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Abstract: Tool state in the CNC milling machines will determine 

the product quality. An efficient tool state monitoring system will 

protect machinery from severe damages. For determining the state of 

the cutting tools in a milling machine there is a great variety of 

models in the industrial market, however those systems are not 

available for all companies because of their high costs and 

requirements of modifying the machining tool in order to attach the 

system sensors in the machine. This paper presents a sensorless 

intelligent dual system which classifies the cutters status in a CNC 

milling machine. The tool state is mainly determined through the 

analysis of the cutting forces drawn from the spindle motors currents. 

The tool classification is made by a Supervised SOM (Self Organized 

Maps), a MLP (Multilayer Perceptron) or both, achieving a 

reliability of 98%.  

 
Keywords: tool ware, wavelet transform, supervised SOM, Multilayer 

Perceptron, tool monitoring system. 

 

 

1 Introduction 

 

One of the main objectives of any company is to satisfy the 

customer needs by producing high quality products, optimizing 

costs by improving the manufacturing processes. In order to 

achieve the quality specifications it is important to eliminate 

variations during the production processes. For manufacturing 

companies the use of on line tool condition monitoring systems 

is essential in order to detect either breakage or tools ware to 

avoid poor quality production pieces due to the state of cutting 

tools and even preventing damage of machines. 
 

Neural Networks (ANN) is one of the most common and 

reported methods used in monitoring systems that classifies tool 

state, it is widely used because of  its adaptive learning, self-

organization, fault tolerance and real-time operation, providing 

good solutions for classification or decision making problems. 

Examples of ANNs applied to tool condition classification are 

found in [1], [2], [3] and [4]. 

 

Literature suggests that exists a correlation between cutting 

forces (static and dynamic) and tool wear [5], and those 

parameters may be studied in several forms, such as the based on 

changes of friction force between cutting tools and workpieces 

[6]. In several works it has been decided to analyze the cutting 

forces in order to determine the level of tool wear [7], [8], [2] 

and [3]. In order to evaluate cutting forces [9] and [10] 

developed simulation models that determine cutting forces with 

more precision than analytical models due to the application of 

Multi Layer Perceptron (MLP). 

 

The use of sensors is common, however, their application is 

limited because of the narrow operating range defined by the 

manufacturer, and usually system designs are made considering 

specific work conditions, which do not allow adjustments of 

manufacturing operations. In many occasions it is necessary to 

make machine modifications to place sensors. All those negative 

aspects are not presented in the proposed system because of its 

sensorless operation. It is presented the proposal of an intelligent 

system, with low cost and easy incorporation to the original 

process to classify physical condition of the cutting tool in a 

milling machine, helping to prevent defects in the working pieces 

and avoiding severe damage on the machine tool. 

 

This paper is organized as follows: Section 1 introduction, 

Section 2 is related to the monitoring system, and finally in 

Section 3 conclusions are presented. 

 

2. Development 
 

2.1. Monitoring System. 

 
A retrofitted CNC milling machine, model FNK25, with a 

head tool of two carbide inserts was used for testing the 

intelligent classifier. The correct set up of cutting parameters is 

an important step in the milling process. Parameters selection 

depends on the material hardness, type of cutter and work piece 

finish, among others. This choice will determine whether or not 

the final product meets the quality specifications (dimensions, 

finish, etc.). The stages that compose a milling process are 

shown in figure 1. 

 

The milling parameters are shown in Table 1. The milling 

process was made on ASTM-4130 steel, and using cutters of 

different states such as new (good conditions), worn (with 

several degrees of wear) and broken. 

 

 



 

 
Figure 1. Stages of a milling process 

 
Table 1. Milling parameters 

 

 

Values of spindle speed, depth of cut and feed rate were varied 

between the ranges shown in table 1 for each case. Signals 

from the motor spindle driver were acquired to determine the 

cutter status; these signals are a direct representation of the 

cutting forces. A Tektronik MSO4000 oscilloscope was the 

instrument used to acquire the signals. Finally, to obtain the 

neural networks inputs, a features extraction from the acquired 

data was made by digital signal processing techniques. Figure 2 

represents the general system stages. 

