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Abstract—When it comes to transferring Big Data, there are
two main areas of concern: network performance and storage
performance. The primary focus of recent work has been devoted
to the problems of network connectivity and bandwidth. Different
transfer techniques have been proposed to quickly move massive
amounts of data between computers. The goal of these techniques
is to maximize bandwidth consumption by any means necessary.
The network performance of these techniques has been analyzed;
however their impact on storage performance is not thoroughly
investigated. In this study, Big Data transfers are evaluated from
the storage viewpoint. Particular attention is focused on the
granularity of request sizes issued to a storage node. This paper
illustrates that there is a significant impact on performance when
small portions of a data set are requested in place of a single
large request.

I. INTRODUCTION

The amount of data being produced every day is growing
at a tremendous rate. Both academic and corporate entities
are creating massive data sets and sharing these files with
users around the world. The pinnacle of scientific data creation
is CERN’s large hadron collider experiments, which have
generated thousands of terabytes of data [5]. CERN uses
a well-defined data grid to distribute the data around the
world [1]. Users are able to connect to one or more servers to
retrieve the desired data sets. The user is tasked with creating,
monitoring, managing and maintaining the data transfer [12],
[13]. Other scientific fields, such as DNA sequencing, have
also created massive data sets and share them using clouds or
other distributed systems [2].

One of the major concerns for users is the ability to down-
load these data sets for personal use. When it comes to file
transfers there are two key concepts that should be of concern
to users: networking and storage. Due to limited bandwidth
and utilization of public networks, the main focus is typically
network based. Storage is often not examined since it is
assumed that it will be able to provide adequate performance.
Since the focus of performance improvement studies have been
isolated to networking, many of the techniques developed for
Big Data transfers are engineered to maximize throughput of
network connections. Studies examine how these techniques
impact network performance on a large scale [11], however
the impact of these techniques on storage systems is not fully
understood. This paper attempts to examine their impact on
simple storage systems to by simulating shared storage systems
with a varying number of concurrent users.

When users retrieve these massive data sets, they are
typically moving them across shared networks and the Internet.

Due to the intense demand for available bandwidth, users
on shared connections must compete for bandwidth in order
to retrieve the desired data sets as quickly as possible. On
residential and campus networks, users will find themselves
competing with predominately streaming multimedia. A study
of network traffic on a campus network illustrated the demands
placed on shared Internet connections for thousands of users
and identified that Netflix and other streaming video services
consumed large portions of available bandwidth throughout a
typical day [15]. Users must compete with this demand during
peak periods in order to successfully transfer their desired data
sets [14].

It is because of this intense competition for shared network
resources that researchers have developed various transfer tech-
niques to greedily consume as much bandwidth as possible for
Big Data transfers. Recent studies examine various techniques
for maximizing the throughput of a user’s internet connection
in order to reduce transfer times. There are many different
techniques, but the main idea behind all of these techniques
is to open multiple, simultaneous connections to one or more
data servers. The user would then download portions of the
data sets using multiple data streams that are optimized to
maximize bandwidth usage. Section 2 presents a summary of
the key works in this area.

Network performance is an important and crucial com-
ponent of data transfer performance, however storage per-
formance is equally important. Storage systems are closely
monitored and engineered for high availability and low latency
by system administrators. Users, however, do not immediately
consider how their requests are impacted by the storage system.
As most storage systems still use magnetic, hard disk drives for
primary storage, the physical access times for disk requests are
critical components of a user response times. Traditional hard
disk drives are orders of magnitude slower than other devices
and therefore they must be properly utilized in order to reduce
physical access times. There have been many studies that
examine the performance of disks and storage systems [8]. This
paper does not examine or evaluate a specific storage device or
system. The focus of this paper is to evaluate the impact that
data transfer techniques have on storage system performance
and consequentially on the performance of user requests. The
rest of the paper is organized as follows. The next section
details some of the techniques that have been designed for
Big Data transfers. Evaluations of storage performance under
varying user workloads is presented in Section 3. Section 4
summarizes the findings of this study and provides motivation
for future work.
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II. RELATED WORK

This section presents several Big Data transfer techniques
developed specifically for retrieving extremely large files over
shared network connections and the Internet (highlighted in
boldface). Many large data sets are often replicated amongst
multiple servers distributed around the world. Users can then
retrieve data from any of these replica servers. The transfer
techniques are grouped based on how they retrieve data from
the servers that store the data. These studies evaluate their
various transfer techniques solely from a network perspective.
Their impact on storage performance is evaluated using a
simulated environment in Section 3.

