

How to Make NL “Understanding” Systems
Run Orders of Magnitude Faster

by Steve Richfield, IEEE 41344714
CTO of our thing

5498-124th Avenue East; Edgewood WA 98372
Steve.Richfield@gmail.com 505-934-5200

Abstract - A new method of greatly speeding up natural
language (NL) “understanding” is presented here. This
speedup is achieved by nearly eliminating the overhead of
failed tests during parsing and subsequent processing.
Failed tests account for more than 99% of time taken by
present natural language understanding systems. This
speedup is independent of the particular NL processing
algorithms used.

This method triggers queuing of rules based on the
appearance of their least frequently used elements, so rules
whose least frequently element is absent incur no overhead.
Lower-level rules are placed in higher-priority queues. High-
level rules create output.

This new capability should revolutionize the Internet by
making practical the real time analysis of postings for
particular semantic content to trigger individually crafted
advertisements or AI replies. This method will also facilitate
developing a “drop in” natural language understanding
module suitable for many disparate applications.

Keywords: Natural language processing, Software perfor-
mance, Detection algorithms, Dynamic compiler.

1 Introduction

A subtle phenomenon has doomed natural language (NL)
projects for the last 40 years. Current literature is almost
devoid of recognition of this problem, let alone providing
any discussion of potential solutions. Researchers have
built countless NL systems only to abandon them without
public explanation. I will explain this phenomenon and
present a practical solution.

2 NLP’s Dirty Little Secret

Natural language processing (NLP) has long been con-
cerned with NL parsing, disambiguation, and semantic
representation, together collectively referred to as
“understanding”. However, 40 years of effort have failed to
produce a good method for understanding NL. Examination

of past NL projects, including my own DrEliza.com, has
uncovered a hidden problem that doomed these projects
right from their start – as the rules and relationships grow
in numbers, complexity, and depth, the number of tests
that fail undergo a combinatorial explosion that quickly
limits the number of rules that can be honored within an
acceptable processing time. This continues to happen
despite the orders of magnitude improvement in pro-
cessing speed that has become available in recent years.
To illustrate, to achieve a 3-second response time to short
open-ended NL queries falling far short of “commercially
viable production performance” IBM’s WATSON utilizes
2,880 POWER7 processors, making it the 94th fastest
supercomputer in the world.

NL projects seem to go through a common development
cycle. Researchers implement a demonstration, then the
program slows nearly to a stop as they start adding rules on
the way to making it useful enough to sell. Soon it becomes
apparent that adding more rules is counterproductive
because the program is already running too slowly to
demonstrate in real time. This occurs before entering
thousands of idioms, adding automatic spelling correction,
or including other important pieces of a commercial quality
system. Then, careful analysis of the programming usually
uncovers clever ways of making the program run an order
of magnitude faster, e.g. by moving language rules from a
database into arrays. However, by this time it has become
clear that an order of magnitude is not nearly enough
additional speed to achieve the desired performance, so
yet another NL project is “shelved”.

Researchers have attempted to address this situation by
making their rules smarter (and in some cases dumber; to
do less, but faster), but this doesn’t address the fundamen-
tal issue that failed tests produce no output, yet consume
>99% of the processing time. Some projects have produced
fast parsing by separating the semantic analysis into a
separate module. However, the semantic analysis that
follows is subjected not only to the same combinatorial
explosion, but the explosion is made worse by having to

reassemble components of semantic units separated
during parsing.

A parallel problem existed in the early days of computers,
when programs had to wait for their own I/O. Buffered I/O
eliminated this problem, and programs ran much faster.

3 The Concept

This article explores a new method which nearly eliminates
the time costs of failed tests, thereby speeding up the
parsing of NL by several orders of magnitude. This is
accomplished by only performing rules whose least likely
elements are present, and doing this in a way that incurs
zero overhead for rules whose least likely elements are
absent. This presents a new problem – of coordinating the
complex process of parsing once most of the “structure”
has been selectively eliminated. This problem is overcome
by creating a new structure to queue the evaluation of
surviving rules having least likely elements present, and to
coordinate the order or evaluation, linking of rules, scope
issues, etc.

4 Compared to Other Methods

Since I first proposed this method, various people have
come forward with statements like “I thought that ______
(fill in the blank with their favorite parsing method) was
fastest.” Methods that involve parsing character strings,
rather than first converting words to ordinals, have a built-
in opportunity to run more than an order of magnitude
faster, by simply converting words to ordinals and perform-
ing the same analysis using integer operations on ordinals
that represent entire words. Some methods, like recursive
ascent-descent parsing, can be directly emulated on this
platform at speeds that are orders of magnitude faster.
Some methods, like those using left associative grammars,
discard semantic unit information to run fast. Semantic
units must be subsequently reconstructed before parsing
can be useful. This reconstruction requires performing the
same tests as required by other methods, >99% of which
can be eliminated using the method described below.

