
Accelerometer and Spatial-Orientation Interfaces to Maze Games on
Tablets and Mobile Devices

S.A. Innes, B.J. Kennedy, E. P. Clarkson, L.J. Edmonds and K.A. Hawick
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: redmansteve2@hotmail.co.uk, benkennedy50@gmail.com
{elliot.clarkson,leuan.edmonds}@gmail.com, k.a.hawick@massey.ac.nz

Tel: +64 9 414 0800 Fax: +64 9 441 8181

June 2013

ABSTRACT

Computer games on mobile platforms are increasingly pop-
ular and modern devices offer games developers unconven-
tional user interface technologies based on device orienta-
tion. We describe a maze game implemented both for An-
droid mobile phone and tablet devices that supports navi-
gation though a generated landscape using tilt motions ac-
cessed via the devices accelerometer sensors. We report on
implementation issues including device sensitivity, resolu-
tion and appropriate ways to utilise tilt motion in a prac-
tical game or simulation. We discuss future directions for
this technology and possible uses in simulations as well as
games.

KEY WORDS
computer games; mobile game; accelerometer; maze game;
tilt navigation.

1 Introduction
Human Computer Interaction(HCI) [6] for computer games
[27] and other highly interactive simulation or navigation
programs is an important field with the potential to make
use of new devices and interaction idioms for highly mobile
devices such as tablet computers or mobile phones [8].
Interfaces [23] for modern computer games [17] can make
use of the sensors such as tilt accelerometers that are
now commonly available in both tablet and mobile phones.
While touch screen interfaces are becoming widely used by
various programs for tablets, uptake of the accelerometer
sensor information has been slower. Touch sensitive devices
have had a slow route to adoption [28] but the commodity
pricing and now widespread availability of programmable
devices such as Android or IOS enabled tablets or phones
has led to an increasing market and demand for game Apps
for such platforms.
A great deal of work has been reported on conventional HCI
techniques [5, 24], but these new devices require new inter-

Figure 1: Screen-shot of the prototype Androrbs game.

action metaphors and idioms that go beyond conventional
graphical user interfaces [12]. There is considerable scope
for new HCI frameworks [1] that can make use of devel-
opment trends [10] in personal digital assistant(PDA) [25]
technologies such as touch screens and other sensors.
Computer games are an important market for Apps that use
these ideas [15], but there are also important applications
areas such as education [16, 22] or training systems as well
as more serious simulations [19, 20] and model demonstra-
tors [18] that can also use them [9].
In this paper we describe how accelerometer sensor infor-
mation can be used in a maze navigation game where the
user tilts the whole device - tablet or phone - to make
the player entity move around. Furthermore sensor fusion
techniques can combine new touch gestures or multi-finger
clicks [21] with the accelerometer orientation information to
provide new game-player modes of interaction.
We also discuss a number of software architectural issues
such as how to calibrate the tilting response to avoid the
game or simulation appearing sluggish, and generation and
manipulation of feasible maze maps that make use of the tilt
sensor information.
Figure 1 shows a screen-shot from the Androrbs game show-
ing three players within a generated map.
Tilt sensors [3, 13] are not new although they have only re-



cently become widely available in commodity proceed de-
vices [2]. Work has been reported on use of tilt sensors
for navigation of geophysical map data, health applications
[14], floating raft navigation [26] and other serious applica-
tions [7] as well as games [11].
Our article is structured as follows: In Section 2 we de-
scribe how we used the accelerometer in various devices.
We present some results concerning sensor control and sen-
sitivity in Section 3 and discuss tablet orientation issues and
comparable games on similar platforms in Section 4. In Sec-
tion 5 we summarise our conclusions and offer some sug-
gested areas for further investigation.

