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Abstract— Texture analysis and classification have received
significant research interest and have been shown to be
essential in many computer vision systems and applications.
Local binary patterns (LBP) form a simple yet power-
ful texture descriptor characterising local neighbourhood
properties, which, due to its effectiveness and robustness,
is widely employed. LBP information can be gathered at
multiple scales to improve the performance of the descriptor.
While in conventional LBP this information is recorded, in
form of a histogram, separately for each of the scales, it
was shown that a multi-dimensional (MD) feature represen-
tation removes some ambiguity and leads to better texture
classification. However, the generated MD-LBP histograms
result in relatively large feature descriptors which limittheir
practical use. In this paper, we show that a feature selection
stage based on a genetic algorithm can be successfully
applied to reduce the dimensionality of MD-LBP features
while maintaining effective texture classification.
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1. Introduction
Texture analysis and classification form an important

part of many computer vision tasks including content-based
image retrieval, face analysis, medical image analysis, mul-
timedia content classification and annotation. While various
powerful texture descriptors have been developed, changes
in orientation, scale, illumination and other confounding
imaging factors still present challenges.

Local binary patterns (LBP), first introduced in [1], rep-
resents a relatively simple yet powerful texture descriptor
describing the relationship of a pixel to its immediate neigh-
bourhood. Later work [2] extended that concept to varying
neighbourhoods, to make the method greyscale and rotation
invariant and to emphasise “uniform” texture patterns.

LBP descriptors are obtained at pixel locations and sum-
marised into histograms which then serve as texture descrip-
tors. For multi-scale LBP, the information is obtained at
multiple radii and the resulting histograms are concatenated
into a feature vector. Although this gives improved texture
recognition, it was shown in [3] that it also leads to a loss
of information and added ambiguity. A multi-dimensional

LBP (MD-LBP) histogram was thus proposed to preserve
the relationships between scales and was shown to lead to
further improved texture classification performance.

Although MD-LBP allows for better texture classification,
it results in relatively large feature descriptors which limit its
usefulness. For example, while the original uniform rotation
invariant LBP descriptor calculated at three scales leads to a
feature length of 30, an MD-LBP histogram with the same
parameters has a total of 1000 bins. In this paper, we show
that through application of a feature selection stage based
on a genetic algorithm (GA) the dimensionality of MD-
LBP features can be drastically reduced while maintaining
good texture classification performance. We demonstrate this
based on experiments on the Outex dataset.

2. LBP texture features
Local binary patterns (LBP) are simple yet effective

texture descriptors. The original LBP variant [1] operateson
a per-pixel basis, and describes the 8-neighbourhood pattern
of a pixel in binary form. If

B =





g8 g1 g2

g7 g(0,0) g3

g6 g5 g4



 (1)

is the 3 × 3 grayscale block of a pixel at location(0, 0)
and its 8-neighbourhood, then the neighbouring pixels are
set to 0 and 1 by thresholding them with the centre pixel
value. The value of the central pixel is subtracted from each
neighbour

LBP1 =





g8 − gc g1 − gc g2 − gc

g7 − gc g3 − gc

g6 − gc g5 − gc g4 − gc



 (2)

wheregc = g(0,0) for convenience, and the binary code is
then generated by applying the thresholding function

s(x) =

{

1 for x ≥ 0
0 for x < 0

(3)

at each location which results in

LBP2 =





s(g8 − gc) s(g1 − gc) s(g2 − gc)
s(g7 − gc) s(g3 − gc)
s(g6 − gc) s(g5 − gc) s(g4 − gc)



 (4)



Finally, the LBP pattern is obtained by

LBP =

8
∑

p=1

s(gp − gc)2
p−1 (5)

The 256 possible patterns resulting from the above procedure
are used to build a histogram, which serves as a texture
descriptor for the image.

2.1 Circular LBP
In the above procedure, the 8-neighbourhood of each pixel

is utilised. Clearly, four of these neighbours are at a different
distance (

√
2) than the other four. To compensate this, a

circular neighbourhood can be defined [2] where locations
that do not fall exactly at the centre of a pixel are obtained
through interpolation.

A neighbourhood is defined byR andP whereR defines
the distance of the neighbours to the centre, whileP gives
the number of samples at that distance that are employed
as neighbours. Ifgc is at (0, 0), then the co-ordinates of
the neighbouring pixelsgp, p = 1, 2, . . . , P , are given by
(−R sin(2πp/P )), (R cos(2πp/P )).

2.2 Rotation invariant LBP
It has been shown [2] that rotation invariance is relatively

simple to address in LBP. If a texture is rotated, essentially
the patterns (that is the 0s and 1s around the centre pixel)
rotate with respect to the centre.

Rotation invariant LBP codes,LBP ri
P,R, can be generated

through shift operations on the bit sequence so as to arrive
at a sequence with a maximal number of leading 0s, i.e.

LBP ri
P,R = min{ROR(LBPP,R, i) | i = 0, 1, . . . , P −1}

(6)
whereROR(x, i) performs a circular bit-wise right shift by
i bits.

