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Abstract - A new method of greatly speeding up natural 
language (NL) “understanding” is presented here. This 
speedup is achieved by nearly eliminating the overhead of 
failed tests during parsing and subsequent processing. 
Failed tests account for more than 99% of time taken by 
present natural language understanding systems. This 
speedup is independent of the particular NL processing 
algorithms used. 

This method triggers queuing of rules based on the 
appearance of their least frequently used elements, so rules 
whose least frequently element is absent incur no overhead. 
Lower-level rules are placed in higher-priority queues. High-
level rules create output.  

This new capability should revolutionize the Internet by 
making practical the real time analysis of postings for 
particular semantic content to trigger individually crafted 
advertisements or AI replies. This method will also facilitate 
developing a “drop in” natural language understanding 
module suitable for many disparate applications. 

Keywords: Natural language processing, Software perfor-
mance, Detection algorithms, Dynamic compiler. 

 

1  Introduction 

A subtle phenomenon has doomed natural language (NL) 
projects for the last 40 years. Current literature is almost 
devoid of recognition of this problem, let alone providing 
any discussion of potential solutions. Researchers have 
built countless NL systems only to abandon them without 
public explanation. I will explain this phenomenon and 
present a practical solution. 

2  NLP’s Dirty Little Secret 

Natural language processing (NLP) has long been con-
cerned with NL parsing, disambiguation, and semantic 
representation, together collectively referred to as 
“understanding”. However, 40 years of effort have failed to 
produce a good method for understanding NL. Examination 

of past NL projects, including my own DrEliza.com, has 
uncovered a hidden problem that doomed these projects 
right from their start – as the rules and relationships grow 
in numbers, complexity, and depth, the number of tests 
that fail undergo a combinatorial explosion that quickly 
limits the number of rules that can be honored within an 
acceptable processing time. This continues to happen 
despite the orders of magnitude improvement in pro-
cessing speed that has become available in recent years.  
To illustrate, to achieve a 3-second response time to short 
open-ended NL queries falling far short of “commercially 
viable production performance” IBM’s WATSON utilizes 
2,880 POWER7 processors, making it the 94th fastest 
supercomputer in the world.  

NL projects seem to go through a common development 
cycle. Researchers implement a demonstration, then the 
program slows nearly to a stop as they start adding rules on 
the way to making it useful enough to sell. Soon it becomes 
apparent that adding more rules is counterproductive 
because the program is already running too slowly to 
demonstrate in real time. This occurs before entering 
thousands of idioms, adding automatic spelling correction, 
or including other important pieces of a commercial quality 
system. Then, careful analysis of the programming usually 
uncovers clever ways of making the program run an order 
of magnitude faster, e.g. by moving language rules from a 
database into arrays. However, by this time it has become 
clear that an order of magnitude is not nearly enough 
additional speed to achieve the desired performance, so 
yet another NL project is “shelved”. 

Researchers have attempted to address this situation by 
making their rules smarter (and in some cases dumber; to 
do less, but faster), but this doesn’t address the fundamen-
tal issue that failed tests produce no output, yet consume 
>99% of the processing time. Some projects have produced 
fast parsing by separating the semantic analysis into a 
separate module. However, the semantic analysis that 
follows is subjected not only to the same combinatorial 
explosion, but the explosion is made worse by having to 



 

 

reassemble components of semantic units separated 
during parsing. 

A parallel problem existed in the early days of computers, 
when programs had to wait for their own I/O. Buffered I/O 
eliminated this problem, and programs ran much faster. 

3  The Concept 

This article explores a new method which nearly eliminates 
the time costs of failed tests, thereby speeding up the 
parsing of NL by several orders of magnitude. This is 
accomplished by only performing rules whose least likely 
elements are present, and doing this in a way that incurs 
zero overhead for rules whose least likely elements are 
absent. This presents a new problem – of coordinating the 
complex process of parsing once most of the “structure” 
has been selectively eliminated. This problem is overcome 
by creating a new structure to queue the evaluation of 
surviving rules having least likely elements present, and to 
coordinate the order or evaluation, linking of rules, scope 
issues, etc. 