2 Architecture & Implementation
An accelerometer is an electro-mechanical device that mea-
sures acceleration forces. These forces can either be static,
like the constant force of gravity, or they can be dynamic
- caused by moving or vibrating the accelerometer. An ac-
celerometer allows the device in which it is installed to have
some idea about its own orientation and movement in space.
Accelerometers measure the amount of static acceleration
due to gravity to find out the angle the device is tilting at
with respect to the earth. By sensing the amount of dynamic
acceleration, it is possible to analyse the way the device is
moving. The output of the accelerometer can help the device
know if it is being dropped, tilted, or shaken.
Accelerometers have heavy use in many industries today.
As well as being a staple addition to most tablets, the ac-
celerometer sees use in laptops. Using the accelerometer a
laptop is able to detect if it is falling and temporarily turns
off the hard drive, protecting the head from crashing onto
the platters. In a similar fashion, High-G accelerometers
are the industry standard way of detecting car crashes and
deploying airbags at just the right time. Because of the way
most accelerometers are implemented, they suffer from high
frequency noise.
In contrast to an accelerometer which measures accelera-
tion, a gyroscope measures the rate of rotation around an
axis and suffers from low frequency noise. Gyroscopes are
useful because its output can be used to minimise the effects
of noise from an accelerometer. Likewise, the output of an
accelerometer can be used to minimise the long-term drift-
ing effect that a gyroscope suffers from. This is known as
sensor fusion and results in a more accurate output, which
can greatly enhance the feeling of control by the user.
Accelerometer/Gyroscope sensor fusion is done automati-
cally by Android since API level 9 [4] in the virtual sensors
‘Linear Acceleration’ and ‘Gravity’, but their presence de-
pends on available hardware and device API level. Despite
these sensors resulting in a clearer, more useful signal, they
were not further examined due to a priority on compatibility
with older devices.

2.1 Obtaining Accelerometer Data
Androrbs uses the AndEngine framework, which provides
its own interface IAccelerationListener. However,
this is entirely unnecessary and simply builds on Android’s
already existing sensor listeners.
Obtaining accelerometer data in Android 1.5 or above
without a third party framework involves creating a
SensorManager, obtaining a Sensor from it, and sup-
plying that Sensor with a SensorEventListener in-
stance to report its data to.

senso rManager = ( SensorManager )
g e t S y s t e m S e r v i c e ( C o n t e x t . SENSOR SERVICE ) ;

Se ns o r a s e n s o r =
senso rManager . g e t D e f a u l t S e n s o r (

Se ns o r . TYPE ACCELEROMETER ) ;
senso rManager . r e g i s t e r L i s t e n e r (

t h i s ,
a s e n s o r ,
SensorManager . SENSOR DELAY GAME ) ;

@Override
p u b l i c vo id onSensorChanged ( S e n s o r E v e n t ev )
{

i f ( ev . s e n s o r . ge tType ( ) ==
Se ns o r . TYPE ACCELEROMETER)

{
Log . i ( ” A c c e l e r o m e t e r Example ” ,

” A c c e l e r o m e t e r d a t a : ” +
ev . v a l u e s [ 0 ] + ” ” +
ev . v a l u e s [ 1 ] + ” ” +
ev . v a l u e s [ 2 ] ) ;

}
}

Figure 2: Obtaining acceleration data in Android Version
1.5 or later.

2.2 Movement Algorithms

f i n a l Vec to r2 v e l o c i t y = V e c t o r 2 P o o l . o b t a i n (
p A c c e l e r a t i o n D a t a . getX ( ) ∗ 5 ,
p A c c e l e r a t i o n D a t a . getY ( ) ∗ 5 ) ;

p l aye rBody . s e t L i n e a r V e l o c i t y ( v e l o c i t y ) ;
V e c t o r 2 P o o l . r e c y c l e ( v e l o c i t y ) ;

Figure 3: Initial movement algorithm.

Figure 3 shows the first attempt to control the player entity,
by simply applying the forces obtained from the accelerom-
eter directly as velocity. This results in a mathematically
incorrect but extremely responsive control scheme. Because
acceleration is completely bypassed and a force is never ap-
plied, the entity responds as quickly as the device can be
tilted. This feels bizarre, but not entirely unpleasant. We



felt this was not appropriate for our game, but interesting
enough to note.