5 The Method

During initialization the first few thousand most commonly
used words are processed into the lexicon, so that later,
when rules are being compiled, it will be easy to compare
words in rules to identify which are least frequently used.

All input is first broken into tokens representing a word,
number, or punctuation. The word tokens are then hashed
as part of being converted to ordinals representing their

frequency of use, e.g. the most common word in English is
“the”, which would be represented as 1.

Stored in the lexicon is the hash for the words (used to
resolve collisions), the word strings (used to create output),
and a list of pointers to the rules for which that word is the
least frequently used (LFU) word in the rule.

Rules contain a compiled representation of their operation,
and information regarding their depth (to place them into
the correct queue) and scope (to restrict analysis to the
appropriate syntactical unit, e.g. a sentence).

During execution, words are converted to ordinals. In the
process, pointers to the rules for which those words were
those rules’ LFU words are placed into appropriately
prioritized queues that also hold the locations of the
associated words. Pointers to lower-level rules are placed
in higher-priority queues, to perform the lower-level rules
first, before performing higher-level rules that were placed
in lower-priority queues.

String operations, e.g. as used to parse common German
run-on words, are performed on the strings in the lexicon
during initialization to add new rules to existing lexicon
entries to process the substrings. String operations can be
performed during execution, which can be useful for
handling invented words. However, substrings cannot be
used as LFU triggers, although they can be used in rules
that have been triggered by other words or rules.

The vast majority of low-level rules will never be performed
in any given passage because their LFU words will not be
present. Only the higher-level rules that were referenced
by successfully-performing lower-level rules will be
performed. Those few higher-level rules that are per-
formed will often reference lower-level rules that haven’t
been performed. Rules that have not been performed can
safely be presumed to be FALSE, because they must lack
their least likely elements to not have been performed.

It is hard to guesstimate the speedup that this will provide,
partly because there are numerous other methods with
which to compare it, and partly because no one has
seriously attempted to enter the rules to fully understand
any language. However, the range seems to be somewhere
around 3-4 orders of magnitude improvement in speed.

6 Path Toward Universal Acceptance

The next step is to propose a broadly usable and easily
extensible representation standard for parsing, disambigu-
ating, and other rules, which will be needed to construct a
software platform on which to build many products that
involve understanding NL.

Figure 1

However, by far the most labor intensive step lies beyond;
to invest the large amount of linguistic work needed to
precisely define the parsing of various world languages as
they are written and spoken “in the wild”.

6.1 Representation beyond BNF

Most of the thousands of rules would be written by
linguists, not programmers. It would seem that a dual form
of representation should be supported, where rules could
be entered in either of two forms.

1. Grammatically correct sentences in any of several
supported natural languages, inspired by the NL
statement syntax used in COBOL.

2. Algebraic representation, which would be a major
extension of Backus-Naur Form (BNF).

Syntax specification has previously been all about input,
but also needed is a canonical way of specifying output to
disparate applications, perhaps akin to that used in some
meta-compilers.

6.2 Need for Coordination

There are several VERY different uses for NL parsing, each
with its own special problems. For example DrEliza.com
(which I wrote) has no provision for being able to output
any of its own input, as there is no need for this in its
application.

I have had experience writing commercial production
compilers, source language optimizers, a linker, and
worked in teams on computer-language related products,
including the vectorizer and optimizer for CDC’s supercom-
puter compiler. However, methods used to process
computer languages are broadly inapplicable to efficiently
processing NL.

The goal of automated language translation programs is to
output (with suitable translation) EVERYTHING that is input,
which is somewhat analogous to a compiler that targets a
computer having a hyper-complex instruction set, but lacks
operations that perform the precise functions of the
operators in its input syntax.

Computers faced a similar challenge during the 1970s and
1980s. Thousands of computer programs in various
computer languages running on 36-bit and longer CISC
architectures, like IBM-7094 and Burroughs 6000 proces-
sors, were being converted to different computer
languages running on simpler 32-bit architectures like IBM-
360 and Intel processors that cost far less because they
were made with far fewer transistors. Now, transistors are

essentially free, so long word length CISC architectures
should be revisited. That is another story for another
paper. A number of automated translation tools were
developed that operated similarly to tools Microsoft later
offered to assist in converting programs to their simplified
.NET platform. These translation programs left a lot of
residual problems, not unlike those left by modern day
automated language translation programs. Computers are
MUCH less flexible in interpreting their programs than
people are in reading text, so a higher state of perfection
was needed in translating computer programs compared to
translating NL.

To succeed, experienced automated language translation
personnel would of necessity be participating in any effort
to design a universal NL platform.