4  Compared to Other Methods 

Since I first proposed this method, various people have 
come forward with statements like “I thought that ______ 
(fill in the blank with their favorite parsing method) was 
fastest.” Methods that involve parsing character strings, 
rather than first converting words to ordinals, have a built-
in opportunity to run more than an order of magnitude 
faster, by simply converting words to ordinals and perform-
ing the same analysis using integer operations on ordinals 
that represent entire words. Some methods, like recursive 
ascent-descent parsing, can be directly emulated on this 
platform at speeds that are orders of magnitude faster. 
Some methods, like those using left associative grammars, 
discard semantic unit information to run fast. Semantic 
units must be subsequently reconstructed before parsing 
can be useful. This reconstruction requires performing the 
same tests as required by other methods, >99% of which 
can be eliminated using the method described below.  

5  The Method 

During initialization the first few thousand most commonly 
used words are processed into the lexicon, so that later, 
when rules are being compiled, it will be easy to compare 
words in rules to identify which are least frequently used. 

All input is first broken into tokens representing a word, 
number, or punctuation. The word tokens are then hashed 
as part of being converted to ordinals representing their 

frequency of use, e.g. the most common word in English is 
“the”, which would be represented as 1. 

Stored in the lexicon is the hash for the words (used to 
resolve collisions), the word strings (used to create output), 
and a list of pointers to the rules for which that word is the 
least frequently used (LFU) word in the rule. 

Rules contain a compiled representation of their operation, 
and information regarding their depth (to place them into 
the correct queue) and scope (to restrict analysis to the 
appropriate syntactical unit, e.g. a sentence). 

During execution, words are converted to ordinals. In the 
process, pointers to the rules for which those words were 
those rules’ LFU words are placed into appropriately 
prioritized queues that also hold the locations of the 
associated words. Pointers to lower-level rules are placed 
in higher-priority queues, to perform the lower-level rules 
first, before performing higher-level rules that were placed 
in lower-priority queues.  

String operations, e.g. as used to parse common German 
run-on words, are performed on the strings in the lexicon 
during initialization to add new rules to existing lexicon 
entries to process the substrings. String operations can be 
performed during execution, which can be useful for 
handling invented words. However, substrings cannot be 
used as LFU triggers, although they can be used in rules 
that have been triggered by other words or rules. 

The vast majority of low-level rules will never be performed 
in any given passage because their LFU words will not be 
present. Only the higher-level rules that were referenced 
by successfully-performing lower-level rules will be 
performed. Those few higher-level rules that are per-
formed will often reference lower-level rules that haven’t 
been performed. Rules that have not been performed can 
safely be presumed to be FALSE, because they must lack 
their least likely elements to not have been performed. 

It is hard to guesstimate the speedup that this will provide, 
partly because there are numerous other methods with 
which to compare it, and partly because no one has 
seriously attempted to enter the rules to fully understand 
any language. However, the range seems to be somewhere 
around 3-4 orders of magnitude improvement in speed. 

6  Path Toward Universal Acceptance 

The next step is to propose a broadly usable and easily 
extensible representation standard for parsing, disambigu-
ating, and other rules, which will be needed to construct a 
software platform on which to build many products that 
involve understanding NL. 



 

 

 

Figure 1 



 

 

However, by far the most labor intensive step lies beyond; 
to invest the large amount of linguistic work needed to 
precisely define the parsing of various world languages as 
they are written and spoken “in the wild”. 

6.1  Representation beyond BNF 

Most of the thousands of rules would be written by 
linguists, not programmers. It would seem that a dual form 
of representation should be supported, where rules could 
be entered in either of two forms. 

1. Grammatically correct sentences in any of several 
supported natural languages, inspired by the NL 
statement syntax used in COBOL. 

2. Algebraic representation, which would be a major 
extension of Backus-Naur Form (BNF). 

Syntax specification has previously been all about input, 
but also needed is a canonical way of specifying output to 
disparate applications, perhaps akin to that used in some 
meta-compilers. 