A. Basic Technique

The basic, brute-force, parallel download technique [9]
issues a request for equal sized portions of the file from all
available servers. Every replica that contains the file is utilized
and each is responsible for servicing an equal amount of data.
There is no consideration given to the performance of servers
or network conditions. Many studies include this technique as
a baseline for comparison with other co-allocation strategies.

B. Predictive Techniques - History Based

In the brute-force technique, the performance of each
transfer is not analyzed. Depending on network and server
workload, each transfer will have varying performance. The
following algorithms take into account the performance metrics
of each server interaction when dividing the workload amongst
all replicas in order to minimize the transfer completion
time. Vazhkudai presents a history-based data co-allocation
technique [9], [10]. This technique adjusts the amount of data
retrieved from each replica by predicting the expected transfer
rate for each replica. Zhou et al. also develop a history-based
data co-allocation technique. They develop Replica Convoy
(ReCon) [21], a tool for retrieving data from multiple replicas
simultaneously where replicas that are predicted to deliver data
faster are assigned a larger portion to service.

C. Predictive Techniques - Network Probes

Feng and Humphrey develop data retrieval techniques that
utilize Network Weather Service (NWS) [17] predictions to
specify the amount of data to be requested from replica servers
[7]. The NWS is a distributed system that detects the network
status at periodical intervals. Other mechanisms can be used to
determine the status of connections between users and servers.
Zhou et al. present a probe-based data retrieval technique
[21], where a fixed sized pinging mechanism is used to probe
network connections and determine network output. Based on
the data returned by the probes, varying amounts of data are
assigned to each replica.

D. Dynamic Techniques - Equal Request Sizes

The following retrieval techniques dynamically adapt to
changing network conditions by requesting small, equally
sized, portions of a file from multiple replicas. Vazhkudai
develops a conservative load balancing technique that dy-
namically adapts to changing network and system conditions
[9], [10]. The amount of data requested for a given server

is decided dynamically instead of being based on previous
history. The desired data file is divided into equal sized,
disjoint blocks. Each available server is initially assigned one
block to service in parallel. Once a server delivers the block,
another block is assigned until the entire file is retrieved.
Faster servers will transfer larger portions of the file. Feng and
Humphrey also develop a similar dynamic data co-allocation
algorithm called, NoObserve [7].

E. Dynamic Techniques - Varying Request Sizes

The techniques described in the previous section divide the
desired data file into equal sized disjoint blocks. Other data
retrieval techniques try to improve performance by varying
the size of the blocks based on the performance of the replica
servers. Faster servers are assigned larger blocks.

Vazhkudai develops an aggressive load-balancing tech-
nique [9], [10], which is a modified version his conservative
load-balancing technique that was discussed in the previous
section. Instead of requesting a single block from each replica,
the amount of data requested from faster servers is progres-
sively increased. The amount of data requested from slower
servers is decreased or stopped completely.

The recursively-adjusting co-allocation technique [18]–
[20] developed by Yang et al. is a combination of dynamic
and predictive techniques, since it utilizes Network Weather
Service forecasts. This technique works by continually ad-
justing the amount of data requested from each replica server
to correspond to its real-time bandwidth during file transfers.
The technique begins by dividing the desired data file into
several sections. Each of these sections is then sub-divided
into varying sized blocks that are individually assigned to
all replicas. The number and size of the larger sections is
variable and can be adjusted by the user. The size of each
section is a percentage of the remaining file size to be retrieved.
Each section size will therefore be progressively smaller than
previous sections. The user can select the smallest section size
that is used.

