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ABSTRACT

Many scientific simulations generate bulky data sets that
must be mined for observable features. It is often not com-
putationally feasible to do this in real time and the data must
be saved for subsequent “off-line” analysis either by separate
software or sometimes by direct human visualisation. We
present some scoping analysis and preliminary software ap-
proaches for mining medium to large scale data sets in the
form of time slices or model configurations. We report on
current storage and visualisation technology response and in-
teraction times for mining scientific simulations on regular
lattices using hyper-bricks of model configurations.
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1 Introduction
Numerical simulations often generate relatively large data
sets that need “offline” analysis. A time series analysis can
generally not be conducted until the simulation sequence
is completed and data-mining and visualisation tools are
needed to support scientists conducting post simulation min-
ing activities.
Computational simulations include: discrete event simula-
tion models [12]; complex system models based on parti-
cles [16] or agents; or time-integrated field models all pro-
duce bulk data that is often stored and post processed in this
manner. Often such data is spatially oriented [4] but can
come in a myriad of different storage formats. In this present
paper we focus on “hyper-bricks” of regular data that come
from models or simulations where the key data structure is a
multidimensional array or “brick” of data. The cells of such
data might be simple pixels or volume element - voxels; or
multi-channel data with several scalar or vector properties at
each spatial location [21].

Our experience is that a semi-interactive pattern matching
identification [18] of even just a visual inspection of the vari-
ous “slices” of such data bricks can be very instructive as part
of a numerical experiment.
Such data arises from environmental modelling [22] and ge-
ographical systems [1, 23] as well as from complex systems
models in application areas like: forest fire systems [3]; lat-
tice gases and complex fluids [10]; critical systems [8]; and
ecological systems [5].
Relational or graph data [7,20] from biological [6] and other
applications [19] can also of course be mined using statistical
pattern matching, but such databases tend to have their own
specialist performance optimization strategies. In the present
paper we focus on data that is held in simpler more “raw”
formats such as rasters and hyper-bricks rather than relational
and textual data.
There has been considerable interest in the literature on
strategies to mine very large time series data [15] and on
how to manage such data on distributed systems [13]. In this
present paper we investigate practical matters concerning the
manipulation of medium to large data sets that can be ma-
nipulated by post-simulation analysis software on a modern
desk-top or desk-side scaled computer system.
Our article is structured as follows: In Section 2 we describe
the hyperbrick data manipulation problem in detail and dis-
cuss file format and data layout issues for coping with ar-
bitrary dimensional data. In Section 4 we report on exper-
iments to characterise read and write performance of large
contiguous bricks of such data. We discuss implications of
typical read and write performance for individual and bulk
data for a range of different storage devices in Section 5. We
offer some conclusions and areas for further work on bulk
data manipulation in Section 6.



2 Scientific Model Data Bricks
There are some sophisticated 3D solid design file formats
available that are used by proprietary and some open com-
puter aided design tools. Even for those formats that are open
their complexity makes it a cumbersome burden to interface
a stand-alone simulation program to them. A very simple file
format family was designed to provide a bridge between the
Cubes visualisation program and the sort of simulation code
our research group regularly develops in C, C++, Java and
other languages.
The hyperbrick file format – with file ending “.hbrk” – was
inspired by the incredibly useful portable pixmap format
family (often known as “NetPBM”) designed by Poskanzer
and developed by Henderson [11]. Researchers have been us-
ing ppm and pbm formats with 2D simulation programs for
over two decades and their value is largely due to their sim-
plicity. One can off the top of one’s head code up C/C++/Java
to generate, or read and write these formats.
In a sense therefore, the “H1” hyperbrick is a generalisation
of the pgm 2D greymap image file format, for the case of 3D
data.

H1
# a comment or h e a d e r l i n e
# a n o t h e r comment
1
3 64 64 32
hyper−r a s t e r −of−unsigned−c h a r s

Figure 1: The .hbrk hyperbrick file format for a 3-d data set of
unsigned chars with spatial extent x = 64×y = 64×z = 32.