A working group is needed to define the syntax and
operation of parsing rules for both input and output that
will work for everyone, populated by people with suffi-
ciently disparate backgrounds. The goal would be to
produce a “drop in” module that will work for any NL
application, ranging from problem solving and question
answering, to automated language translation.

This module would support application-specific rules,
backed up by a vast library of rules to take care of the
myriad details of parsing NL, e.g. how to handle thousands
of idioms, each with their own peculiarities. Using the
method described above, including multiple languages in
the library would have a negligible affect on performance,
e.g. only where there are multiple identical words in
different languages that have different meanings but which
may be used together. Language-related disambiguation
would be necessary only in these rare cases. This is so rare
that I know of no such example to cite here, so the cost in
time would be negligible.

6.3 Placement/Payload Theory

It is my theory that computerized speech and written
understanding has eluded developers for the past ~40
years in part because of a lack of a fundamental under-
standing of the task, which turns out to be very similar to
patent classification.

When classifying a patent, successive layers of sub-
classification are established, until only unique details
distinguish one patent from another in the bottom-level
subclass. When reviewing the sub-classifications that a
particular patent is filed within, combined with the patent’s
title, the subject matter usually becomes apparent to
anyone skilled in the art.

However, when a patent is filed into a different patent
filing system, e.g. filed in a different country where the sub-
classifications may be quite different, it may be possible
that the claims overlap the claims of other patents; and/or
unclaimed disclosure would be patentable in a different
country.

Similarly, when you speak or write, in your own mind most
of your words are there to place a particular “payload” of
information into its proper context, much as patent
disclosures place claims into the state of an art. However,
your listeners or readers may have a very different context
in which to file your words. They must pick and choose
from your words in an effort to place some of your words
into their own context. What they see as the “payload”
may not even be the payload you intended, but may be
words you only meant for placement. Where no placement
seems possible, they might simply ignore your words and
file you as being ignorant or deranged.

The expressed relationship between various placement and
payload words carries the author’s point of view. For some
applications, like automated language translation, this may
be important to extract and preserve, while it is best
ignored when solving problems, except when containing
statements of ignorance. For example, take the statement
“I have a headache because I got drunk last night.” The
facts are “I have a headache” and “I got drunk last night”.
There is also a suspicious “because” relationship between
those two facts. Most headaches are secondary to dehy-
dration, especially those related to prior alcohol
consumption. Hence, the primary reason the author of this
statement has a headache is probably because he has not
consumed enough water, and not because of the lesser
contributing factor of having gotten drunk last night. In this
context, “because” becomes a statement of ignorance and
hence potential payload.

Many teachers have recorded a classroom presentation
and transcribed the recording, only to be surprised to learn
that what they actually said was sometimes the opposite of
what they meant to say. Somehow the class understood
what they meant to say, even though their statement was
quite flawed. When you look at these situations, the
placement words were adequate, though imperfect, but
the payload was okay. Indeed, if another person’s world
model is nearly identical to yours, very few placement
words are needed, and so these words are often omitted in
casual speech which complicates translation.

These omitted words fracture the structure of about half of
all sentences “in the wild”, often rendering computerized
parsing impossible. If a computer program first identifies

prospective payloads, and then looks for nearby placement
information while ignoring things it can’t deal with, then
fractured sentences only cause difficulty when the frac-
tures are critically located.

As people speak or write to a computer, the computer
must necessarily have a very different point of view to even
be useful. The computer must be able to address issues
that you cannot successfully address yourself, so its
knowledge must necessarily exceed your own in its subject
domain. This leads to some curious conclusions:

1. Some of your placement words will probably be
interpreted as “statements of ignorance” by the
computer, and so be processed as valuable pay-
load, to trigger an appropriate response to teach
you something you clearly do not know.

2. Some of your placement words will probably refer
to things outside of the computer’s domain
knowledge, and so must be ignored, other than
being recognized as non-understandable re-
strictions on the payload, that may itself be
impossible to utilize.

3. Some of your intended “payload” words will serve
as placement.

DrEliza’s application seeks to intercept words written to
someone who presumably has substantial common domain
knowledge. Further, the computer seeks to compose
human-appearing responses, despite its necessarily
different point of view and lack of original domain
knowledge. While this is simply not possible for the vast
majority of writings, DrEliza can simply ignore everything
that it is unable to usefully respond to.

If you speak a foreign language, especially if you don’t
speak it well, you will immediately recognize this situation
as being all too common when listening to others with
greater language skills than your own speaking among
themselves. The best you can do is to quietly listen until
some point in the conversation when you understand
enough of what is being said and you are able to add
something useful to the conversation.

Note the similarity to advertising within present (2013)
Google Mail, where advertisements are selected based
upon the content of email. If Google’s computers were to
perform a deeper analysis they could probably eliminate
~99% of the ads as not relating to users’ needs and greatly
improve users’ experience, and customize the remaining
1% of the ads to precisely target users’ interests.