Vec to r2 f = V e c t o r 2 P o o l . o b t a i n (
p A c c e l e r a t i o n D a t a . getX ( ) ∗ a c c e l ,
p A c c e l e r a t i o n D a t a . getY ( ) ∗ a c c e l ) ;

o rb . getBody ( ) . a p p l y F o r c e ( f ,
o rb . getBody ( ) . g e t W o r l d C e n t e r ( ) ) ;

V e c t o r 2 P o o l . r e c y c l e ( f ) ;

Figure 4: Secondary movement algorithm.

Figure 4 shows the second attempt at moving the player en-
tity via a function of accelerometer output. This time, actual
forces are applied to the player entity to move it. This is
the most mathematically accurate algorithm and the entity
responds as it would in reality if the equivalent forces were
applied. However, mathematical accuracy does not neces-
sarily guarantee a pleasant experience. The entity seemed
unresponsive, and felt out of place for a fast-paced game
such as Androrbs.

a c c e l = 5 . 0 f , c o u n t e r A c c e l = 4 . 0 f .
Vec to r2 f = V e c t o r 2 P o o l . o b t a i n (

p A c c e l e r a t i o n D a t a . getX ( ) ∗ a c c e l ,
p A c c e l e r a t i o n D a t a . getY ( ) ∗ a c c e l ) ;

Vec to r2 v = V e c t o r 2 P o o l . o b t a i n (
o rb . getBody ( ) . g e t L i n e a r V e l o c i t y ( ) ) ;

/ / I f we are t r y i n g t o a c c e l e r a t e i n an
/ / o p p o s i t e d i r e c t i o n t o movement , compensa te
i f ( f . x ∗ v . x < 0)

f . x −= v . x ∗ c o u n t e r A c c e l ;
i f ( f . y ∗ v . y < 0)

f . y −= v . y ∗ c o u n t e r A c c e l ;

o rb . getBody ( ) . a p p l y F o r c e ( f ,
o rb . getBody ( ) . g e t W o r l d C e n t e r ( ) ) ;

V e c t o r 2 P o o l . r e c y c l e ( v ) ;
V e c t o r 2 P o o l . r e c y c l e ( f ) ;

Figure 5: Movement algorithm 3

Figure 5 shows the third iteration of the movement algo-
rithm. To try to compensate for the unsatisfying motion of
the previous code iteration, if the player tries to accelerate in
the opposite direction to their current motion, they receive a
boost to their newly applied force by their current velocity
magnified by a ‘counter-acceleration’ constant.
Figure 6 shows an updated version of the movement algo-
rithm with much more accurate calculation of friction.

2.3 Interfacing with the game
We wanted the game to behave (“feel”) like a ball bear-
ing puzzle (Figure 7), in which you navigate ball bearings

f i n a l s t a t i c f l o a t f r i c t i o n = 0 . 3 ;
Vec to r2 f = V e c t o r 2 P o o l . o b t a i n (

p A c c e l e r a t i o n D a t a . getX ( ) ∗ a c c e l ,
p A c c e l e r a t i o n D a t a . getY ( ) ∗ a c c e l ) ;

Vec to r2 v = V e c t o r 2 P o o l . o b t a i n (
o rb . getBody ( ) . g e t L i n e a r V e l o c i t y ( ) ) ;

f += f r i c t i o n ∗−v ; / / Apply f r i c t i o n

orb . getBody ( ) . a p p l y F o r c e ( f ,
o rb . getBody ( ) . g e t W o r l d C e n t e r ( ) ) ;

V e c t o r 2 P o o l . r e c y c l e ( v ) ;
V e c t o r 2 P o o l . r e c y c l e ( f ) ;

Figure 6: Movement algorithm 4

Figure 7: A ball bearing puzzle game, must be tilted to
solve.
through a maze to a desired location by tilting the board.
The maze is randomly generated in our levels see 2.6 for
details. The tilting gesture is used in the game to move the
players ”orb”, allowing the user to navigate a maze and at-
tack opposition players.

2.4 How it is implemented
Android being the Operating System of choice requires the
use of the Java programming language for applications. The
open source game engine AndEngine was used to build our
game upon. This gave us easy access to the Box2D physics
engine and interfaced with the Android motion sensors. An-
dEngine scales the game to different resolutions automati-
cally so no extra work was required to make the game work
correctly on a tablet or mobile phone.