Figure 1 shows the .hbrk file format, consisting of a two char-
acter textual header “H1” followed by a newline and an op-
tional series of comment lines starting with a hash character.
The subsequent integer – in this case a size of “1” denotes the
number of bytes in each payload entity. If one wanted voxels
to be allowed to take on 224 different levels - like portable
pixmap pixels, then one could use a size of “3” to denote
three bytes per voxel. The next line gives the dimensionality
d of the hyperbrick – usually d = 3 for examples discussed
in this document, followed by exactly d integer edge lengths
in order of increasing significance – so in the example shown
Lx = 64, Ly = 64, Lz = 32. This line is terminated by a
newline and the remainder of the “.hbrk” file is a set of binary
characters in the “hyper-raster” order implied by the dimen-
sionality and lengths. So in the example theix index would
move fastest, the iy next fastest and so forth.
Many of the simulation codes we work with use what is
known as “k-indexing” whereby a single integer indexes into
the d-dimensional hyperbrick and:

k = ix + Lx × iy + (Lx × Ly)× iz (1)

These ideas are very useful for manipulating rectilinear data
independent of the dimension and are described in [9] and
can be generalised to specify data transforms [14].
The Netpbm format family supports both “raw” and textual
formats for pix maps and grey maps. The full “hrbk” for-
mat family is still under development but the present plan
is to support together data types so that for example “H4”
maps to 32-bit integer data, “H8” maps to 64-bit integer data.
The “H1” unsigned-char type can also be used with data cell
length 4 or 8 of course to encode this as long as you do not
care about byte order within the cells.
A useful variation that is easily described here is the sparse
version or “.sbrk” sparse hyperbrick format. We found many
of our programs deal with a model that can be represented as
cells of one or more values in a “sea of zeroes” and conse-
quently it is a waste of space explicitly saving all the zeros.

S1
# a comment or h e a d e r l i n e
# a n o t h e r comment
1
3 64 64 32
63455 255
67551 128
71647 192

Figure 2: The .sbrk sparse hyperbrick file format for a 3-d
data set of unsigned chars with spatial extent x = 64 × y =
64× z = 32.

Figure 2 shows the .hbrk file format which is similar to the
“H1” format but has “S1” as its magic prefix, and embodies
the assumption that the entire hyperbrick has voxel values
of zero except the explicitly stated (k, v) pairs giving the k-
index and voxel value both encoded as unsigned integers. In
the example shown, the following (x, y, z) indices give rise
to the k-indices:

(31 31 15)->k of 63,455, voxel value 255
(31 31 16)->k of 67,551, voxel value 128
(31 31 17)->k of 71,647, voxel value 192

The sparse hyperbrick format could also be extended into a
family of formats with different magic header characters to
convey type information but the simple “S1” format with the
type-code “1” stating that each voxel is limited to 28

1

levels
suffices for most purposes.
These sort of data files with a mixed textual header and bi-
nary or raw-readable data have rather gone out of fashion
at present, with a surprising number of inappropriately large
XML formats being common. The simplicity of the hbrk
and sbrk formats means that they can be read using built-in
language I/O capabilities without recourse to needing com-
plicated parsers.



Figure 3: Time sequence of planes (which could be hyper-
bricks themselves) arranged with a short window of the
whole data pulled out and being analysed at once.

The k-indexing notion extends the notion of a raster contigu-
ous image format to arbitrary dimensions. The main point is
that the k-indexing allows the hyperbrick of data to be treated
as a block of data that is contiguous in memory or on the stor-
age medium. It can be read and written in a single call to a
low-level read/write service call within the operating systems
kernel or file systems daemon.
Figure 3 shows a time sequence of hyper-bricked data. A
sub-sequence or window of the overall sequence is pulled
out and analysed at once. It is therefore important to be able
to read and write blocks of the overall sequence rapidly. It
is therefore important to assess the current attainable perfor-
mance for various storage devices.