2.3 Uniform LBP
Certain binary patterns are fundamental properties of

texture and sometimes their frequency exceeds 90%. These
patterns are called uniform [2], leading toLBPu

P,R, and are
defined by a uniformity measure which corresponds to the
number of spatial transitions (i.e., changes from 0 to 1 and
vice versa). Patterns with a uniformity measure of 2 are given
by

LBPu2
P,R =

{

∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
(7)

where

U(LBPP,R) = |s(gp − gc) − s(g0 − gc)|

+

P−1
∑

p=1

|s(gp − gc) − s(gp−1 − gc)|
(8)

Clearly, rotation invariance, leading toLBP riu2
P,R , can be

achieved in the same way as above. For eight neighbours
there are nine rotation invariant uniform LBP codes, two
without any 0-1 changes (i.e., one with all 0s and one with all
1s) and the remaining seven with1, . . . , 7 ones in sequence.
It has been shown [2] that focussing on these uniform pat-
terns while aggregating all other (i.e., non-uniform) patterns
into one group leads to improved texture descriptors. While
LBP generates 256 patterns for an 8-neighbourhood, and
LBP ri generates 36 patterns,LBP riu2 results in 10 pattern
classes for the same neighbourhood.

2.4 Multi-scale LBP
By defining several radii around a pixel, multiple concen-

tric neighbourhood LBP codes can be extracted. While in
principle any radius is feasible, attention is often restricted to
the setsr = {1, 3} andr = {1, 3, 5}. Also, while in general
any number of neighbours could be defined, we found in our
experiments that choosing 8 neighbours at all distances does
not compromise accuracy while also corresponding to those
directions (horizontal, vertical, and plus/minus 45 degrees)
to which the human visual system is most sensitive to.

2.5 Multi-dimensional LBP
Multi-scale LBP is performed by concatenating the LBP

features from each radii into a one-dimensional feature
vector. In [3], it was shown that this results in a loss of
information between different scales and added ambiguity.
This is illustrated in Fig. 1 where an “image” consisting of
the two samples on the top will lead to exactly the same
LBP descriptor as the two samples on the bottom. Both
resulting LBP histograms will have one entry each for bins
(00001111) and (00111111) for both radii.

A multi-dimensional histogram is hence used to pre-
serve relations between different radii. At each pixel, LBP
codes at different scales are extracted, while the com-
bination of these codes identifies the histogram bin that

Fig. 1: Multi-scale LBP example.



Fig. 2: Sample images of the 24 texture classes.

is incremented. For the example in Fig. 1, this gives a
histogram with one entry for bin(00001111, 00111111)
and one entry for bin(00111111, 00001111) for the top
“image”, while for the example at the bottom a histogram
with one entry for (00001111, 00001111) and one entry
for (00111111, 00111111) is obtained; i.e. two distinct his-
tograms and hence two distinguishable texture descriptors
are generated. MD-LBP has been shown to allow for im-
proved texture classification in comparison to the original
LBP variants [3].

3. Feature selection for MD-LBP

MD-LBP retains the relationships between scales, but
at the cost of relatively large feature descriptors resulting
in higher memory requirements and reduced processing
speed. In this paper, we address this problem by applying a
feature selection technique to reduce the length of MD-LBP
descriptors.

In particular, we employ a feature selection algorithm that
employs a genetic algorithm (GA) for selecting an optimal
set of MD-LBP histogram bins, based on the technique
presented in [4].

If we have M features of which we want to select
N , then the resulting combinatorial optimisation problem
has M !

2(M−N)! possible solutions. Clearly, and especially for
larger values ofM , an exhaustive search is not feasible, and
we consequently use a GA to search for a good feature set.
The GA fitness functionΦ = V −P is based on the principle
of maximum relevance and minimum redundancy, whereV ,
the relevance of a set withN features, is defined as

V =
1

N

N
∑

i=1

I(yhi; y), (9)

where I(yhi; y) is the mutual information of features and
labels, andP is the redundancy between those features given

by

P =
1

N2

N
∑

i=1

N
∑

j=1

I(yhi; yhj), (10)

whereI(yhi; yhj) is the mutual information between output
features.

In the GA, each individual corresponds to a feature
set of sizeN . The GA starts by randomly initialising a
populating ofNpop (200 times the desired feature length in
our implementation) individuals. Then, for each generated
feature setV and P are calculated and the fitnessΦ is
recorded.

During each iteration, parents are randomly selected based
on an asymmetric distribution function defined as

Parentj = round(Npop(e
aϑj − 1)/(ea − 1)), (11)

wherej = (1, 2) represents the parent number,a is set to 6
andϑj is a random number with uniform distribution.

From the two parents, an offspring is generated by ran-
domly selecting features from the two parents and ensur-
ing that no duplicate features are selected. Selection and
crossover is repeated until a full new population has been
generated.

As stopping criterion, the uniformity of the population is
used, expressed as the difference between the average and
maximum ofΦ. The algorithm terminates if this falls below
a threshold (0.002) or if the maximum number of iterations
(80) is reached. The individual of highest fitness then gives
the selected features.