2.5 Accelerometer limits
Accelerometers give us an interesting method of input for a
tablet or phone device, but when using such methods of con-
trol, there are considerations one should take into account



with regards to the resultant simulated motion of player en-
tities. Unlike using a directional pad or on-screen control
method, the input cannot change instantaneously from one
extreme to another.

Figure 8: Smoothing of player intent signal by accelerome-
ter over a period of two seconds.

Instead, input is always a gradual arc, as demonstrated in
Figure 8. The smoothing of the original signal of player in-
tent becomes more destructive as their input device is heav-
ier, and gains more momentum with motion. This effect is
magnified over long use periods, as the natural inclination
of the player is to use a more relaxed grip.
Care should be taken to account for this on a game design
level.

2.6 Maze generation
Because of the accelerometer limits discussed in the previ-
ous section, some environments could prove difficult to nav-
igate. Unless the challenge is specifically to navigate diffi-
cult terrain, it may be wiser to provide players with natural,
sweeping terrain, which mimics the input gathered from the
accelerometer and levels the playing field for those on larger
tablet devices.
There are a variety of signal processing techniques which
could be applied to existing landscapes to improve their ap-
propriateness for traversal with an accelerometer or similar
device. Here, a cellular automata approach will be discussed
for procedural generation of map data. One of the most fa-
mous rule tables for cellular automata is Conway’s Game
Of Life due to the highly dynamic patterns that can emerge.
There are other rule sets in existence which are less dynamic
and unpredictable which can be used to generate interesting
structures. One such rule is the 4-5 rule, valid for any 2
dimensional grid of wall and floor tiles. This rule is inter-
esting because after a few iterations on a grid filled with a
random selection of floor and wall in some proportion as a
function of cavern density, natural and organic flowing form
emerges. This rule is described thusly, using a self-inclusive
Moore neighbourhood:

• A tile becomes a wall if:

– It was previously a wall and 4 or more of its 9
neighbours were walls

– It was previously not a wall and 5 or more of its 9
neighbours were walls

• Otherwise, the tile becomes a floor.

This rule is capable of generating organic, cave-like struc-
tures of any size, as demonstrated in Figure 9.

Figure 9: A sample generated map using the 4-5 rule. Note
the flowing, natural curves.

2.7 Map Optimization
Sometimes the map generator would produce a map that was
not particularly fun to play. These include maps almost en-
tirely made of wall or floor, and maps with disconnected,
unreachable segments. To deal with these situations, some
checks are done before the map is selected for play. If any
of these checks fail, the map is discarded, and another one
is produced. This ensures entertaining maps every time.
First, disconnected areas must be dealt with. There is no
guarantee that all areas of the map will be accessible by the
player, and if care is not taken with start point selection,
players may find themselves trapped in a small area. The
approach taken here was to fill all but the largest connected
area of floor with wall, effectively removing any smaller
pockets that may have emerged. However, this reduces the
number of floor tiles present in the map. It is recommended
that after this elimination pass is complete, the number of
floor tiles is evaluated, and the map discarded and regener-
ated if the proportion of wall to floor falls below a certain
threshold.
While this approach does generate smooth curves, it does
so in a rather uncontrolled manner. It is, however, possible
to ‘seed’ the generated structure to adhere to a rough de-
sign. A technique considered was to generate a small maze
with another algorithm such as Prim’s algorithm or a simple



Depth-first search. The generated tiles were then scaled up,
so that for each tile of output, an area of 7x7 random tiles
are created, with probabilities weighted towards the original
tile type. The 4-5 rule is then run on this field. Because
of the non-random input to 4-5, the resulting output is fit-
ted to the weighted maze probabilities, biasing the system
to following the previously generated structure.

Figure 10: The disconnected map problem.

Note that this approach becomes significantly more compli-
cated when the player entity is larger than one tile, as it is
difficult to guarantee that all areas of the generated land-
scape are accessible. When the player entity is large, choke
points could emerge - Segments of the landscape which are
too narrow for the player to pass through, yet mean that the
map is still actually connected. These are difficult and ex-
pensive to detect, so generating fine resolution landscapes
this way comes at a downside.

