord changes

in which the soprano moves by no more than a major second.

RootPosition: The percent of chords in root position (root in

bass).

FirstInversion: The percent of chords in first inversion (third

in bass).

SecondInversion: The percent of chords in second inversion

(fifth in bass).

ThirdInversion: The percent of chords in third inversion

(seventh in bass).

Suspensions: The percent of chord changes involving a

suspended note that resolves to a chord tone.

SecondaryChords: The percent of chords that are secondary

dominants – chords borrowed from other keys that act as

launch pads to chords that do belong in the key (diatonic

chords). FPC handles all “V-of” chords (i.e., V/ii, Viii, V/IV,

V/V, V/vi) and all “V
7
-of” chords except V7/IV. “V

7
-of”

chords are simply recorded as “V-of” chords since they

perform the same function.

 After all 19 metrics are computed per piece, a TXT file

is produced for backup.

Fig. 9. Flow chart for collecting Piece statistics

Fig. 10. Sample TXT file for a Bach chorale containing

19 metric values (percentages)

5 Collecting Classifier Statistics –

Training Pieces Only

 The previous two steps – Parsing the XML and

Collecting Piece Statistics – apply to the loading of both

training and test data. Step 3, however, applies to

training data only. If the user has clicked “Load

Training XML,” FPC now begins the final step before it

is ready to start classifying test pieces: Collecting

Classifier Statistics.

 In the sections that follow, “classifier” with a

lowercase “c” refers to the Piece object’s string field

while “Classifier” with a capital “C” refers to the

Classifier object.

5.1 Approach

 For each training piece belonging to the same

classifier, a Classifier object is created. The mean and

standard deviation are computed for each metric from

all the pieces of the classifier and then stored in the

Classifier object. For any piece, metrics outside three

standard deviations of the mean are thrown out, and the

means and standard deviations recalculated. Again, the

whole piece is not thrown out, just the piece’s

individual metric(s). FPC updates each Classifier

object with the new mean(s) and standard deviation(s)

and then produces TXT files with the same information.

Figure 11 provides an example to illustrate the process.

Fig. 11. Flow chart for collecting Classifier statistics.

Example: Pieces 1-10 belong to Classifier A, Pieces 11-20 to Classifier B, and Pieces 21-30 to Classifier C. The mean for metric X from Pieces

1-10 is calculated to be 15 (as in 15%) and the standard deviation is 5 (as in 5 percentage points). If Piece 10’s metric X is 31, which is greater

than 15 + 3 * 5 (z-test upper-bound), it is an outlier. Piece 10’s metric X is therefore discarded and the mean and standard deviation for metric

X are recomputed using Pieces 1-9. Classifier A then receives the new mean and standard deviation for metric X, and a TXT file is written.

These steps are repeated for Classifiers B and C.

6 Classifying Test Pieces

 Three techniques were used to classify test pieces from

metric data: Unweighted Points, Weighted Points, and

Euclidean Distance.

6.1 Classification Techniques

 Unweighted Points is the simplest technique. It treats

each metric equally, assigning a single point to a Classifier

each time one of its metrics best matches the test piece. The

classifier with the most points at the end is declared the

winner and is chosen as the classification for the test piece.

 Weighted Points was an original approach. It works

similarly to Unweighted Points except metrics can be worth

different amounts of points. First it calculates metric

differences from the Classifiers: For each metric, it finds the

Classifier with the highest value and the one with the lowest

value. It subtracts the lowest value from the highest value,

and the difference becomes the number of “points” that metric

is worth. Then, like Unweighted Points, it looks to see which

Classifier is closest to the test piece for each particular metric,

only instead of assigning a single point, it assigns however

many points the metric is worth.

 Euclidean Distance is a standard technique for

calculating distances in high-dimensional space. Here it

focuses on one Classifier at a time, taking the square root of

the sums of each metric difference (between test piece and

classifier) squared. This is illustrated by the following

formula where p is the classifier, q is the test piece, and there

are n metrics.