Another dynamic data retrieval technique, similar to the
previous recursive mechanism, which varies the amount of data
requested from each server while still dividing the data file
into blocks is the MSDT algorithm [16] developed by Wang
et al. The MSDT algorithm is a combination of dynamic and
predictive techniques, as it utilizes the past transfer histories for
predictions. The algorithm uses the overhead and bandwidth of
previous segment transfers to predict the future performance
of a replica. The amount of segments that are assigned varies
depending on the transfer history for the particular replica.

F. Dynamic Techniques - Preemptive Measures

The dynamic techniques in the two previous sections
retrieve portions of the data file from multiple replica servers.
The amount of data retrieved may vary depending on the
algorithm, however there is the possibility that a client will
end up waiting for slower servers to deliver portions of the
file. The previous techniques do not preempt transfers or re-
distribute the workload to other servers when replicas become
unresponsive.

The ReCon data retrieval service [21] designed by Zhou
et al. offers a Greedy retrieval algorithm where the desired



data file is divided into equal sized segments. Each replica
is initially assigned one segment. As servers complete their
segments, they are assigned additional segments to service. A
recursive scheduling mechanism handles any errors that occur.
If a transfer fails, the mechanism automatically reschedules
the failed data request to another replica that is currently
transferring data.

Bhuvan et al. develop a different preemptive data co-
allocation mechanism, the Dynamic Co-allocation Scheme
with Duplicate Assignments (DCDA) [3]. This technique is
used to cope with highly inconsistent network performance
of replica servers. In their algorithm, the desired data file
is divided into disjoint blocks of equal size. Each server
is initially assigned one block to service. When a server
completes a request, it is assigned another outstanding block.
The algorithm continues until all blocks have been assigned. If
a server delivers a block and there are no blocks remaining that
have not been initially assigned, the server will be given an
outstanding block request that has not been completed. There
will now be several servers working on the same request. When
a server delivers a request, all other servers are notified to stop
serving this request.

Chang et al. [6] develop an advanced preemptive technique,
Multiple Parallel Downloads with Bandwidth Considera-
tions technique, that considers both server output throughput
and client input bandwidth when assigning workloads to the
replica servers. This paper is the first to discuss their technique
in terms of multiple users. They realize that when everyone
uses parallel downloads, they will compete for system re-
sources that causes a degradation of system efficiency and
unfairness for the users. They also determine that a server
should not outdo its capacity by serving too many clients
and a client should not download from too many servers
with its limited incoming bandwidth. The authors discuss a
multiple user environment and provide an example of how
their technique would work with six users accessing a small
number of files. Their experiments however, do not show
the performance of their algorithm when many users are
simultaneously utilizing their technique.

III. EVALUATIONS

In order to evaluate the impact of Big Data transfer tech-
niques on storage performance, the DiskSim storage simulator
is utilized to emulate real workloads. DiskSim has been proven
to correctly emulate real storage devices [4]. The hard disk
drive model selected for the DiskSim simulations is the Seagate
Cheetah 9LP, which provides fast disk service times due to
its high-end configuration. The most recent iteration of the
Cheetah drive similarly provides high performance and the
results of the simulations are scaled to match the most recent
drive specification.

Metric Cheetah9LP Cheetah15K.7
Capacity 9.10 GB 600 GB

Avg. Seek Time 5.4 msec 3.4 msec
Transfer Rate 23.95 MByte/sec 204 MByte/sec

Rotation Speed 10,025 RPM 15,000 RPM
Rotate Latency 2.99 ms 2.0 ms
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Fig. 1. Changes in the average seek time as the number of blocks per request
increases. The top line represents 1 user and the bottom line represents 20
users.
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Fig. 2. Changes in the average transfer time as the number of blocks per
request increases.

A. Initial Evaluations

In the initial evaluations, a varying number of users are
configured in the simulator for a restricted number of blocks
per disk request. Experiments are run for the following number
of concurrent storage users: 1, 2, 3, 5, 6, 10, 15, and 20.
The size of each request is fixed for each experiment and
the number blocks requested is varied from 1 to 1400 blocks
throughout the series of experiments. Several performance
metrics are monitored and evaluated for each experiment.
Metrics for the physical disk performance, as well as all users
requests, are carefully monitored.