3 Data Access Experiments
The given experiment was to test the performance on varying
Hard Drive Disks and the effect of using smaller individual
files in comparison to a single file totaling in equal size. A
custom written program in C/C++ was used and run on the
different Hard Drives and RAID formats to give full control
over how the information was written and read. The physi-
cal hard drives ranges from an IDE 5200rpm based disk to a
Solid State Drive. This way the variation based on physical
hardware can be seen and how it can impact performance.
The basis of having multiple small files being 1 Megabyte
in size then totaling up to a single large file of the combined
size was to assess how much the latent performance of read-
ing and writing was affected by buffering.
Using a custom written program in C/C++ gave full control
on how reading and writing were used and hence how they
performed. Primarily choosing fread and fwrite as the way
to read and write information to and from the hard drive,
this gave the ability to be concerned with the type format
the data could be. Pseudo randomly generated information

was created for writing the information which was stored in
a buffer then the timing was given for when the write func-
tion was called. With this implementation this helped limit
any chances patterned data in which operating system could
effect the timing in which random data is read or written by
caching.
The test was broken down into four main parts. The ini-
tial writing of the single large file created at the set size,
after the writing of the single small files. This is then fol-
lowed by the reading of the same files. To make sure that
no caching was done for the file so it would not effect the
reading or writing time to the hard drive, commands in the
terminal were used to clear the cache, for example Linux’s
echo3 > /proc/sys/vm/dropcaches. These commands
where done during the test however they were not placed in
when timing was done, so it will not have any effect on the
timing results. The size spacing for each of the tests were
done in 200MB intervals and was tested ten times each up to
the limit of 2000MB.

Algorithm 1 Writing algorithm and random data generation
declare buffer[]
for all unsigned characters in buffer do

randomise buffer[i] with unsignedcharacter
end for
create emptyfile
begin timing
write from buffer to file
end timing
close file
record timing

Algorithm 1 shows the basic constructs of how the process
of writing a single large file and the generation the random
data. Initially a buffer is generated and allocated the memory
required for the final size of the file being created. Then the
buffer is filled with randomly generated unsigned characters
where the randomisation has been seeded from time using
the rand function as shown in Figure 4. Once the buffer has
been filled, an empty file is created in which the data from the
buffer will be stored. The timing starts and will end once the
writing function has ended. The function used was fwrite as
shown in Figure 4. When this has completed the file is then
closed and the timing is recorded and stored in a external file.

4 Performance Results
Performance between the variety of disks while reading and
writing can be clearly seen. The style (using the same type of
hard drive but using multiple devices with a RAID format) in
which data has been stored also seems to have impacted the
hard drive performance. Clear separations between the phys-
ical devices are seen as the older devices seem to be slower



f o r ( i n t i = 0 ; i < d a t a S i z e ; i ++) {
cp [ i ] = rand ( ) % 255 ;

}
FILE ∗ fp ;
f o r ( i n t i = 0 ; i < 1 0 ; i ++) {

char f i l e n a m e [ 2 0 0 ] ;
s p r i n t f ( f i l e n a m e , ” s i n g l e l a r g e %i . d a t a ” , i ) ;
fp = fopen ( f i l e n a m e , ”w” ) ;
a s s e r t ( fp != NULL ) ;
t 1 = mytimer ( ) ;
f w r i t e ( cp , m, d a t a S i z e , fp ) ;
t 2 = mytimer ( ) ;
t 3 = t2−t 1 ;
t i m e r A r r a y [ i ] = t 3 ;

}
f r e e ( cp ) ;
f c l o s e ( fp ) ;

Figure 4: Writing function and data generation

in all areas between both large and small files in comparison
to the newer technologies such as solid state drives.
The latency itself represents the time taken just for the over-
head of the file without including the information based on
reading or writing to and from the buffer. This would include
the spin up time of the hard drive if mechanical, finding a
place to put the file on the platter (or memory if a solid state
drive) or anything else that would take up time that is not in-
volved with writing or reading the information into the buffer
[17]. Table 1 shows the results of all the hard drives based
on information measured from reading a single file. The in-
formation that represents IDE 5400rpm, Sata 7200rpm, and
RAID 1 shows a negative value essentially stating based off
the line of best fit the overhead of reading a single file would
be in the negative which is impossible. However all these val-
ues have a high error rate resulting in these values to become
invalid. RAID 0 gave a more reliable result of stating the the
initial overhead time for reading a single file resulted in the
time taken to be 87ms with a standard error of 16. Most of
these results seem very varied and no pattern can been seen,
however the timed measured is very small compared to the
total time taken for reading and writing files.
Table 2 and Table 3 represents the basic transfer speeds be-
ing recorded to and from the buffer. Table 2 shows the
speed in which the files are written to the hard disk from the
buffer with the randomly generated data stored in the buffer.
This clearly shows that older hard drives such as the IDE
5400rpm ATA has a much slower transfer rate (being only
26.37 MB/s with a standard error of 2MB/s) than the Solid
State(244MB/s with an error of 44MB/s). This same pattern
can also be seen in Table 3 with the read speeds essentially
mirroring its counterpart(except for the solid state which has
a varying read and write speed). These results are based on
just a large single file as from other data represented in Fig-
ure 9 and Figure 6 shows how being stored can effect the