 Euclidean distance is calculated for each classifier, and

the classifier with the smallest distance from the test piece is

chosen as the classification.

6.2 User Interface

 A row of four buttons allows the user to load training

XML, load test XML, classify test pieces, and clear results.

Above these buttons sit textboxes displaying the paths to files

FPC will read or write on the user’s machine during use. At

the very top of the UI is a checkbox allowing FPC to select

the training and test pieces from the collection randomly.

Randomizing training and test pieces requires XML to be

loaded each time a trial is run (since Classifiers will likely

contain different data). Therefore, checking this box disables

the “Load Training XML” and “Load Test XML” buttons,

moving their combined functionality into the “Classify Test

Pieces” button. Below the row of buttons is an information

area, which displays the results of each step including test

piece classification. To the right of the information area can

be found a panel of checkboxes, which gives the user control

over the metrics. Metrics can be turned on or off to see which

combinations produce the most accurate results. At the very

bottom of FPC sits a status bar that reflects program state.

6.3 Classification Steps

 When the user clicks “Classify Test Pieces,” test piece

data from the TXT files created in step 2 (collecting piece

statistics) is read and loaded into memory. It is true that if the

user has performed steps in the normal order and loaded

training XML before test XML, the test piece data would still

be in memory, and reading from file would not be necessary.

However, due to the sharing of Piece objects between training

pieces and test pieces, if steps were done out of order, the

Piece objects, if still in memory, might contain training data

instead of test data. And because each TXT file is small,

reading in the data proves a reliable way to ensure good

system state if, for example, the user were to load training and

test data, exit the program, and launch FPC again hoping to

start classifying test pieces immediately without reloading.

Here, reading from files is the simplest solution.

 Next, if the Classifiers are not already in memory, the

data is read in from the Classifier TXT files produced in step

3 (collecting classifier statistics). For each test piece, its

metric values are compared with those of each Classifier.

Each classification technique then scores the metrics and

handles the results in its own, unique way.

6.4 Testing the Classification Techniques

 Four-part music was selected comprising three

composers: J. S. Bach, John Bacchus Dykes, and Henry

Thomas Smart. Dykes and Smart were 19
th

 century English

hymnists while Bach was an early 18
th

 century German

composer. Dykes and Smart were chosen for their similarities

with one another while Bach was chosen for his differences

from them.

 Using all 19 metrics, 20 trials were run per composer

combination: (1) Bach vs. Dykes, (2) Bach vs. Smart, (3)

Dykes vs. Smart, and (4) Bach vs. Dykes vs. Smart. The

averages were then computed for each classification

technique. Later, 20 more trials were run for Bach vs. Dykes

using a subset of metrics thought most important.

 Forty-five pieces in all were used – 15 per composer –

and randomization was employed on each trial so that training

pieces and test pieces could be different each time.

6.5 Classifying From Among Two Composers

 For all three evaluation techniques, the averages of each

trial, when classifying among two composers, came out well

above 50% – the value expected from a two-composer coin

toss. In fact, no individual trial fell below 50%.

Bach vs. Dykes – All Metrics

Technique Correctness

Unweighted Points 82.5%

Weighted Points 86.8%

Euclidean Distance 71.5%

Bach vs. Smart – All Metrics

Technique Correctness

Unweighted Points 92.1%

Weighted Points 89.3%

Euclidean Distance 69.3%

Dykes vs. Smart – All Metrics

Technique Correctness

Unweighted Points 74%

Weighted Points 82.9%

Euclidean Distance 69.3%

 The best technique overall was Weighted Points,

demonstrating the strongest performance in two out of the

three classifications.

6.6 Classifying From Among Three

Composers

 For all three evaluation techniques, the averages of each

trial, when classifying among three composers, came out well

above 33.3% - the value expected from random, three-way

guessing. In fact, no individual trial dipped below 33.3%.