The physical disk metrics are examined for all of the
experiments. Figure 1 shows the changes in the average seek
time as the number of blocks per request increases. The
average seek time actually reduces as the number of users
in the system increases. This is due to the larger number of
requests being serviced and likelihood that the next request to
be serviced is close to the current location of the read/write
head of the disk. The changes in transfer time are demonstrated
in Figure 2. The average transfer time was almost identical for
any number of concurrent users. The determining factor for the
transfer time is solely the number of blocks being requested.
The shape of the graph is interesting in that the transfer time
increases at a slower rate until 800 blocks and after that point
there is a marked increase in the transfer rate for larger request
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Fig. 3. Changes in the average system response time as the number of
blocks per request increases. The bottom line represents 1 user and the top
line represents 6 users.
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Fig. 4. Changes in the average system response time as the number of
blocks per request increases. The bottom line represents 5 users and the top
line represents 20 users.

sizes. This is confirmed by the larger coefficient on the trend
lines for each section of the graph.

After examining the physical disk access metrics, the user
request response times are evaluated. Figure 3 illustrates the
system response time for the various sized requests when there
are between 1 and 6 concurrent users utilizing the disk. The
system response time is the total time that it takes to service
a user’s request and includes both disk access time and queue
time. The graph shows that the average system response time
increases as the number of blocks being requested increases.
As one would expect, larger requests have larger response
times. The increase in response time is linear and can be
approximated using trend lines. The graph also indicates well-
fitting trend lines, r squared values close to 1.

Figure 4 illustrates the system response time for the various
sized requests when there are 5, 10, 15, and 20 concurrent users
utilizing the disk. Similar to the previous graph, the increase
in response time is linear. As the number of concurrent users
grows, the average system response time also increases at a
linear rate.

B. Big Data Transfers

Using the extremely well fitting trend lines that were
calculated in the initial evaluations, the simulations can be
scaled to emulate Big Data transfers that represent terabytes of
data being requested from a storage system. In the next group
of experiments, the size of the total data set being requested
from the storage system is varied from 1 TB to 100 TB using
the scaled DiskSim results in a custom designed simulation
system.

When a user requests multiple terabytes of data, this type
of request requires reading from multiple disks. In these
simulations, a user’s request is serviced in a serial, one disk
at a time fashion. The request could be serviced by multiple
hard disks in parallel, but it is unlikely that the user would
have the bandwidth required to support the read rate supplied
by simultaneous disk transfers. It is because of this rationale
that the users’ requests are serviced in a serial fashion and can
be viewed as one request to a very large, logical disk.

The individual request sizes sent by the users are also
varied in the evaluations from 1MB to 10GB. As described
in the related work section, Big Data transfer techniques often
divide the entire data set into chunks that are systematically
retrieved from multiple replicas. The size of these chunks can
vary depending on the algorithm and user configuration. These
evaluations represent a set of possible file sizes that could be
utilized by these Big Data transfer techniques.

In the following results, the total response time for retriev-
ing a Big Data set is evaluated by comparing two approaches
to Big Data transfers: single request and multiple requests. The
single request approach issues only one request to the storage
system for the entire data set. The multiple request approach
issues multiple, smaller requests for the entire data set. In all
of the evaluations, it was found that issuing a single request
never incurred a penalty and frequently provided marked
performance improvements over multiple, smaller requests. In
order to better illustrate the performance differences between
these two approaches, the extra time required when using the
multiple request approach is graphed. The following graphs
show how much longer a user would have to wait to retrieve
the entire data set from the disk when using multiple, smaller
requests instead of a single, large request.

Figure 5 demonstrates the significant performance impact
of using a very small request size (1 MB) to retrieve a large
data set. The lines on the graph represent a varying number of
users in the system. The bottom line represents 1 user and the
top line represents 20 users. As the size of the total data set
increases and the number of users sharing the disk increases,
the amount of additional time required retrieve the entire data
set greatly increases. In the most extreme case, a user could
potentially spend an additional 2500 hours (104 days) trying
to retrieve a 100TB data set using 1 MB request sizes with
19 other users in the system performing the same task. For a
single user, the impact is not as severe, especially for smaller
total data set sizes. A 10TB data set would take a day longer
using only 1MB requests, however retrieving a 100TB using
the same technique would take almost 11 days longer than
issuing a single request.