 

 
Figure 2. Monitoring system stages 

 

 

 

 

 

 

2.2. Data Acquisition. 
 

As mentioned before, the cutting forces will be the main 

parameter to be analyzed [11]; one of the points where is 

possible to acquire these signals is the spindle motor. Thus for 

avoiding the use of sensors, in this research the motor driver is 

proposed as the data source. The original signal presents the 

cutting force as its main component; however, it is important to 

mention that signals from the servo driver have severe noise 

interference by the ball-screw and the switching noise due to 

the associated digital systems [12]. Because of this, previously 

to the digital processing is necessary to filter the spindle 

current signals. Figure 3 shows the signal processing system, 

which was used to obtain the cutting forces. 

  

 
Figure 3. Experiment setup 

 

For noise elimination, the original signal was filtered using a 

band-pass filter. A Finite Impulse Response (FIR) digital filter 

was chosen because it has a linear phase response. Table 2 

presents the parameters of the applied filter; this was designed 

using the filter design and analysis tool from MatLab.  

 
Table 2. Filter parameters 

Filter characteristics 

Filter type Bandpass 

Design method Kaiser window 

Sampling frequency  6250 Hz 

Order Filter 20 

Cutoff frequencies fc1  20 Hz  

 fc2  138 Hz 

 

Figure 4 displays an unfiltered signal (a) and its corresponding 

filtered signal (b). The filtering process removes noisy 

components and preserves the embedded cutting force. 

 
 

To consolidate the classification process a data compression 

procedure was performed. This was done by the Wavelet 

Transform (WT), which implements a mapping of the time-

domain to a time-scale representation, preserving the temporal 

aspect. The figure 5 shows a signal with different compression 

levels by applying a Daubechies-5 Wavelet function, it can be 

seen that those levels have the same pattern but a different 

resolution. The maximum transformation level is determined 

by the desired resolution, for this study the fifth level was 

selected, this allows to achieve a data reduction from 1024 to 

only 32 points per sample. 

 

Parameter Value  

Spindle speed 300 – 450  rpm  

Cutting depth 1 – 1.5  mm  

Feed rate 100 - 120  mm / min  



 

 
Figure 4. (a) Unfiltered signal. (b) Filtered signal. 

 

 
 
Figure 5. Data compression levels. The Y-axis represents the cutting 

force and the X-axis is the sample number 

 

 

 

 

 

2.3. Intelligent Classification. 
 

In order to select the optimal networks for tool state 

classification, several Multi Layer Perceptron (MLP) type 

networks with supervised training were tested. Self-Organizing 

Maps (SOM) with supervised and unsupervised training were 

supervised, this represents a significant variation because SOM 

networks are usually unsupervised trained. Some of the tested 

MLP networks included [3, 10, 10, 3], [3, 8, 8, 3], [3, 8, 12, 3] 

and [3, 8, 10, 3] structures. Figure 6 shows one of the MLP 

tested. The activation function is a sigmoid function and 

learning rate of 0.2.  

 

It was decided to test a SOM network as classifier, due to its 

low sensitivity to noise, it is an appropriate tool to classify this 

kind of signals. Some of the analyzed structures were [4, 4], [4, 

8] and [8 8], these were trained using both supervised and 

unsupervised learning. The supervised training was made 

adding a supervisor agent, which is an array of [N 1], where N 

is the number of existing classes. Figure 7 shows a [4, 4] SOM 

network with a neighborhood of 1. 

 

 
Figure 6. Multilayer Perceptron [4 8 8 3]. 

 

 
Figure 7 SOM-type artificial neural network [4,8], with neighborhood 

1 

 

The classifier was tested using two different kinds of ANNs 

with different size and training types. There are differences in 

the networks performance, but they are not significant. As 

summary, the Table 3 shows the achieved error during the 

training of the MLP networks and Table 4 shows the error 

using ANN SOM supervised. 