The technique that worked best was Unweighted Points

followed by Weighted Points at a close second.

Back vs. Dykes vs. Smart – All Metrics

Technique Correctness

Unweighted Points 71%

Weighted Points 68.1%

Euclidean Distance 57.1%

6.7 Using Selective Metrics

 If all 45 pieces were to be used to train the system, the

resulting classifier data would represent what data from a

randomized trial would look like on average. In this case, one

can see that Bach’s chord inversion statistics are far different

from those of Dykes and Smart. Bach also relies more

heavily on secondary:

Classifier Data from 45 Test Pieces

Five

Classifiers

Bach Dykes Smart

Root

Position

65.7% 62% 61.1%

First

Inversion

22.1% 20% 22.02%

Second

Inversion

2% 10.72% 10%

Third

Inversion

1.1% .6% 1.9%

Secondary

Chords

11.5% 4.4% 3.9%

 To test if FPC could even more accurately distinguish

between Bach and either of the others, twenty additional trials

were run for Bach and Dykes using only root position, first

inversion, second inversion, third inversion, and secondary

chords metrics.

Bach vs. Dykes – Five Metrics

Technique Correctness

Unweighted Points 80.7%

Weighted Points 88.6%

Euclidean Distance 89.3%

 Although Unweighted Points was 1.8 percentage points

less accurate, Weighted Points improved by 1.8 percentage

points, and Euclidean Distance was a surprising 17.8

percentage points more accurate. Whereas before, Euclidean

Distance performed worst, here, it actually performed best.

Using only these five metrics likely removed considerable

amounts of “noisy” data, which suggests Euclidean Distance

performs best with low noise.

7 Conclusions

 It has been shown how FPC uses metrics based on chord

structure and chord movement as input for three classification

techniques. Furthermore, it has been demonstrated that

conducting multiple randomized trials with test pieces of

known classification allows the accuracy of FPC’s guesswork

to be easily measured.

 The analyzed results from multiple trials indicate FPC is

even more reliable than originally expected. Root position,

first inversion, second inversion, third inversion, and

secondary chords metrics have proven, at least in one case, to

be the most important factors in distinguishing composer

writing styles. A logical direction for future work would be to

test FPC’s performance classifying four-part music by time

period instead of composer.

8 References

[1] Eric Nichols, Dan Morris, and Sumit Basu. 2009. Data-

driven exploration of musical chord sequences. In

Proceedings of the 14th international conference on

Intelligent user interfaces (IUI '09). ACM, New York, NY,

USA, 227-236. DOI=10.1145/1502650.1502683

http://doi.acm.org/10.1145/1502650.1502683

[2] Roberto De Prisco, Gianluca Zaccagnino, and Rocco

Zaccagnino. 2010. EvoBassComposer: a multi-objective

genetic algorithm for 4-voice compositions. In Proceedings of

the 12th annual conference on Genetic and evolutionary

computation (GECCO '10). ACM, New York, NY, USA,

817-818. DOI=10.1145/1830483.1830627

http://doi.acm.org/10.1145/1830483.1830627

[3] Torsten Anders and Eduardo R. Miranda. 2011.

Constraint programming systems for modeling music theories

and composition. ACM Comput. Surv. 43, 4, Article 30

(October 2011), 38 pages. DOI=10.1145/1978802.1978809

http://doi.acm.org/10.1145/1978802.1978809

[4] Michael Edwards. 2011. Algorithmic composition:

computational thinking in music. Commun. ACM 54, 7 (July

2011), 58-67. DOI=10.1145/1965724.1965742

http://doi.acm.org/10.1145/1965724.1965742

[5] Kemal Ebcioglu. 1986. An Expert System for Chorale

Harmonization. In AAAI-86 Proceedings. 784-788

http://www.aaaipress.org/Papers/AAAI/1986/AAAI86-

130.pdf