transfer rate. Most of the values of all the data seem to be
very stable as they seem to have very minimal error rates.
This shows the average rate that the hard drives were able to
transfer information. The only data represented in these ta-
bles that seems unnatural is the RAID 5 read and write. This
data seems to be transferring at a much higher rate than the
rest of the data in comparison, so this maybe an anomaly in
regards to this piece of individual data.
Figure 6 and other results gained shows how timing for both
read and writing of the varying file types. This clearly shows
the impact in which the way files are stored can effect perfor-
mance when being read and written to the buffer. A clear def-
inition is seen in regards to the effect of reading in multiple
files to the buffer compared to reading in a single file. This
seems to be far slower and takes more time on how files are
read in. However reading and writing seems to be very simi-
lar, however in other results this has varied slightly with writ-
ing multiple files on average seems to be slower than writing
a single file.
The RAID format clearly can increase the performance of a
hard drive. This is shown with the performance increase with
RAID 0 (this is being setup in which two hard drives share the
load essentially increasing its performance). With two hard
drives setup (SATA 3 7200rpm HDD) in RAID 0 the perfor-
mance has double in comparison to just using a single hard
drive as shown in Table 3. RAID 1 (mirroring the device for
redundancy) showed a slight performance increase compared
to the SATA 3 7200rpm single device however this is very
minimal in comparison. RAID 5 format (providing increase
in performance and redundancy requiring four hard drives)
gave very unusual results as these systematically doubled the
RAID 0 results in bandwidth through put.
Unusual anomalies have shown themselves in way different
hards store information. Figure 9 shows that the time taken
for it to write multiple files took longer than reading them,
while all other tests represented this in the the opposite way.
Figure 10 shows that writing a single file took substantially
longer than all other tests taken. However as shown, the re-
sults for writing the single large file is very scattered suggest-
ing an issue when writing as timing between the data points
vary in an unusual pattern of every second point is smaller
than the previous.

Device Average Read Latency(ms)
IDE 5200rpm ATA HDD −2926± 877

SATA 7200rpm HDD −600± 400
RAID 0 (SATA 7200rpm) 87± 16
RAID 1 (SATA 7200rpm) −471± 525
RAID 5 (STAT 7200rpm) 30± 60

Solid State HDD 421± 210

Table 1: Latency speeds from reading single file



Device Average Write Speeds (MB/s)
IDE 5200rpm ATA HDD 26.37± 2

SATA 7200rpm HDD 132.4± 1.3
RAID 0 (SATA 7200rpm) 362± 12
RAID 1 (SATA 7200rpm) 173± 1.3
RAID 5 (STAT 7200rpm) 620± 42

Solid State HDD 244± 44

Table 2: Average hard drive write speeds

Device Average Read Speeds (MB/s)
IDE 5200rpm ATA HDD 32.42± 1

SATA 7200rpm HDD 146.8± 0.5
RAID 0 (SATA 7200rpm) 349± 11
RAID 1 (SATA 7200rpm) 170± 1.1
RAID 5 (STAT 7200rpm) 692± 31

Solid State HDD 354± 2

Table 3: Average hard drive read speeds

Figure 5: 7200rpm SATA 3 Drive

5 Discussion
With the results given, this shows a correlation between the
way the files are stored and how being stored can effect the
performance. It seems that overhead while minimal, can
slowly add up to decrease performance while a file of equiv-
alent size but stored in its entirety will have a better perfor-
mance. However, issues arise with the limitation of hardware
and memory to how big the file can be stored.
There are also unseen factors that can effect the performance
of reading and writing and that is the current state of the disk
and fragmentation. Since a hard drive needs to put informa-
tion on the sectors it would be more efficient if it was able