4. Experimental results
In our experiments, we performed texture classification on

two databases from the Outex test suite [5]. Fig. 2 shows a
sample image for each of the 24 classes used in both test
suites; as can be seen the dataset is not simple as several
texture classes are rather similar. As classifier, we employ
standard support vector machines (SVMs) [6]. Since we have
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Fig. 3: Sample texture from the Outex_TC_10 dataset under
different rotations.

more than two classes, we employ a one-against-one multi-
class SVM [7] where for each SVM, we use a linear kernel
and optimise the cost parameterC ∈ [−1.1; 3.1] using a
cross validation approach [8].

Our first experiment, performed on the Outex TC10
database, is designed to investigate a useful range of feature
lengths to be used for our approach. The TC10 dataset is
built from 24 texture classes captured at 9 rotation angles
under the same illumination (see Fig. 3 for an example),
with 20 samples of each class. The classifier is trained on
20 samples (at angle 0◦) in each texture class, that is on
480 (24 × 20) images. Testing is performed on the other 8
angles, i.e. on 3840 (24 × 20 × 8) images.

We usedMD-LBP riu2
R=1,3 which gives10 × 10 = 100

features and perform feature selection to extract 5 to 99
features. The results of these (and a curve fitting to a
polynomial) are given in Fig. 4. From there, we observe
that accuracy increases sharply up to about 30 features
which we can hence consider as an indicator for minimum
feature length. In the following, we thus perform GA feature
selection based on 20, 30 and 40% of the total features for
all experiments.

Table 1 gives classification results on the TC10 dataset.
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Fig. 4: feature length vs. classification accuracy for Outex
TC10 dataset andMD-LBP riu2

R=1,3

Table 1: Texture classification results on Outex TC10 dataset.
no. of features accuracy

LBP riu2

R=1,3
20 95.81

MD-LBP riu2

R=1,3
100 97.58

GA-MD-LBP riu2

R=1,3
20 94.92
30 95.32
40 96.30

LBP riu2

R=1,3,5
30 94.61

MD-LBP riu2

R=1,3,5
1000 95.34

GA-MD-LBP riu2

R=1,3,5
200 94.71
300 95.21
400 95.26

Table 2: Texture classification results on Outex TC12 dataset.
no. of features accuracy

LBP riu2

R=1,3
20 85.35

MD-LBP riu2

R=1,3
100 90.76

GA-MD-LBP riu2

R=1,3
20 86.10
30 88.43
40 88.68

LBP riu2

R=1,3,5
30 86.18

MD-LBP riu2

R=1,3,5
1000 91.96

GA-MD-LBP riu2

R=1,3,5
200 91.70
300 91.76
400 91.73

We can see that forMD-LBP riu2
R=1,3 and selecting only

40% of the features, we obtain better classification perfor-
mance compared to standard multi-scale LBP, although we
don’t quite match the performance of MD-LBP. ForMD-
LBP riu2

R=1,3,5 and again selecting 40% of features, we again
outperform conventional LBP and obtain results within a
small margin (0.07%) of MD-LBP despite discarding 60%
of its features.

The Outex TC12 database allows to evaluate texture
classification across different illuminations. A classifier is
trained on the same image set as TC10, but is tested on a
total of 8640 images of the same textures under different
rotations and captured under different light sources. Fig.5
shows some samples from this dataset.

Classification results on this dataset are given in Table 2.

0◦ 10◦ 30◦ 60◦ 90◦

Fig. 5: Sample texture from the Outex_TC_12 dataset under
different rotations and different illumination (top row “hori-
zon”, bottom row “tl84”).
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Fig. 6: DiscriminativeMD-LBP riu2
R=1,3 patterns.

From there it is apparent that the results are similar to those
obtained for TC10. That is, good texture classification based
on a reduced MD-LBP feature set is possible, in particular
for MD-LBP riu2

R=1,3,5 where even when using only 20% of
the features the results are almost the same as for full MD-
LBP histograms.

Overall, it is clear that through application of the em-
ployed GA-based feature selection method, we are able to
significantly reduce the dimensionality of MD-LBP features
while maintaining good classification performance, in par-
ticular when calculating and integrating texture descriptors
at three different radii.

We also inspected the features that were selected. For
MD-LBP riu2

R=1,3, a set of 10 features were selected in all
experiments for both databases. These textures, which are
depicted in Fig. 6 should hence give an indication of the
most discriminative MD-LBP histogram bins.

5. Conclusions
Texture analysis and classification play an important role

in many computer vision applications. Local binary patterns
(LBP) is known as a powerful texture descriptor, especially
when calculated at different scales. While this information
from different LBP radii can be integrated into a single –
MD-LBP – texture histogram, this also leads to relatively
large feature vectors. In this paper, we have shown that

through application of a feature selection algorithm, formu-
lated as an optimisation problem and implemented using a
genetic algorithm, a significant reduction of feature dimen-
sionality is possible while maintaining good classification
accuracy.
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