6.2  Need for Coordination 

There are several VERY different uses for NL parsing, each 
with its own special problems. For example DrEliza.com 
(which I wrote) has no provision for being able to output 
any of its own input, as there is no need for this in its 
application. 

I have had experience writing commercial production 
compilers, source language optimizers, a linker, and 
worked in teams on computer-language related products, 
including the vectorizer and optimizer for CDC’s supercom-
puter compiler. However, methods used to process 
computer languages are broadly inapplicable to efficiently 
processing NL. 

The goal of automated language translation programs is to 
output (with suitable translation) EVERYTHING that is input, 
which is somewhat analogous to a compiler that targets a 
computer having a hyper-complex instruction set, but lacks 
operations that perform the precise functions of the 
operators in its input syntax.  

Computers faced a similar challenge during the 1970s and 
1980s. Thousands of computer programs in various 
computer languages running on 36-bit and longer CISC 
architectures, like IBM-7094 and Burroughs 6000 proces-
sors, were being converted to different computer 
languages running on simpler 32-bit architectures like IBM-
360 and Intel processors that cost far less because they 
were made with far fewer transistors. Now, transistors are 

essentially free, so long word length CISC architectures 
should be revisited. That is another story for another 
paper. A number of automated translation tools were 
developed that operated similarly to tools Microsoft later 
offered to assist in converting programs to their simplified 
.NET platform. These translation programs left a lot of 
residual problems, not unlike those left by modern day 
automated language translation programs. Computers are 
MUCH less flexible in interpreting their programs than 
people are in reading text, so a higher state of perfection 
was needed in translating computer programs compared to 
translating NL. 

To succeed, experienced automated language translation 
personnel would of necessity be participating in any effort 
to design a universal NL platform. 

A working group is needed to define the syntax and 
operation of parsing rules for both input and output that 
will work for everyone, populated by people with suffi-
ciently disparate backgrounds. The goal would be to 
produce a “drop in” module that will work for any NL 
application, ranging from problem solving and question 
answering, to automated language translation. 

This module would support application-specific rules, 
backed up by a vast library of rules to take care of the 
myriad details of parsing NL, e.g. how to handle thousands 
of idioms, each with their own peculiarities. Using the 
method described above, including multiple languages in 
the library would have a negligible affect on performance, 
e.g. only where there are multiple identical words in 
different languages that have different meanings but which 
may be used together. Language-related disambiguation 
would be necessary only in these rare cases. This is so rare 
that I know of no such example to cite here, so the cost in 
time would be negligible. 

6.3  Placement/Payload Theory 

It is my theory that computerized speech and written 
understanding has eluded developers for the past ~40 
years in part because of a lack of a fundamental under-
standing of the task, which turns out to be very similar to 
patent classification. 

When classifying a patent, successive layers of sub-
classification are established, until only unique details 
distinguish one patent from another in the bottom-level 
subclass. When reviewing the sub-classifications that a 
particular patent is filed within, combined with the patent’s 
title, the subject matter usually becomes apparent to 
anyone skilled in the art. 



 

 

However, when a patent is filed into a different patent 
filing system, e.g. filed in a different country where the sub-
classifications may be quite different, it may be possible 
that the claims overlap the claims of other patents; and/or 
unclaimed disclosure would be patentable in a different 
country. 

Similarly, when you speak or write, in your own mind most 
of your words are there to place a particular “payload” of 
information into its proper context, much as patent 
disclosures place claims into the state of an art. However, 
your listeners or readers may have a very different context 
in which to file your words. They must pick and choose 
from your words in an effort to place some of your words 
into their own context. What they see as the “payload” 
may not even be the payload you intended, but may be 
words you only meant for placement. Where no placement 
seems possible, they might simply ignore your words and 
file you as being ignorant or deranged. 