 

 



 
 

Table 3. Error of MLP networks 

Cutting depth 

(mm) 

Feed rate 

(mm/min) 

Spindle speed 

(rpm) 

Epoch Neuron in 

hidden layers 

Error 

1 100 300 1000 [8,8] 0.001397 

1 100 450 1000 [8,8] 0.001298 

1 120 300 1000 [10,10] 0.00099 

1 120 450 1000 [10,10] 0.00099 

1.5 100 300 1000 [8,10] 0.00099 

1.5 100 450 1000 [8,10] 0.00099 

1.5 120 300 1000 [8,12] 0.00099 

1.5 120 450 1000 [8,12] 0.00099 

 

Table 4. Error of MLP networks 

Cutting depth 

(mm) 

Feed rate 

(mm/min) 

Spindle speed 

(rpm) 

Epoch Structure Error 

1 100 300 1000 [4,4] 0.001197 

1 100 300 1000 [4,8] 0.001318 

1 100 300 1000 [8,8] 0.00099 

1.5 120 450 1000 [4,4] 0.00199 

1.5 120 450 1000 [4,8] 0.00099 

1.5 120 450 1000 [8,8] 0.00099 

 

 

Figure 8 shows the way as the error decreases, there is not an 

important difference among the obtained errors when the 

number of neurons in the hidden layers is bigger than 8. The 

neural network that is considered as suitable for using in the 

proposed intelligent classifier should have at less eight 

neurons in the hidden layers. For validating the network 

performance two types of inputs were tested, signals 

previously used during the training and signals not used for 

the training process. Figure 9 shows the convergence of the 

ANN SOM supervised and unsupervised. 

 

Figure 8. Error during neural networks training 

 

 
   Figure 9. Error during neural networks training 

 

For testing the monitoring system we can use one, two or 

both ANNs (MLP and SOM supervised). Some of the worn 

cutters were used during the training. To guarantee a good 

classification system it must identify either a broken or worn 

cutter. Figure 10 shows some results of correct 

identifications. 

 

 

 

 

 



 
 

 

 

 
Figure 10. Status classification of tool using two and one 

ANN. 

 

 

3. Conclusions 
 

Cutting force variations have been correlated to the tool wear 

by using one or two Artificial Neural Network, as a 

consequence the correct classification of the cutting tool 

condition is achieved. The ANNs approach had made 

possible the online and fault tolerant monitoring of the tool, 

besides the system presents the advantage of not having to 

stop the machine for knowing the tool condition. From test 

using both training types, the SOM supervised obtained a 

faster convergence than SOM unsupervised. The presented 

tool condition monitoring system is sensorless, thus the 

machinery will not be modified if the system is attached to its 

structure. 

 

There is not a significant difference in the achieved error 

when the MLP networks have a size more than [8, 8] neurons 

in the hidden layer, or when del SOM has an structure [8,8]; 

however, computationally it represents a considerable 

difference in resources consumption, for that reason is not 

appropriate to comprise more neurons. So this is the suitable 

size for a network which is going to be considered as 

classifier in the proposed system. 

 

The proposed neural network is able to classify breakage 

levels greater than 0.3 mm with a confidence level of 98%, 

with the same confidence level it also determines the good 

condition of the tool. The wear tool can be resolved with an 

efficiency of 94% when the wear is greater than 0.25 mm. Its 

reliable confidence level avoids the damage to the machinery, 

the tool and the piece, which is the main objective of a tool 

condition monitoring system. In the worst case if the 

monitoring system fails the workpiece will need to be re-

worked with a new cutting tool, since the damage will be just 

a piece of a lower quality finish. Future work will try to 

identify two levels of wear tool, in addition to the breakage 

and the good working conditions. 

 

The maximum compression level of the signal was achieved 

with five levels of data processing. To verify that the original 

signal may be recovered, an inverse wavelet transformation 

was made, verifying that the signal is completely recoverable. 
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