Figure 6: RAID 0 with 7200rpm SATA 3 Drives

Figure 7: RAID 1 with 7200rpm SATA 3 Drives

to put the information on the same track continuously rather
than having the information scattered as this would increase
overhead [17]. This effect however is only for mechanical
hard drives as the solid state hard drives [2] do not use plat-
ters to store the information.
Using a RAID format increased performance (for RAID
styles that are meant to increase performance for example
RAID 0 and 5) of the same type of hard drive as shown in
Table 3, while the needed amount of physical hard drives in-
crease (dependant on the type of RAID format this can vary),
this shows that by using a format of RAID this greatly in-
creases the bandwidth that it can pass through. Other RAID
formats such as RAID 1 and 5 also give the ability for re-
dundancy which could be useful incase of hard drive failure



Figure 8: RAID 5 with 7200rpm SATA 3 Drives

Figure 9: IDE 5200rpm ATA Drive

which if used for a single hard drive, this would result in loss
of all data.
The variation in which the type of hard drive(Sata 3 7200rpm,
IDE 5400rpm and Solid State) showed a complete variation
on the way storing files effected time for the transfer. The
Sata 3 7200rpm drives showed that reading multiple files
has the longest time take (even in RAID 0 and 5 format)
while with the IDE 5400rpm hard drive, writing multiple files
seems to be significantly slower. The solid state hard drive
had an issue with reading writing single files. This could be
related each device and how they were designed and caching
techniques.

Figure 10: Solid State Hard Dive

6 Conclusion
A clear correlation has been seen in regards to how newer
devices such as the solid state hard drives are out perform-
ing the older mechanical drives. This can be clearly seen
with the data presented and is not unexpected. Using a RAID
style format this increases the performance of the hard drives,
however requires the use of more hard drives.
Storing information in a RAID format can also give the use
of redundancy and bandwidth increase if using a RAID 5 for-
mat. While this will give redundancy, this will be at the sac-
rifice of the amount of space available per hard drive as the
backup information of the data is stored incase of a failure.
The way files are stored also seem to play a major factor in
the time taken of reading in files. The concept of storing
many smaller files instead of a single large file seems to im-
pact the speed in which files are written and read for me-
chanical hard drives. Due to the way that mechanical hard
drives store information this is unsurprising that having to
store multiple files will generate more overhead as having to
find the individual files scattered over the platters.
Due to the nature of the solid state and the way it stores in-
formation this is not affected any mechanical parts so files
are not will not be scattered and overhead is dramatically de-
creased with reading and writing multiple files the same as
reading a single large file of equivalent size [2].
From the test given, it seems that the solid state hard drives
seem to be much faster in ever aspect compared to the IDE
and Sata 3 mechanical hard drives. While storing data in a
RAID format using mechanical hard drives gives a very close
results equivalent to a solid state, this is at the cost of using
multiple hard drives.
If solid state drives are stored in a RAID format (based on the



changes of bandwidth from the Sata 3 7200rpm) this would
clearly increase the performance to far exceed that of the me-
chanical drives. However due to solid states being a far newer
technology, the cost in relation to the amount of space avail-
able for the capacity of the device is higher in comparison to
the current mechanical drives available.
Overall it seems that with the information given it varies on
the users available equipment and the memory limitation of
the computer. While It does seem with mechanical drives that
storing the information as a single large file will give better
speeds, this is limited to the amount of memory available to
the user on the current computer they are reading it on. While
devices like the solid state seem to have very minimal effect
on the way the file is stored, the best choice on how the file is
stored will be dependant on the physical hardware it self and
what is available for the user.
In summary we have evaluated the read and write per-
formance of several storage devices managing contiguous
blocks of data suitable for simulation configuration hyper-
bricks. Having determined how multi-dimensional systems
could be encoded in this manner we have found that desktop
and desk-side devices give an adequate read and write perfor-
mance for a semi-interactive data mining analysis of simula-
tion results. In particular there is strong evidence in favour of
using solid state storage devices where possible, for this sort
of work.
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