The expressed relationship between various placement and 
payload words carries the author’s point of view. For some 
applications, like automated language translation, this may 
be important to extract and preserve, while it is best 
ignored when solving problems, except when containing 
statements of ignorance. For example, take the statement 
“I have a headache because I got drunk last night.” The 
facts are “I have a headache” and “I got drunk last night”. 
There is also a suspicious “because” relationship between 
those two facts. Most headaches are secondary to dehy-
dration, especially those related to prior alcohol 
consumption. Hence, the primary reason the author of this 
statement has a headache is probably because he has not 
consumed enough water, and not because of the lesser 
contributing factor of having gotten drunk last night. In this 
context, “because” becomes a statement of ignorance and 
hence potential payload. 

Many teachers have recorded a classroom presentation 
and transcribed the recording, only to be surprised to learn 
that what they actually said was sometimes the opposite of 
what they meant to say. Somehow the class understood 
what they meant to say, even though their statement was 
quite flawed. When you look at these situations, the 
placement words were adequate, though imperfect, but 
the payload was okay. Indeed, if another person’s world 
model is nearly identical to yours, very few placement 
words are needed, and so these words are often omitted in 
casual speech which complicates translation. 

These omitted words fracture the structure of about half of 
all sentences “in the wild”, often rendering computerized 
parsing impossible. If a computer program first identifies 

prospective payloads, and then looks for nearby placement 
information while ignoring things it can’t deal with, then 
fractured sentences only cause difficulty when the frac-
tures are critically located. 

As people speak or write to a computer, the computer 
must necessarily have a very different point of view to even 
be useful. The computer must be able to address issues 
that you cannot successfully address yourself, so its 
knowledge must necessarily exceed your own in its subject 
domain. This leads to some curious conclusions: 

1. Some of your placement words will probably be 
interpreted as “statements of ignorance” by the 
computer, and so be processed as valuable pay-
load, to trigger an appropriate response to teach 
you something you clearly do not know. 

2. Some of your placement words will probably refer 
to things outside of the computer’s domain 
knowledge, and so must be ignored, other than 
being recognized as non-understandable re-
strictions on the payload, that may itself be 
impossible to utilize. 

3. Some of your intended “payload” words will serve 
as placement. 

DrEliza’s application seeks to intercept words written to 
someone who presumably has substantial common domain 
knowledge. Further, the computer seeks to compose 
human-appearing responses, despite its necessarily 
different point of view and lack of original domain 
knowledge. While this is simply not possible for the vast 
majority of writings, DrEliza can simply ignore everything 
that it is unable to usefully respond to. 

If you speak a foreign language, especially if you don’t 
speak it well, you will immediately recognize this situation 
as being all too common when listening to others with 
greater language skills than your own speaking among 
themselves. The best you can do is to quietly listen until 
some point in the conversation when you understand 
enough of what is being said and you are able to add 
something useful to the conversation. 

Note the similarity to advertising within present (2013) 
Google Mail, where advertisements are selected based 
upon the content of email. If Google’s computers were to 
perform a deeper analysis they could probably eliminate 
~99% of the ads as not relating to users’ needs and greatly 
improve users’ experience, and customize the remaining 
1% of the ads to precisely target users’ interests. 

That is very much the goal in my application. The computer 
knows about certain products and solutions to common 



 

 

problems, etc., and scans the vastness of the Internet to 
find people whose words have stated or implied a need for 
things in the computer’s knowledge base, and have done 
so in terms that the computer can “understand”. 

6.4  Representation Implications 

When advanced compilers, especially optimizing and 
vectorizing compilers for supercomputers, compile 
computer programs to executable code, they make no 
attempt to translate program statements one-at-a-time. 
Instead, they build a diagram of the entire program, 
simplify and otherwise improve the diagram, and then 
translate the diagram to executable code. The same could 
be done with human speech and writing, in which case the 
output order would often be rearranged from the input 
order, in ways where statements would be clear and direct. 
Outputting in the same language, such a program might 
make a good automated editing program. 