3 Experimental Results
There are various aspects of the tilt sensor behaviour that
arise from the user example as shown in Figure 11.
The first iteration of the movement algorithm (applying
the forces of the accelerometer directly as the velocity
of the player) proved very effective. The movement was
alarmingly responsive. Unfortunately the movement proved
too responsive; the player entity moving much too fast
for a user to accurately control in the close quarters of
the maze, most of the time leaving the user crashing into
walls. In order to counteract this the speed was modified
in order to make the player orb easier to control. Because
the player orb only used velocity for movement, no matter
how the speed was adjusted the motion did not seem natural.

The second iteration of the movement algorithm used
the acceleration given by the accelerometer to equate
force to apply to the orb. This lead the user to have

much better control over the player orb, however turning
became an issue without the snappy reactiveness of the
other algorithm. As speed was a factor in Androrbs, the al-
gorithm needed to be improved upon to optimise game-play.

The third iteration of the movement algorithm built upon
the second by utilising a ‘counter-acceleration’ constant.
This had the effect of amplifying movements made in
the opposite direction of which the user was originally
traveling. This brought back the reactiveness of the first
algorithm while allowing the speed of the player orb to not
get out of hand.

The fourth iteration of the movement algorithm is a finely
polished version of the third. It gave the user enough speed
to allow them to run around the maze easily without having
to hug a wall. It also gave the user the right amount of
control in order to hide in the maze and traverse some of the
more narrow passages that might develop.

Because of the high frequency noise the accelerometer is
exposed to, there is a decent amount of extra input the
user does not deliberately make. This became evident
in development as the player orb would casually roll to
a corner when placed on a flat table. Occasionally, it
would also shuffle slightly in one position when balanced
in the middle of the screen. In order to stop this from
happening the algorithms were changed in order to filter
out small inputs and eradicate noise. This proved to be
successful but made the player orb harder to control in
tight spaces, eliminating the small degrees of motion
needed to accurately roll through. This decision was later
revoked in order to keep the player orb as easy to control
as possible. It was also evident that as the main control
scheme was the tilting motion of the accelerometer, and
the game was designed to be fast paced, there would
not be many times a user would want to remain per-
fectly still, finding it much more beneficial to roll away as
fast as possible than staying still and hoping not to be found.

As mentioned previously, the accelerometer suffers from
high frequency noise. Steps were taken in order to minimize
this and improve the overall stability of the accelerometer,
but overall this hindered game-play by restricting the finer
movements. Inputs differ from devices depending on how
well the accelerometer is made. If the Android device
contains a gyroscope this can be remedied with the help of
sensor fusion. If the device contains both a gyroscope and
an accelerometer the input is smoothed out, removing the
majority of noise, allowing for a much more stable signal
and a much more pleasing experience. On development of
the application, phones with gyroscopes were not as com-
mon and most could not utilise sensor fusion, making the



Figure 11: Tilting the top left corner of the tablet resulting in a movement towards the top left corner of the in-game screen.

tablet-controlled versions of the App a lot more enjoyable
with the controls feeling a lot more stable.

4 Discussion
The control scheme of the game needed the player to keep
the tablet mostly flat and held above the ground. This was
not very intuitive to new players and needed to be explained
before the game could be played properly. If the game was
to be developed further, a useful option would be to cali-
brate the game with a default orientation. This would al-
low a player to hold the device more comfortably in front of
them, rather than having to keep it flat and below the head,
which may prove to be uncomfortable for long periods of
time. This may also prove to be counter-productive as it
may be confusing for a user to comprehend the adjusted ori-
entation. It is easy to think about moving a surface with your
hands and having the ball roll down it, but if that surface was
in front of the player horizontally it would effectively make
the player have to grasp the concept of rolling up a wall.