That is very much the goal in my application. The computer
knows about certain products and solutions to common

problems, etc., and scans the vastness of the Internet to
find people whose words have stated or implied a need for
things in the computer’s knowledge base, and have done
so in terms that the computer can “understand”.

6.4 Representation Implications

When advanced compilers, especially optimizing and
vectorizing compilers for supercomputers, compile
computer programs to executable code, they make no
attempt to translate program statements one-at-a-time.
Instead, they build a diagram of the entire program,
simplify and otherwise improve the diagram, and then
translate the diagram to executable code. The same could
be done with human speech and writing, in which case the
output order would often be rearranged from the input
order, in ways where statements would be clear and direct.
Outputting in the same language, such a program might
make a good automated editing program.

Several complex NL understanding project proposals have
incorporated some sort of an a priori world model, onto
which they plan to hang information gained from their
input. Often the world model is simply built into the
ontological information about individual words. It is unclear
whether such a priori structures are a help or a hindrance,
especially if there is some efficient way to find related
statements without committing to file facts into a particu-
lar knowledge structure.

Foregoing an a priori world model requires a simple
representation in which to state and store all of human
knowledge. Presuming the placement/payload theory is
correct, statements would be represented as groups of
information fragments, some placement, and some
payload, originally depending on what the author already
knows. The computer would have the job of processing
and/or outputting these fragments of information, without
knowing which was placement and which was payload.

Most applications, from query to translation, require some
way of accessing statements relating to particular collec-
tions of information fragments. One can envision contorted
table structures and recursive descent searching algorithms
to find the statements that best address particular subjects,
but it would be preferable to simply have an efficient
database tool like SQL do the job for us.

6.5 An Issue with SQL

SQL is my favorite AI programming language, because I can
do really complex information accessing with single
statements. However, it is powerless to access records that

have particular contents, where those contents could
appear in any field of a record.

Present SQL products are unable to “wildcard” subfields in
an index, both in the records themselves and in the
SELECT statements that access records. Complex kludged

workarounds, e.g. using string operators in SELECT
statements, indirectly force the SQL engines to perform
sequential searching. These kludges slow things down so
much that they are only practical for small demos. Other
kludges in effect overlay wildcard accessing over conven-
tional fully-specified keyed accessing, resulting in slow
programs that are cluttered with the code needed to make
this work.

Some SQL products have sophisticated string search
capabilities, but are slowed down by their string operation,
when AI programs work better with ordinals instead of
strings.

Some future advanced NL understanding projects may have
to wait for an SQL-like product that supports some sort of
new capability to index through groups of information
fragments.

This facility will never appear in SQL until someone
specifies a particular new SQL capability that would
facilitate these applications. Then, someone can add the
new capability to one of the shareware SQL products, so
that NL understanding can proceed without this challenge
hanging over it.

7 Conclusion

Now that you understand the “logic” that has misguided so
many NL understanding projects onto the scrap heap, you
can quickly recognize it when you see it again in the future,
and explain the pitfall that awaits such efforts. The answers
to simple questions like “How are you going to represent
words?” and “What triggers the evaluation of a rule?” will
usually tell you if the projects are on the wrong track.

This new method promises several orders of magnitude
improvement in the speed of NL understanding, regardless
of which model of language is being used. This method has
its own characteristic strengths and weaknesses around
which a robust rules compiler could compile rules suitable
for just about any imaginable approach to NL understand-
ing.

However, it is one thing to “understand” NL, and quite
another to usefully manipulate it, e.g. mine it for
knowledge or translate it to a foreign language. Some sort
of new database capability appears to be needed to replace

present ad hoc methods with high-level query-driven
database solutions.

If this technology and associated descriptions of common
languages are to be shared then some standards are
necessary. If you would like to participate in developing a
robust representation and interface to support your own
needs for NL understanding, or if you just want some tables
(like the 10,000 most commonly used English words in
order of frequency of use), then please contact me at:

Steve.Richfield@gmail.com

8 The Future

It is hoped that this methodology will affect the world in
three important ways:

1. People will stop writing NL understanding code that
has no real possibility of ever scaling up to a useful
level of functionality.

2. The Internet in general, and Google in particular,
will shed its dependence on isolated word and
n-gram recognition for web searching and adver-
tisement triggering, and shift to looking for
statements having specific meanings.

3. Future advertising engines that will watch the
Internet for problem statements to trigger adver-
tisements; will also be able to watch the Internet
for problems statements relating to health,
maintenance, politics, and other interesting do-
mains. Then, precisely targeted responses can be
produced to convey key knowledge, to finally
achieve the goal of having an Intelligent Internet.

9 References

[1] U.S. Patent Application 13/836,678.

mailto:Steve.Richfield@gmail.com