Several complex NL understanding project proposals have 
incorporated some sort of an a priori world model, onto 
which they plan to hang information gained from their 
input.  Often the world model is simply built into the 
ontological information about individual words. It is unclear 
whether such a priori structures are a help or a hindrance, 
especially if there is some efficient way to find related 
statements without committing to file facts into a particu-
lar knowledge structure. 

Foregoing an a priori world model requires a simple 
representation in which to state and store all of human 
knowledge. Presuming the placement/payload theory is 
correct, statements would be represented as groups of 
information fragments, some placement, and some 
payload, originally depending on what the author already 
knows. The computer would have the job of processing 
and/or outputting these fragments of information, without 
knowing which was placement and which was payload. 

Most applications, from query to translation, require some 
way of accessing statements relating to particular collec-
tions of information fragments. One can envision contorted 
table structures and recursive descent searching algorithms 
to find the statements that best address particular subjects, 
but it would be preferable to simply have an efficient 
database tool like SQL do the job for us. 

6.5  An Issue with SQL 

SQL is my favorite AI programming language, because I can 
do really complex information accessing with single 
statements. However, it is powerless to access records that 

have particular contents, where those contents could 
appear in any field of a record. 

Present SQL products are unable to “wildcard” subfields in 
an index, both in the records themselves and in the 
SELECT statements that access records. Complex kludged 

workarounds, e.g. using string operators in SELECT 
statements, indirectly force the SQL engines to perform 
sequential searching. These kludges slow things down so 
much that they are only practical for small demos. Other 
kludges in effect overlay wildcard accessing over conven-
tional fully-specified keyed accessing, resulting in slow 
programs that are cluttered with the code needed to make 
this work. 

Some SQL products have sophisticated string search 
capabilities, but are slowed down by their string operation, 
when AI programs work better with ordinals instead of 
strings. 

Some future advanced NL understanding projects may have 
to wait for an SQL-like product that supports some sort of 
new capability to index through groups of information 
fragments. 

This facility will never appear in SQL until someone 
specifies a particular new SQL capability that would 
facilitate these applications. Then, someone can add the 
new capability to one of the shareware SQL products, so 
that NL understanding can proceed without this challenge 
hanging over it. 

7  Conclusion 

Now that you understand the “logic” that has misguided so 
many NL understanding projects onto the scrap heap, you 
can quickly recognize it when you see it again in the future, 
and explain the pitfall that awaits such efforts. The answers 
to simple questions like “How are you going to represent 
words?” and “What triggers the evaluation of a rule?” will 
usually tell you if the projects are on the wrong track. 

This new method promises several orders of magnitude 
improvement in the speed of NL understanding, regardless 
of which model of language is being used. This method has 
its own characteristic strengths and weaknesses around 
which a robust rules compiler could compile rules suitable 
for just about any imaginable approach to NL understand-
ing. 

However, it is one thing to “understand” NL, and quite 
another to usefully manipulate it, e.g. mine it for 
knowledge or translate it to a foreign language. Some sort 
of new database capability appears to be needed to replace 



 

 

present ad hoc methods with high-level query-driven 
database solutions. 

If this technology and associated descriptions of common 
languages are to be shared then some standards are 
necessary. If you would like to participate in developing a 
robust representation and interface to support your own 
needs for NL understanding, or if you just want some tables 
(like the 10,000 most commonly used English words in 
order of frequency of use), then please contact me at: 

Steve.Richfield@gmail.com 

8  The Future 

It is hoped that this methodology will affect the world in 
three important ways: 

1. People will stop writing NL understanding code that 
has no real possibility of ever scaling up to a useful 
level of functionality. 

2. The Internet in general, and Google in particular, 
will shed its dependence on isolated word and 
n-gram recognition for web searching and adver-
tisement triggering, and shift to looking for 
statements having specific meanings. 

3. Future advertising engines that will watch the 
Internet for problem statements to trigger adver-
tisements; will also be able to watch the Internet 
for problems statements relating to health, 
maintenance, politics, and other interesting do-
mains. Then, precisely targeted responses can be 
produced to convey key knowledge, to finally 
achieve the goal of having an Intelligent Internet. 
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