4.1 Other games and platforms
A game similar in concept to ours is “MadBalls in Babo
Invasion” in which the player controls spherical characters
that resemble the “MadBalls” toys. The game is almost
identical to our own in that the players move through a maze
using an orb like character in order to find and defeat other
players who are trying to accomplish the same of you. This
game is a lot more graphically impressive than ours as it
has been commercially made with a much wider develop-
ment team. The game is developed for the PC which had
a lot more graphical power behind it when the game was
made. The game uses the ‘WASD’ control scheme on a key-
board. Comparatively, Androrbs seems to be more natural to
control than ‘MadBalls’ as it feels more physically accurate
using an accelerometer-based control scheme. That being
said, the ‘WASD’ control scheme does not suffer from the

high frequency noise problem that plagues the accelerome-
ter, leading to a much more accurate sense of control.
Because the App was written in Java it would be very sim-
ple to move it from one platform to another. The main chal-
lenge would be replacing the components we used from the
AndEngine to suit another platform. When developing the
App, one of the main goals was to make something that both
older and newer devices could play. Because so many mo-
bile platforms come equipped with an accelerometer as stan-
dard, the App can be played with a plethora of devices.

5 Conclusions
We made an App that uses the accelerometer on an Android
device, a standard in the majority of mobile platforms, as
its main control scheme in order to cater for the broadest
market possible. We took the limits of the input device into
account when designing traversable landscapes using a cel-
lular automata, and discussed methods of map optimization
such as initial seeding with non-random values and avoid-
ance of disconnected areas.
We found that using the accelerometer as a control scheme is
not only simple and easy to do, but also relatively accurate.
This accuracy is further improved with that of a gyroscope.
The developer can use sensor fusion in order to smooth out
the noise of the accelerometer. Accelerometer movement
can be considered superior to traditional methods of input in
terms of intuitiveness and ease of use, but may be tiring for
prolonged play.
We believe the accelerometer could be used to make multi-
platform games with little to no hassle, provided its limits
are respected and elements of the game which closely inter-
act with accelerometer data are designed appropriately.
Whenever a correctly configured sensor-fused virtual input
is available which makes use of the accelerometer as an in-
put, it will always provide a less noisy signal than the ac-



celerometer alone. There is scope for further research on
exactly how this newfound accuracy could be leveraged. In
addition, the z-axis is largely ignored in our investigation,
and could be used to provide additional input.

References
[1] Ali, S.I., Jain, S., Lal, B., Sharma, N.: A framework for mod-

eling and designing of intelligent and adaptive interfaces for
human computer interaction. Int. J. Applied Information Sys-
tems 1(2), 20–25 (January 2012)

[2] Browne, K., Anand, C.: An empirical evaluation of user in-
terfaces for a mobile video game. Entertainment Computing
3, 1–10 (2012)

[3] Chatting, D.J.: Action and reaction for physical map inter-
faces. In: Proc. Second Int. Conf. on Tangible and Embedded
Interaction (TEI’08). pp. 187–190. Bonn, Germany (18-20
Feb 2008)

[4] Developers, A.: Software development kit (February
2012), http://developer.android.com/sdk, an-
droind SDK

[5] Diaper, D., Stanton, N. (eds.): The Handbook of Task Anal-
ysis for Human-Computer Interaction. IEA (2004)

[6] Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer
Interaction. Prentice Hall (1993)

[7] Elmaghraby, A., Mendez, A., Zapirain, B.G.: Serious games
and health informatics: A unified framework. In: Proc. 17th
IEEE Int. Conf. on Computer Games (CGAMES 2012). pp.
35–38 (2012)

[8] Furio, D., Gonzalez-Gancedo, S., Juan, M.C., Segui, I.,
Costa, M.: The effects of the size and weight of a mobile de-
vice on an educational game. Computers and Education 64,
24–41 (2013)

[9] Gerdelan, A.P., Hawick, K.A., Leist, A., Playne, D.P.: Sim-
ulation frameworks for virtual environments. In: Proc. In-
ternational Conference on Internet Computing (ICOMP’11).
pp. 272–278. No. ICM4087, CSREA, Las Vegas, USA (18-
21 July 2011)

[10] Gouin, D., Lavigue, V.: Trends in human-computer interac-
tion to support future intelligence analysis capabilities. In:
Proc. 16th Int. Command and Control Research and Technol-
ogy Symposium. No. Paper 130, Quebec City, Canada (21-23
June 2010)

[11] Hwang, I., Lee, Y., Park, T., Song, J.: Toward a mobile plat-
form for pervasive games. In: Proc. ACM MobiGames’12.
pp. 19–24. Helsinki, Finland (2012)