In reality, most users would not attempt to retrieve a large
data set 1MB at a time; however some of the algorithms



specified in the related work section in theory could be
configured to issue requests of this granularity. The next group
of evaluations have the user request sizes fixed at 10MB and
Figure 6 illustrates the time increase when issuing these 10MB
requests for the large data sets. The overall time increases for
retrieving the entire data set are less than the 1MB file requests,
but the increases are still significant. With 10 users in the
system, a 50TB data set would take an additional 73 hours
to transfer the data from the storage system using 10MB sized
requests.

The next two groups of evaluations examine the extra time
that it would take to retrieve the entire data set when the file
request sizes are raised. Figure 7 shows the time increases for
100MB file requests. A 100TB data set would take 26 hours
longer using the 100MB file request size with 19 other users
accessing the system. The time increase is reduced to 3 hours
when the user is the sole workload in the system. Figure 8
shows the time increases for 500MB file requests. With the
larger request size, the 100TB data set would only take an hour
longer than retrieving the entire data set in a single request with
only 1 user in the system.

The final three groups of evaluations raise the individual
file requests to 1GB, 5GB and 10GB. Figure 9 shows the time
increases for 1GB file requests and Figure 10 shows the time
increases for 5GB file requests. As the user issues requests
for larger portions of the data set, the extra time required is
decreased. With 5GB file requests, the extra time for issuing
multiple requests is reduced to minutes instead of hours. A
final group of evaluations are run with 10GB file requests and
the increase in total time is further reduced to less than 15
minutes even with 20 concurrent user requests in the system.

IV. SUMMARY AND FUTURE WORK

From the evaluations, it is evident that user request sizes
have an enormous impact on storage performance when re-
trieving Big Data sets. When the number of concurrent users
sharing the storage system increases, this impact only grows
more important. As the file size of the individual storage
requests increased, the extra time required for multiple request
based Big Data transfer techniques decreased. Requests that
represent a larger percentage of the total data set performed
significantly better than smaller percentage requests. This is
a clear indication that users should always attempt to retrieve
the largest possible subset of data from each server involved in
a transfer. Another aspect to storage, which is not specifically
examined in any of the graphs, is prefetching. Storage systems
will often pre-fetch and cache data when sequential data
streams are detected. By issuing larger requests, the system
can potentially decrease the physical access penalties of the
storage system for the user.

Big Data transfers are becoming more commonplace
amongst users around the world. As more Big Data sets are
created, the need for efficient transfers of these massive file
sets will grow. Research studies must consider both network
and storage impacts when evaluating transfer performance. For
future work, an examination of Big Data transfers workloads
from a live storage system should be conducted in order to
assess typical user request sizes. Big Data transfer techniques
that consider both network and storage performance should
also be developed and investigated further.
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Fig. 5. This graph illustrates the extra time required (in hours) that would be required when issuing multiple smaller requests (1MB in size) instead of issuing
a single request for the entire data set, as the size of the data set increases. The bottom line represents 1 user and the top line represents 20 concurrent users.

0

50

100

150

200

250

300

1 10 19 28 37 46 55 64 73 82 91 100

TI
M
E 
[H
O
U
RS

]

TOTAL FILE SIZE [TERABYTES]

10 MB ‐ Request Size

Fig. 6. This graph illustrates the extra time required (in hours) that would be required when issuing multiple smaller requests (10MB in size) instead of issuing
a single request for the entire data set, as the size of the data set increases. The bottom line represents 1 user and the top line represents 20 concurrent users.
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Fig. 7. This graph illustrates the extra time required (in hours) that would be required when issuing multiple smaller requests (100MB in size) instead of
issuing a single request for the entire data set, as the size of the data set increases. The bottom line represents 1 user and the top line represents 20 concurrent
users.
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a single request for the entire data set, as the size of the data set increases. The bottom line represents 1 user and the top line represents 20 concurrent users.
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Fig. 10. This graph illustrates the extra time required (in hours) that would be required when issuing multiple smaller requests (5GB in size) instead of issuing
a single request for the entire data set, as the size of the data set increases. The bottom line represents 1 user and the top line represents 20 concurrent users.