[12] Kortum, P.: HCI Beyond the GUI - Design for Hapric,
Speech, Olfactory and other Nontraditional Interfaces. Mor-
gan Kaufmann (2008)

[13] MacKenzie, I.S., Teather, R.J.: Fittstilt: The application of
fitts? law to tilt-based interaction. In: Proc. 7th Nordic Con-
ference on Hman-Computer Interaction (NordCHI’12). pp.
568–577. Copenhagen, Denmark (14-17 October 2012)

[14] McCallum, S.: Gamification and serious games for personal-
ized health. In: Proc. 9th Int. Conf. on Wearable Micro and
Nano Technologies for Personalized Health (pHealth’12).
Porto, Portugal (26-28 June 2012)

[15] Muehl, W., Novak, J.: Game Development Essentials - Game

Simulation Development. Delmar (2008), iSBn 978-1-4180-
6439-6

[16] Narayan, M.A., Chen, J., Perez-Quinones, M.A.: Usability
of tablet pc as a remote control device for biomedical data vi-
sualization applications. Tech. Rep. TR04-26, Virginia Tech
(2004), http://eprints.cs.vt.edu/archive/
00000703/01/TR04-26-Jian-Michael.pdf

[17] Novak, J.: Game Development Essentials - An Introduction.
Delmar, 3rd edn. (2012)

[18] Pearce, B.T., Hawick, K.A.: Interactive simulation and vi-
sualisation of falling sand pictures on tablet computers. In:
Proc. 10th International Conference on Modeling, Simula-
tion and Visualization Methods )MSV’13). p. MSV2341. No.
CSTN-196, WorldComp, Las Vegas, USA (22-25 July 2013)

[19] Preez, V.D., Pearce, B., Hawick, K.A., McMullen, T.H.:
Human-computer interaction on touch screen tablets for
highly interactive computational simulations. In: Proc. In-
ternational Conference on Human-Computer Interaction. pp.
258–265. IASTED, Baltimore, USA. (14-16 May 2012)

[20] Preez, V.D., Pearce, B., Hawick, K.A., McMullen, T.H.:
Software engineering a family of complex systems simu-
lation model apps on android tablets. In: Proc. Int. Conf.
on Software Engineering Research and Practice (SERP’12).
pp. 215–221. SERP12-authors.pdf, CSREA, Las Vegas, USA
(16-19 July 2012)

[21] Rautaray, S.S., Agrawal, A.: Real time multiple hand gesture
recognition system for human computer interaction. Int. J.
Intelligent Systems and Applications 5, 56–64 (2012)

[22] Reed, R.H., Berque, D.A. (eds.): The Impact of Tablet PCs
and Pen-based Technology on Education. Purdue Univ. press
(2010)

[23] Saunders, K.D., Novak, J.: Game Development Essentials -
Game Interface Design. Delmar, 2nd edn. (2013), iSBN 978-
1-111-64288-4

[24] Scogings, C.J.: The Integration of Task and Dialogue Mod-
elling in the Early Stages of User Interface Design. Ph.D. the-
sis, Massey University (2003)

[25] Tesoriero, R., Montero, F., Lozano, M.D., Gallud, J.A.: Hci
design patterns for pda running space structured applications.
In: Proc. 12th Int. Conf. on Human-Computer Interaction:
Interaction Design and Usability (2007)

[26] Tomlinson, B., Yau, M.L., O’Connell, J., Williams, K., Ya-
maoka, S.: The virtual raft project: A mobile interface for
interacting with communities of autonomous characters. In:
Proc. ACM CHI ’05. pp. 1150–1151. Portland, Oregon, USA
(2-7 April 2005)

[27] Turner, J., Browning, D.: Workshop on hci and game inter-
faces: A long romance. In: Proc. OZCHI 2010 : Design,
Interaction, Participation. Queensland University of Technol-
ogy, Brisbane, Queensland, Australia (22-26 November 2010
2010)

[28] Yarow, J.: Tablet computing: A history of failure. Business
Insider Online, 1–3 (January 2010)


